74 template <
class FitObject>
77 template <
class FitObject>
80 template <
class FitObject>
90 Error(
"Fit",
"function may not be null pointer");
94 Error(
"Fit",
"function is zombie");
100 Error(
"Fit",
"function %s has illegal number of parameters = %d",
f1->
GetName(), npar);
106 Error(
"Fit",
"function %s dimension, %d, is greater than fit object dimension, %d",
111 Error(
"Fit",
"function %s dimension, %d, is smaller than fit object dimension -1, %d",
123 Double_t fxmin, fymin, fzmin, fxmax, fymax, fzmax;
124 f1.
GetRange(fxmin, fymin, fzmin, fxmax, fymax, fzmax);
133template<
class FitObject>
140 printf(
"fit function %s\n",
f1->
GetName() );
146 if (iret != 0)
return iret;
152 if (fitOption.
Integral)
Info(
"Fit",
"Ignore Integral option. Model function dimension is less than the data object dimension");
153 if (fitOption.
Like)
Info(
"Fit",
"Ignore Likelihood option. Model function dimension is less than the data object dimension");
161 if (special==299+npar) linear =
kTRUE;
167 std::shared_ptr<TFitResult> tfr(
new TFitResult() );
169 std::shared_ptr<ROOT::Fit::Fitter> fitter(
new ROOT::Fit::Fitter(std::static_pointer_cast<ROOT::Fit::FitResult>(tfr) ) );
190 printf(
"use range \n" );
195 printf(
"range size %d\n", range.
Size(0) );
198 printf(
" range in x = [%f,%f] \n",
x1,
x2);
205 if (fitdata->Size() == 0 ) {
206 Warning(
"Fit",
"Fit data is empty ");
211 printf(
"HFit:: data size is %d \n",fitdata->Size());
212 for (
unsigned int i = 0; i < fitdata->Size(); ++i) {
213 if (fitdata->NDim() == 1) printf(
" x[%d] = %f - value = %f \n", i,*(fitdata->Coords(i)),fitdata->Value(i) );
223 if (special != 0 && !fitOption.
Bound && !linear) {
236 if ( (linear || fitOption.
Gradient) )
250 if (
int(fitdata->NDim()) == hdim -1 ) fitConfig.
SetNormErrors(
true);
258 for (
int i = 0; i < npar; ++i) {
264 if (plow*pup != 0 && plow >= pup) {
267 else if (plow < pup ) {
282 double step = 0.1 * (pup - plow);
284 if ( parSettings.
Value() < pup && pup - parSettings.
Value() < 2 * step )
285 step = (pup - parSettings.
Value() ) / 2;
286 else if ( parSettings.
Value() > plow && parSettings.
Value() - plow < 2 * step )
287 step = (parSettings.
Value() - plow ) / 2;
316 std::string
type =
"Robust";
342 if (fitOption.
Like) printf(
"do likelihood fit...\n");
343 if (linear) printf(
"do linear fit...\n");
344 printf(
"do now fit...\n");
359 if (fitOption.
User && userFcn)
360 fitok = fitter->FitFCN( userFcn );
361 else if (fitOption.
Like) {
363 bool weight = ((fitOption.
Like & 2) == 2);
365 bool extended = ((fitOption.
Like & 4 ) != 4 );
369 fitok = fitter->LikelihoodFit(fitdata, extended, fitOption.
ExecPolicy);
372 fitok = fitter->Fit(fitdata, fitOption.
ExecPolicy);
374 if ( !fitok && !fitOption.
Quiet )
375 Warning(
"Fit",
"Abnormal termination of minimization.");
381 iret = fitResult.
Status();
405 if (!fitOption.
Quiet) {
406 if (fitter->GetMinimizer() && fitConfig.
MinimizerType() ==
"Minuit" &&
408 fitter->GetMinimizer()->PrintResults();
413 fitResult.
Print(std::cout);
428 bcfitter->
SetFCN(userFcn);
454 tfr->SetTitle(title);
469 if (range.
Size(0) == 0) {
480 if (range.
Size(1) == 0) {
491 if (range.
Size(2) == 0) {
502 std::cout <<
"xmin,xmax" <<
xmin <<
" " <<
xmax << std::endl;
521 else if (range.
Size(0) == 0) {
523 double xmin = std::numeric_limits<double>::infinity();
524 double xmax = -std::numeric_limits<double>::infinity();
525 TIter next(
mg->GetListOfGraphs() );
527 while ( (
g = (
TGraph*) next() ) ) {
528 double x1 = 0,
x2 = 0, y1 = 0, y2 = 0;
529 g->ComputeRange(
x1,y1,
x2,y2);
543 if (range.
Size(0) == 0) {
544 double xmin =
gr->GetXmin();
545 double xmax =
gr->GetXmax();
548 if (range.
Size(1) == 0) {
549 double ymin =
gr->GetYmin();
550 double ymax =
gr->GetYmax();
561 for (
int i = 0; i < ndim; ++i ) {
562 if ( range.
Size(i) == 0 ) {
569template<
class FitObject>
575 std::cout <<
"draw and store fit function " <<
f1->
GetName() << std::endl;
587 std::cout <<
"draw and store fit function " <<
f1->
GetName()
588 <<
" Range in x = [ " <<
xmin <<
" , " <<
xmax <<
" ]" << std::endl;
593 Error(
"StoreAndDrawFitFunction",
"Function list has not been created - cannot store the fitted function");
601 bool reuseOldFunction =
false;
602 if (delOldFunction) {
605 while ((obj = next())) {
612 reuseOldFunction =
true;
624 if (!reuseOldFunction) {
625 fnew1 = (
TF1*)
f1->IsA()->New();
628 funcList->
Add(fnew1);
638 }
else if (ndim < 3) {
639 if (!reuseOldFunction) {
640 fnew2 = (
TF2*)
f1->IsA()->New();
643 funcList->
Add(fnew2);
646 fnew2 =
dynamic_cast<TF2*
>(
f1);
655 if (!reuseOldFunction) {
656 fnew3 = (
TF3*)
f1->IsA()->New();
659 funcList->
Add(fnew3);
662 fnew2 =
dynamic_cast<TF3*
>(
f1);
673 if (drawFunction && ndim < 3 && h1->InheritsFrom(
TH1::Class() ) ) {
676 if (!
gPad || (
gPad &&
gPad->GetListOfPrimitives()->FindObject(
h1) == NULL ) )
692 if (option == 0)
return;
693 if (!option[0])
return;
741 int start = opt.
Index(
"H=0.");
742 int numpos = start + strlen(
"H=0.");
745 while( (numpos+numlen<len) && isdigit(opt[numpos+numlen]) ) numlen++;
746 TString num = opt(numpos,numlen);
747 opt.
Remove(start+strlen(
"H"),strlen(
"=0.")+numlen);
748 h = atof(num.
Data());
766 if (fitOption.
Like == 1) {
770 if (fitOption.
Like == 2) fitOption.
Like = 6;
771 else fitOption.
Like = 4;
776 if (fitOption.
Chi2 == 1 || fitOption.
PChi2 == 1)
777 Warning(
"Fit",
"Cannot use P or X option in combination of L. Ignore the chi2 option and perform a likelihood fit");
784 if (fitOption.
PChi2 && fitOption.
W1) {
785 Warning(
"FitOptionsMake",
"Ignore option W or WW when used together with option P (Pearson chi2)");
805 Info(
"CheckGraphFitOptions",
"L (Log Likelihood fit) is an invalid option when fitting a graph. It is ignored");
809 Info(
"CheckGraphFitOptions",
"I (use function integral) is an invalid option when fitting a graph. It is ignored");
821 std::shared_ptr<ROOT::Fit::UnBinData> fitdata(data);
824 printf(
"tree data size is %d \n",fitdata->Size());
825 for (
unsigned int i = 0; i < fitdata->Size(); ++i) {
826 if (fitdata->NDim() == 1) printf(
" x[%d] = %f \n", i,*(fitdata->Coords(i) ) );
829 if (fitdata->Size() == 0 ) {
830 Warning(
"Fit",
"Fit data is empty ");
835 std::shared_ptr<TFitResult> tfr(
new TFitResult() );
841 unsigned int dim = fitdata->NDim();
847 assert ( (
int) dim == fitfunc->
GetNdim() );
856 for (
int i = 0; i < npar; ++i) {
861 if (plow*pup != 0 && plow >= pup) {
864 else if (plow < pup ) {
879 double step = 0.1 * (pup - plow);
881 if ( parSettings.
Value() < pup && pup - parSettings.
Value() < 2 * step )
882 step = (pup - parSettings.
Value() ) / 2;
883 else if ( parSettings.
Value() > plow && parSettings.
Value() - plow < 2 * step )
884 step = (parSettings.
Value() - plow ) / 2;
906 if ( (fitOption.
Like & 2) == 2)
909 bool extended = (fitOption.
Like & 1) == 1;
912 fitok = fitter->LikelihoodFit(fitdata, extended, fitOption.
ExecPolicy);
913 if ( !fitok && !fitOption.
Quiet )
914 Warning(
"UnBinFit",
"Abnormal termination of minimization.");
918 int iret = fitResult.
Status();
943 if (lastFitter)
delete lastFitter;
953 else if (!fitOption.
Quiet) fitResult.
Print(std::cout);
962 tfr->SetTitle(title);
977 Warning(
"HFit::FitObject",
"A weighted likelihood fit is requested but histogram is not weighted - do a standard Likelihood fit");
1034template<
class FitObject>
1046 if (data.
Size() == 0 ) {
1047 Warning(
"Chisquare",
"data set is empty - return -1");
static const double x2[5]
static const double x1[5]
const Bool_t kIterBackward
void Info(const char *location, const char *msgfmt,...)
void Error(const char *location, const char *msgfmt,...)
void Warning(const char *location, const char *msgfmt,...)
R__EXTERN TVirtualMutex * gGlobalMutex
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Chi2FCN class for binnned fits using the least square methods.
class describing the range in the coordinates it supports multiple range in a coordinate.
void AddRange(unsigned int icoord, double xmin, double xmax)
add a range [xmin,xmax] for the new coordinate icoord Adding a range does not delete existing one,...
unsigned int Size(unsigned int icoord=0) const
return range size for coordinate icoord (starts from zero) Size == 0 indicates no range is present [-...
void GetRange(unsigned int irange, unsigned int icoord, double &xmin, double &xmax) const
get the i-th range for given coordinate.
Class describing the configuration of the fit, options and parameter settings using the ROOT::Fit::Pa...
void SetMinosErrors(bool on=true)
set Minos erros computation to be performed after fitting
void SetNormErrors(bool on=true)
set the option to normalize the error on the result according to chi2/ndf
void SetMinimizer(const char *type, const char *algo=0)
set minimizer type
bool NormalizeErrors() const
flag to check if resulting errors are be normalized according to chi2/ndf
void SetMinimizerOptions(const ROOT::Math::MinimizerOptions &minopt)
set all the minimizer options using class MinimizerOptions
void SetWeightCorrection(bool on=true)
apply the weight correction for error matric computation
void SetParabErrors(bool on=true)
set parabolic erros
const std::string & MinimizerType() const
return type of minimizer package
const ParameterSettings & ParSettings(unsigned int i) const
get the parameter settings for the i-th parameter (const method)
ROOT::Math::MinimizerOptions & MinimizerOptions()
access to the minimizer control parameter (non const method)
unsigned int Size() const
return number of fit points
class containg the result of the fit and all the related information (fitted parameter values,...
bool IsEmpty() const
True if a fit result does not exist (even invalid) with parameter values.
const std::vector< double > & Errors() const
parameter errors (return st::vector)
const std::vector< double > & Parameters() const
parameter values (return std::vector)
unsigned int Ndf() const
Number of degree of freedom.
double Chi2() const
Chi2 fit value in case of likelihood must be computed ?
void Print(std::ostream &os, bool covmat=false) const
print the result and optionaly covariance matrix and correlations
void PrintCovMatrix(std::ostream &os) const
print error matrix and correlations
int Status() const
minimizer status code
Fitter class, entry point for performing all type of fits.
Class, describing value, limits and step size of the parameters Provides functionality also to set/re...
void SetStepSize(double err)
set the step size
void SetLimits(double low, double up)
set a double side limit, if low == up the parameter is fixed if low > up the limits are removed The c...
double Value() const
copy constructor and assignment operators (leave them to the compiler)
void SetUpperLimit(double up)
set a single upper limit
void Fix()
fix the parameter
void SetLowerLimit(double low)
set a single lower limit
class evaluating the log likelihood for binned Poisson likelihood fits it is template to distinguish ...
Class describing the unbinned data sets (just x coordinates values) of any dimensions.
IParamFunction interface (abstract class) describing multi-dimensional parameteric functions It is a ...
void SetPrintLevel(int level)
set print level
void SetTolerance(double tol)
set the tolerance
Class to Wrap a ROOT Function class (like TF1) in a IParamMultiFunction interface of multi-dimensions...
Class to manage histogram axis.
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Int_t GetLast() const
Return last bin on the axis i.e.
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
Int_t GetFirst() const
Return first bin on the axis i.e.
Backward compatible implementation of TVirtualFitter.
virtual void SetMethodCall(TMethodCall *m)
virtual void SetFCN(void(*fcn)(Int_t &, Double_t *, Double_t &f, Double_t *, Int_t))
Override setFCN to use the Adapter to Minuit2 FCN interface To set the address of the minimization fu...
virtual Int_t GetNumber() const
virtual void GetParLimits(Int_t ipar, Double_t &parmin, Double_t &parmax) const
Return limits for parameter ipar.
virtual void SetNDF(Int_t ndf)
Set the number of degrees of freedom ndf should be the number of points used in a fit - the number of...
virtual Double_t GetParError(Int_t ipar) const
Return value of parameter number ipar.
virtual void SetChisquare(Double_t chi2)
virtual void Copy(TObject &f1) const
Copy this F1 to a new F1.
virtual void SetRange(Double_t xmin, Double_t xmax)
Initialize the upper and lower bounds to draw the function.
virtual void SetParent(TObject *p=0)
virtual Int_t GetNpar() const
virtual void SetParErrors(const Double_t *errors)
Set errors for all active parameters when calling this function, the array errors must have at least ...
virtual Double_t * GetParameters() const
virtual void SetNumberFitPoints(Int_t npfits)
virtual void GetRange(Double_t *xmin, Double_t *xmax) const
Return range of a generic N-D function.
virtual Bool_t IsLinear() const
virtual void SetParameters(const Double_t *params)
virtual void Save(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Double_t zmin, Double_t zmax)
Save values of function in array fSave.
virtual Int_t GetNdim() const
virtual Bool_t AddToGlobalList(Bool_t on=kTRUE)
Add to global list of functions (gROOT->GetListOfFunctions() ) return previous status (true if the fu...
A 2-Dim function with parameters.
virtual void Save(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Double_t zmin, Double_t zmax)
Save values of function in array fSave.
virtual void SetRange(Double_t xmin, Double_t xmax)
Initialize the upper and lower bounds to draw the function.
A 3-Dim function with parameters.
virtual void SetRange(Double_t xmin, Double_t xmax)
Initialize the upper and lower bounds to draw the function.
virtual void Save(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Double_t zmin, Double_t zmax)
Save values of function in array fSave.
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
Extends the ROOT::Fit::Result class with a TNamed inheritance providing easy possibility for I/O.
Graphics object made of three arrays X, Y and Z with the same number of points each.
A TGraph is an object made of two arrays X and Y with npoints each.
TH1F * GetHistogram() const
Returns a pointer to the histogram used to draw the axis Takes into account the two following cases.
virtual Int_t GetDimension() const
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
TList * GetListOfFunctions() const
virtual void Draw(Option_t *option="")
Draw this histogram with options.
virtual Int_t GetSumw2N() const
Multidimensional histogram base.
virtual void Add(TObject *obj)
virtual TObject * Remove(TObject *obj)
Remove object from the list.
A TMultiGraph is a collection of TGraph (or derived) objects.
virtual const char * GetTitle() const
Returns title of object.
virtual const char * GetName() const
Returns name of object.
Mother of all ROOT objects.
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
R__ALWAYS_INLINE Bool_t IsZombie() const
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
const char * Data() const
TString & ReplaceAll(const TString &s1, const TString &s2)
void ToUpper()
Change string to upper case.
TString & Remove(Ssiz_t pos)
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
Abstract Base Class for Fitting.
virtual void SetFitOption(Foption_t option)
virtual void SetObjectFit(TObject *obj)
TMethodCall * GetMethodCall() const
void(* FCNFunc_t)(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
virtual void SetUserFunc(TObject *userfunc)
static TVirtualFitter * GetFitter()
static: return the current Fitter
static void SetFitter(TVirtualFitter *fitter, Int_t maxpar=25)
Static function to set an alternative fitter.
void GetDrawingRange(TH1 *h1, ROOT::Fit::DataRange &range)
void GetFunctionRange(const TF1 &f1, ROOT::Fit::DataRange &range)
int CheckFitFunction(const TF1 *f1, int hdim)
TFitResultPtr Fit(FitObject *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
void FitOptionsMake(const char *option, Foption_t &fitOption)
void CheckGraphFitOptions(Foption_t &fitOption)
void StoreAndDrawFitFunction(FitObject *h1, TF1 *f1, const ROOT::Fit::DataRange &range, bool, bool, const char *goption)
int GetDimension(const THnBase *s1)
double ComputeChi2(const FitObject &h1, TF1 &f1, bool useRange, bool usePL)
int GetDimension(const TH1 *h1)
TFitResultPtr FitObject(TH1 *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
fitting function for a TH1 (called from TH1::Fit)
void FitOptionsMake(EFitObjectType type, const char *option, Foption_t &fitOption)
Decode list of options into fitOption.
void Init2DGaus(const ROOT::Fit::BinData &data, TF1 *f1)
compute initial parameter for 2D gaussian function given the fit data Set the sigma limits for zero t...
TFitResultPtr UnBinFit(ROOT::Fit::UnBinData *data, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption)
fit an unbin data set (from tree or from histogram buffer) using a TF1 pointer and fit options.
void FillData(BinData &dv, const TH1 *hist, TF1 *func=0)
fill the data vector from a TH1.
void InitExpo(const ROOT::Fit::BinData &data, TF1 *f1)
compute initial parameter for an exponential function given the fit data Set the constant and slope a...
void InitGaus(const ROOT::Fit::BinData &data, TF1 *f1)
compute initial parameter for gaussian function given the fit data Set the sigma limits for zero top ...
double Chisquare(const TH1 &h1, TF1 &f1, bool useRange, bool usePL=false)
compute the chi2 value for an histogram given a function (see TH1::Chisquare for the documentation)
std::string ToString(const T &val)
Utility function for conversion to strings.
Bool_t IsImplicitMTEnabled()
Returns true if the implicit multi-threading in ROOT is enabled.
static constexpr double s
static constexpr double mg
Int_t Finite(Double_t x)
Check if it is finite with a mask in order to be consistent in presence of fast math.
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
ROOT::Fit::ExecutionPolicy ExecPolicy
DataOptions : simple structure holding the options on how the data are filled.