540class DifferentDimension:
public std::exception {};
541class DifferentNumberOfBins:
public std::exception {};
542class DifferentAxisLimits:
public std::exception {};
543class DifferentBinLimits:
public std::exception {};
544class DifferentLabels:
public std::exception {};
644 if (nbins <= 0) {
Warning(
"TH1",
"nbins is <=0 - set to nbins = 1"); nbins = 1; }
666 if (nbins <= 0) {
Warning(
"TH1",
"nbins is <=0 - set to nbins = 1"); nbins = 1; }
688 if (nbins <= 0) {
Warning(
"TH1",
"nbins is <=0 - set to nbins = 1"); nbins = 1; }
716 Draw(
b ?
b->GetDrawOption() :
"");
781 Error(
"Add",
"Attempt to add a non-existing function");
801 for (
Int_t i = 0; i < 10; ++i)
s1[i] = 0;
807 Int_t bin, binx, biny, binz;
812 for (binz = 0; binz < ncellsz; ++binz) {
814 for (biny = 0; biny < ncellsy; ++biny) {
816 for (binx = 0; binx < ncellsx; ++binx) {
820 bin = binx + ncellsx * (biny + ncellsy * binz);
866 Error(
"Add",
"Attempt to add a non-existing histogram");
877 }
catch(DifferentNumberOfBins&) {
879 Info(
"Add",
"Attempt to add histograms with different number of bins - trying to use TH1::Merge");
881 Error(
"Add",
"Attempt to add histograms with different number of bins : nbins h1 = %d , nbins h2 = %d",
GetNbinsX(),
h1->
GetNbinsX());
884 }
catch(DifferentAxisLimits&) {
886 Info(
"Add",
"Attempt to add histograms with different axis limits - trying to use TH1::Merge");
888 Warning(
"Add",
"Attempt to add histograms with different axis limits");
889 }
catch(DifferentBinLimits&) {
891 Info(
"Add",
"Attempt to add histograms with different bin limits - trying to use TH1::Merge");
893 Warning(
"Add",
"Attempt to add histograms with different bin limits");
894 }
catch(DifferentLabels&) {
897 Info(
"Add",
"Attempt to add histograms with different labels - trying to use TH1::Merge");
899 Info(
"Warning",
"Attempt to add histograms with different labels");
904 l.Add(
const_cast<TH1*
>(
h1));
947 if (e1sq) w1 = 1. / e1sq;
952 double sf = (s2[0] != 0) ? s2[1]/s2[0] : 1;
956 if (e2sq) w2 = 1. / e2sq;
961 double sf = (
s1[0] != 0) ?
s1[1]/
s1[0] : 1;
966 double y = (w1*y1 + w2*y2)/(w1 + w2);
969 double err2 = 1./(w1 + w2);
970 if (err2 < 1.E-200) err2 = 0;
986 if (i == 1)
s1[i] +=
c1*
c1*s2[i];
987 else s1[i] +=
c1*s2[i];
1028 Error(
"Add",
"Attempt to add a non-existing histogram");
1036 if (
h1 == h2 &&
c2 < 0) {
c2 = 0; normWidth =
kTRUE;}
1045 }
catch(DifferentNumberOfBins&) {
1047 Info(
"Add",
"Attempt to add histograms with different number of bins - trying to use TH1::Merge");
1049 Error(
"Add",
"Attempt to add histograms with different number of bins : nbins h1 = %d , nbins h2 = %d",
GetNbinsX(),
h1->
GetNbinsX());
1052 }
catch(DifferentAxisLimits&) {
1054 Info(
"Add",
"Attempt to add histograms with different axis limits - trying to use TH1::Merge");
1056 Warning(
"Add",
"Attempt to add histograms with different axis limits");
1057 }
catch(DifferentBinLimits&) {
1059 Info(
"Add",
"Attempt to add histograms with different bin limits - trying to use TH1::Merge");
1061 Warning(
"Add",
"Attempt to add histograms with different bin limits");
1062 }
catch(DifferentLabels&) {
1065 Info(
"Add",
"Attempt to add histograms with different labels - trying to use TH1::Merge");
1067 Info(
"Warning",
"Attempt to add histograms with different labels");
1073 l.Add(
const_cast<TH1*
>(
h1));
1074 l.Add(
const_cast<TH1*
>(h2));
1096 Bool_t resetStats = (
c1*
c2 < 0) || normWidth;
1103 if (i == 1) s3[i] =
c1*
c1*
s1[i] +
c2*
c2*s2[i];
1105 else s3[i] =
c1*
s1[i] +
c2*s2[i];
1121 Int_t bin, binx, biny, binz;
1122 for (binz = 0; binz < nbinsz; ++binz) {
1124 for (biny = 0; biny < nbinsy; ++biny) {
1126 for (binx = 0; binx < nbinsx; ++binx) {
1128 bin =
GetBin(binx, biny, binz);
1149 if (e1sq) w1 = 1./ e1sq;
1153 double sf = (
s1[0] != 0) ?
s1[1]/
s1[0] : 1;
1157 if (e2sq) w2 = 1./ e2sq;
1161 double sf = (s2[0] != 0) ? s2[1]/s2[0] : 1;
1166 double y = (w1*y1 + w2*y2)/(w1 + w2);
1169 double err2 = 1./(w1 + w2);
1170 if (err2 < 1.E-200) err2 = 0;
1244 return ((next &&
x > 0.) || (!next &&
x <= 0.)) ?
std::ldexp(std::copysign(1., f2), nn)
1299 Double_t rr = (xhma - xhmi) / (xma - xmi);
1309 Int_t nbup = (xhma - xma) / bw;
1312 if (nbup != nbside) {
1314 xhma -= bw * (nbup - nbside);
1315 nb -= (nbup - nbside);
1319 Int_t nblw = (xmi - xhmi) / bw;
1322 if (nblw != nbside) {
1324 xhmi += bw * (nblw - nbside);
1325 nb -= (nblw - nbside);
1355 if (nbentries == 0) {
1365 if (nbentries < 0 && action == 0)
return 0;
1368 if (nbentries < 0) {
1369 nbentries = -nbentries;
1381 for (
Int_t i=1;i<nbentries;i++) {
1391 "incosistency found by power-of-2 autobin algorithm: fallback to standard method");
1409 DoFillN(nbentries,&buffer[2],&buffer[1],2);
1443 if (nbentries < 0) {
1446 nbentries = -nbentries;
1478 if ( h2Array->
fN != fN ) {
1479 throw DifferentBinLimits();
1483 for (
int i = 0; i < fN; ++i ) {
1488 throw DifferentBinLimits();
1509 throw DifferentLabels();
1514 throw DifferentLabels();
1517 for (
int i = 1; i <= a1->
GetNbins(); ++i) {
1520 if (label1 != label2) {
1521 throw DifferentLabels();
1539 throw DifferentAxisLimits();
1552 ::Info(
"CheckEqualAxes",
"Axes have different number of bins : nbin1 = %d nbin2 = %d",a1->
GetNbins(),a2->
GetNbins() );
1557 }
catch (DifferentAxisLimits&) {
1558 ::Info(
"CheckEqualAxes",
"Axes have different limits");
1563 }
catch (DifferentBinLimits&) {
1564 ::Info(
"CheckEqualAxes",
"Axes have different bin limits");
1571 }
catch (DifferentLabels&) {
1572 ::Info(
"CheckEqualAxes",
"Axes have different labels");
1587 Int_t nbins1 = lastBin1-firstBin1 + 1;
1595 if (firstBin2 < lastBin2) {
1597 nbins2 = lastBin1-firstBin1 + 1;
1602 if (nbins1 != nbins2 ) {
1603 ::Info(
"CheckConsistentSubAxes",
"Axes have different number of bins");
1611 ::Info(
"CheckConsistentSubAxes",
"Axes have different limits");
1623 if (
h1 == h2)
return true;
1626 throw DifferentDimension();
1638 (dim > 1 && nbinsy != h2->
GetNbinsY()) ||
1639 (dim > 2 && nbinsz != h2->
GetNbinsZ()) ) {
1640 throw DifferentNumberOfBins();
1955 Int_t ndf = 0, igood = 0;
1963 printf(
"Chi2 = %f, Prob = %g, NDF = %d, igood = %d\n", chi2,prob,ndf,igood);
1966 if (ndf == 0)
return 0;
2014 Int_t i_start, i_end;
2015 Int_t j_start, j_end;
2016 Int_t k_start, k_end;
2045 Error(
"Chi2TestX",
"Histograms have different dimensions.");
2050 if (nbinx1 != nbinx2) {
2051 Error(
"Chi2TestX",
"different number of x channels");
2053 if (nbiny1 != nbiny2) {
2054 Error(
"Chi2TestX",
"different number of y channels");
2056 if (nbinz1 != nbinz2) {
2057 Error(
"Chi2TestX",
"different number of z channels");
2061 i_start = j_start = k_start = 1;
2092 ndf = (i_end - i_start + 1) * (j_end - j_start + 1) * (k_end - k_start + 1) - 1;
2099 if (scaledHistogram && !comparisonUU) {
2100 Info(
"Chi2TestX",
"NORM option should be used together with UU option. It is ignored");
2107 Double_t effEntries1 = (
s[1] ?
s[0] *
s[0] /
s[1] : 0.0);
2111 Double_t effEntries2 = (
s[1] ?
s[0] *
s[0] /
s[1] : 0.0);
2113 if (!comparisonUU && !comparisonUW && !comparisonWW ) {
2115 if (
TMath::Abs(sumBinContent1 - effEntries1) < 1) {
2116 if (
TMath::Abs(sumBinContent2 - effEntries2) < 1) comparisonUU =
true;
2117 else comparisonUW =
true;
2119 else comparisonWW =
true;
2123 if (
TMath::Abs(sumBinContent1 - effEntries1) >= 1) {
2124 Warning(
"Chi2TestX",
"First histogram is not unweighted and option UW has been requested");
2127 if ( (!scaledHistogram && comparisonUU) ) {
2128 if ( (
TMath::Abs(sumBinContent1 - effEntries1) >= 1) || (
TMath::Abs(sumBinContent2 - effEntries2) >= 1) ) {
2129 Warning(
"Chi2TestX",
"Both histograms are not unweighted and option UU has been requested");
2135 if (comparisonUU && scaledHistogram) {
2136 for (
Int_t i = i_start; i <= i_end; ++i) {
2137 for (
Int_t j = j_start; j <= j_end; ++j) {
2138 for (
Int_t k = k_start; k <= k_end; ++k) {
2147 if (e1sq > 0.0) cnt1 =
TMath::Floor(cnt1 * cnt1 / e1sq + 0.5);
2150 if (e2sq > 0.0) cnt2 =
TMath::Floor(cnt2 * cnt2 / e2sq + 0.5);
2161 if (sumw1 <= 0.0 || sumw2 <= 0.0) {
2162 Error(
"Chi2TestX",
"Cannot use option NORM when one histogram has all zero errors");
2167 for (
Int_t i = i_start; i <= i_end; ++i) {
2168 for (
Int_t j = j_start; j <= j_end; ++j) {
2169 for (
Int_t k = k_start; k <= k_end; ++k) {
2183 if (sum1 == 0.0 || sum2 == 0.0) {
2184 Error(
"Chi2TestX",
"one histogram is empty");
2188 if ( comparisonWW && ( sumw1 <= 0.0 && sumw2 <= 0.0 ) ){
2189 Error(
"Chi2TestX",
"Hist1 and Hist2 have both all zero errors\n");
2199 for (
Int_t i = i_start; i <= i_end; ++i) {
2200 for (
Int_t j = j_start; j <= j_end; ++j) {
2201 for (
Int_t k = k_start; k <= k_end; ++k) {
2208 if (scaledHistogram) {
2213 if (e1sq > 0) cnt1 =
TMath::Floor(cnt1 * cnt1 / e1sq + 0.5);
2216 if (e2sq > 0) cnt2 =
TMath::Floor(cnt2 * cnt2 / e2sq + 0.5);
2220 if (
Int_t(cnt1) == 0 &&
Int_t(cnt2) == 0) --ndf;
2227 if (res) res[i - i_start] = (cnt1 - nexp1) /
TMath::Sqrt(nexp1);
2236 Double_t delta = sum2 * cnt1 - sum1 * cnt2;
2237 chi2 += delta * delta / cntsum;
2242 chi2 /= sum1 * sum2;
2247 Info(
"Chi2TestX",
"There is a bin in h1 with less than 1 event.\n");
2251 Info(
"Chi2TestX",
"There is a bin in h2 with less than 1 event.\n");
2262 if ( comparisonUW ) {
2263 for (
Int_t i = i_start; i <= i_end; ++i) {
2264 for (
Int_t j = j_start; j <= j_end; ++j) {
2265 for (
Int_t k = k_start; k <= k_end; ++k) {
2274 if (cnt1 * cnt1 == 0 && cnt2 * cnt2 == 0) {
2280 if (cnt2 * cnt2 == 0 && e2sq == 0) {
2284 e2sq = sumw2 / sum2;
2289 Error(
"Chi2TestX",
"Hist2 has in bin (%d,%d,%d) zero content and zero errors\n", i, j, k);
2295 if (e2sq > 0 && cnt2 * cnt2 / e2sq < 10)
n++;
2297 Double_t var1 = sum2 * cnt2 - sum1 * e2sq;
2298 Double_t var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2303 while (var1 * var1 + cnt1 == 0 || var1 + var2 == 0) {
2306 var1 = sum2 * cnt2 - sum1 * e2sq;
2307 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2311 while (var1 + var2 == 0) {
2314 var1 = sum2 * cnt2 - sum1 * e2sq;
2315 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2316 while (var1 * var1 + cnt1 == 0 || var1 + var2 == 0) {
2319 var1 = sum2 * cnt2 - sum1 * e2sq;
2320 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2325 Double_t probb = (var1 + var2) / (2. * sum2 * sum2);
2333 chi2 += delta1 * delta1 / nexp1;
2336 chi2 += delta2 * delta2 / e2sq;
2341 Double_t temp1 = sum2 * e2sq / var2;
2342 Double_t temp2 = 1.0 + (sum1 * e2sq - sum2 * cnt2) / var2;
2343 temp2 = temp1 * temp1 * sum1 * probb * (1.0 - probb) + temp2 * temp2 * e2sq / 4.0;
2356 Info(
"Chi2TestX",
"There is a bin in h1 with less than 1 event.\n");
2360 Info(
"Chi2TestX",
"There is a bin in h2 with less than 10 effective events.\n");
2370 for (
Int_t i = i_start; i <= i_end; ++i) {
2371 for (
Int_t j = j_start; j <= j_end; ++j) {
2372 for (
Int_t k = k_start; k <= k_end; ++k) {
2382 if (cnt1 * cnt1 == 0 && cnt2 * cnt2 == 0) {
2387 if (e1sq == 0 && e2sq == 0) {
2389 Error(
"Chi2TestX",
"h1 and h2 both have bin %d,%d,%d with all zero errors\n", i,j,k);
2394 Double_t delta = sum2 * cnt1 - sum1 * cnt2;
2395 chi2 += delta * delta /
sigma;
2398 Double_t temp = cnt1 * sum1 * e2sq + cnt2 * sum2 * e1sq;
2411 res[i - i_start] = z;
2414 if (e1sq > 0 && cnt1 * cnt1 / e1sq < 10)
m++;
2415 if (e2sq > 0 && cnt2 * cnt2 / e2sq < 10)
n++;
2421 Info(
"Chi2TestX",
"There is a bin in h1 with less than 10 effective events.\n");
2425 Info(
"Chi2TestX",
"There is a bin in h2 with less than 10 effective events.\n");
2442 Error(
"Chisquare",
"Function pointer is Null - return -1");
2488 Int_t nbins = nbinsx * nbinsy * nbinsz;
2493 for (
Int_t binz=1; binz <= nbinsz; ++binz) {
2494 for (
Int_t biny=1; biny <= nbinsy; ++biny) {
2495 for (
Int_t binx=1; binx <= nbinsx; ++binx) {
2498 if (onlyPositive &&
y < 0) {
2499 Error(
"ComputeIntegral",
"Bin content is negative - return a NaN value");
2510 Error(
"ComputeIntegral",
"Integral = zero");
return 0;
2553 hintegrated->
Reset();
2556 for (
Int_t binz = 1; binz <= nbinsz; ++binz) {
2557 for (
Int_t biny = 1; biny <= nbinsy; ++biny) {
2558 for (
Int_t binx = 1; binx <= nbinsx; ++binx) {
2559 const Int_t bin = hintegrated->
GetBin(binx, biny, binz);
2567 for (
Int_t binz = nbinsz; binz >= 1; --binz) {
2568 for (
Int_t biny = nbinsy; biny >= 1; --biny) {
2569 for (
Int_t binx = nbinsx; binx >= 1; --binx) {
2570 const Int_t bin = hintegrated->
GetBin(binx, biny, binz);
2596 ((
TH1&)obj).fDirectory->Remove(&obj);
2597 ((
TH1&)obj).fDirectory = 0;
2611 delete [] ((
TH1&)obj).fBuffer;
2612 ((
TH1&)obj).fBuffer = 0;
2618 ((
TH1&)obj).fBuffer = buf;
2644 ((
TH1&)obj).fXaxis.SetParent(&obj);
2645 ((
TH1&)obj).fYaxis.SetParent(&obj);
2646 ((
TH1&)obj).fZaxis.SetParent(&obj);
2656 ((
TH1&)obj).fFunctions->UseRWLock();
2669 TH1* obj = (
TH1*)IsA()->GetNew()(0);
2684 oldparent = oldstats->GetParent();
2685 oldstats->SetParent(
nullptr);
2691 oldstats->SetParent(oldparent);
2703 if(newname && strlen(newname) ) {
2758 Error(
"Divide",
"Attempt to divide by a non-existing function");
2776 Int_t bin, binx, biny, binz;
2781 for (binz = 0; binz < nz; ++binz) {
2783 for (biny = 0; biny < ny; ++biny) {
2785 for (binx = 0; binx < nx; ++binx) {
2789 bin = binx + nx * (biny + ny * binz);
2826 Error(
"Divide",
"Input histogram passed does not exist (NULL).");
2835 }
catch(DifferentNumberOfBins&) {
2836 Error(
"Divide",
"Cannot divide histograms with different number of bins");
2838 }
catch(DifferentAxisLimits&) {
2839 Warning(
"Divide",
"Dividing histograms with different axis limits");
2840 }
catch(DifferentBinLimits&) {
2841 Warning(
"Divide",
"Dividing histograms with different bin limits");
2842 }
catch(DifferentLabels&) {
2843 Warning(
"Divide",
"Dividing histograms with different labels");
2898 Error(
"Divide",
"At least one of the input histograms passed does not exist (NULL).");
2908 }
catch(DifferentNumberOfBins&) {
2909 Error(
"Divide",
"Cannot divide histograms with different number of bins");
2911 }
catch(DifferentAxisLimits&) {
2912 Warning(
"Divide",
"Dividing histograms with different axis limits");
2913 }
catch(DifferentBinLimits&) {
2914 Warning(
"Divide",
"Dividing histograms with different bin limits");
2915 }
catch(DifferentLabels&) {
2916 Warning(
"Divide",
"Dividing histograms with different labels");
2921 Error(
"Divide",
"Coefficient of dividing histogram cannot be zero");
2958 fSumw2.
fArray[i] = c1sq * c2sq * (e1sq * b2sq + e2sq * b1sq) / (c2sq * c2sq * b2sq * b2sq);
3011 if (index>indb && index<indk) index = -1;
3017 if (!
gPad->IsEditable())
gROOT->MakeDefCanvas();
3019 if (
gPad->GetX1() == 0 &&
gPad->GetX2() == 1 &&
3020 gPad->GetY1() == 0 &&
gPad->GetY2() == 1 &&
3021 gPad->GetListOfPrimitives()->GetSize()==0) opt2.
Remove(index,4);
3028 gPad->IncrementPaletteColor(1, opt1);
3030 if (index>=0) opt2.
Remove(index,4);
3056 if (
gPad)
gPad->IncrementPaletteColor(1, opt);
3081 Error(
"DrawNormalized",
"Sum of weights is null. Cannot normalize histogram: %s",
GetName());
3093 if (opt.
IsNull() || opt ==
"SAME") opt +=
"HIST";
3128 Int_t range, stat, add;
3148 for (
Int_t binz = 1; binz <= nbinsz; ++binz) {
3150 for (
Int_t biny = 1; biny <= nbinsy; ++biny) {
3152 for (
Int_t binx = 1; binx <= nbinsx; ++binx) {
3252 for (
Int_t binx = 1; binx<=ndim[0]; binx++) {
3253 for (
Int_t biny=1; biny<=ndim[1]; biny++) {
3254 for (
Int_t binz=1; binz<=ndim[2]; binz++) {
3284 if (bin <0)
return -1;
3317 if (bin <0)
return -1;
3350 if (bin <0)
return -1;
3386 for (i=0;i<ntimes;i+=stride) {
3392 if (i < ntimes &&
fBuffer==0) {
3393 auto weights = w ? &w[i] :
nullptr;
3394 DoFillN((ntimes-i)/stride,&
x[i],weights,stride);
3414 for (i=0;i<ntimes;i+=stride) {
3416 if (bin <0)
continue;
3421 if (bin == 0 || bin > nbins) {
3449 Int_t bin, binx, ibin, loop;
3453 if (!
f1) {
Error(
"FillRandom",
"Unknown function: %s",fname);
return; }
3463 Info(
"FillRandom",
"Using function axis and range [%g,%g]",
xmin,
xmax);
3473 for (binx=1;binx<=nbinsx;binx++) {
3475 integral[binx] = integral[binx-1] + fint;
3479 if (integral[nbinsx] == 0 ) {
3481 Error(
"FillRandom",
"Integral = zero");
return;
3483 for (bin=1;bin<=nbinsx;bin++) integral[bin] /= integral[nbinsx];
3486 for (loop=0;loop<ntimes;loop++) {
3492 +xAxis->
GetBinWidth(ibin+
first)*(r1-integral[ibin])/(integral[ibin+1] - integral[ibin]);
3516 if (!
h) {
Error(
"FillRandom",
"Null histogram");
return; }
3518 Error(
"FillRandom",
"Histograms with different dimensions");
return;
3521 Error(
"FillRandom",
"Histograms contains negative bins, does not represent probabilities");
3530 if (ntimes > 10*nbins) {
3534 if (sumw == 0)
return;
3537 Double_t mean =
h->RetrieveBinContent(bin)*ntimes/sumw;
3548 if (sumgen < ntimes) {
3550 for (i =
Int_t(sumgen+0.5); i < ntimes; ++i)
3556 else if (sumgen > ntimes) {
3558 i =
Int_t(sumgen+0.5);
3559 while( i > ntimes) {
3574 catch(std::exception&) {}
3578 if (
h->ComputeIntegral() ==0)
return;
3581 for (loop=0;loop<ntimes;loop++) {
3607 return binx + nx*biny;
3615 return binx + nx*(biny +ny*binz);
3640 return binx + nx*biny;
3648 return binx + nx*(biny +ny*binz);
3666 Warning(
"FindFirstBinAbove",
"Invalid axis number : %d, axis x assumed\n",axis);
3680 for (
Int_t binx = firstBin; binx <= lastBin; binx++) {
3681 for (
Int_t biny = 1; biny <= nbinsy; biny++) {
3682 for (
Int_t binz = 1; binz <= nbinsz; binz++) {
3688 else if (axis == 2) {
3692 for (
Int_t biny = firstBin; biny <= lastBin; biny++) {
3693 for (
Int_t binx = 1; binx <= nbinsx; binx++) {
3694 for (
Int_t binz = 1; binz <= nbinsz; binz++) {
3700 else if (axis == 3) {
3704 for (
Int_t binz = firstBin; binz <= lastBin; binz++) {
3705 for (
Int_t binx = 1; binx <= nbinsx; binx++) {
3706 for (
Int_t biny = 1; biny <= nbinsy; biny++) {
3730 Warning(
"FindFirstBinAbove",
"Invalid axis number : %d, axis x assumed\n",axis);
3744 for (
Int_t binx = lastBin; binx >= firstBin; binx--) {
3745 for (
Int_t biny = 1; biny <= nbinsy; biny++) {
3746 for (
Int_t binz = 1; binz <= nbinsz; binz++) {
3752 else if (axis == 2) {
3756 for (
Int_t biny = lastBin; biny >= firstBin; biny--) {
3757 for (
Int_t binx = 1; binx <= nbinsx; binx++) {
3758 for (
Int_t binz = 1; binz <= nbinsz; binz++) {
3764 else if (axis == 3) {
3768 for (
Int_t binz = lastBin; binz >= firstBin; binz--) {
3769 for (
Int_t binx = 1; binx <= nbinsx; binx++) {
3770 for (
Int_t biny = 1; biny <= nbinsy; biny++) {
3813 linear= (
char*)strstr(fname,
"++");
3817 TF1 f1(fname, fname, xxmin, xxmax);
3818 return Fit(&
f1,option,goption,xxmin,xxmax);
3821 TF2 f2(fname, fname);
3822 return Fit(&f2,option,goption,xxmin,xxmax);
3825 TF3 f3(fname, fname);
3826 return Fit(&f3,option,goption,xxmin,xxmax);
3831 if (!
f1) {
Printf(
"Unknown function: %s",fname);
return -1; }
3832 return Fit(
f1,option,goption,xxmin,xxmax);
4168 gROOT->MakeDefCanvas();
4171 Error(
"FitPanel",
"Unable to create a default canvas");
4178 if (handler && handler->
LoadPlugin() != -1) {
4180 Error(
"FitPanel",
"Unable to create the FitPanel");
4183 Error(
"FitPanel",
"Unable to find the FitPanel plug-in");
4240 asym->
Divide(top,bottom);
4254 for(
Int_t k=1; k<= zmax; k++){
4344 Info(
"SetHighlight",
"Supported only 1-D or 2-D histograms");
4349 Info(
"SetHighlight",
"Need to draw histogram first");
4363 return ((
TH1*)
this)->GetPainter()->GetObjectInfo(px,py);
4464 Error(
"GetQuantiles",
"Only available for 1-d histograms");
4474 Int_t nq = nprobSum;
4479 for (i=1;i<nq;i++) {
4484 for (i = 0; i < nq; i++) {
4486 while (ibin < nbins-1 &&
fIntegral[ibin+1] == prob[i]) {
4487 if (
fIntegral[ibin+2] == prob[i]) ibin++;
4495 if (!probSum)
delete [] prob;
4513 Double_t allcha, sumx, sumx2,
x, val, stddev, mean;
4524 allcha = sumx = sumx2 = 0;
4525 for (bin=hxfirst;bin<=hxlast;bin++) {
4528 if (val > valmax) valmax = val;
4533 if (allcha == 0)
return;
4535 stddev = sumx2/allcha - mean*mean;
4538 if (stddev == 0) stddev = binwidx*(hxlast-hxfirst+1)/4;
4545 Double_t constant = 0.5*(valmax+binwidx*allcha/(sqrtpi*stddev));
4553 if ((mean < xmin || mean >
xmax) && stddev > (
xmax-
xmin)) {
4574 Int_t nchanx = hxlast - hxfirst + 1;
4595 Int_t nchanx = hxlast - hxfirst + 1;
4598 if (nchanx <=1 || npar == 1) {
4621 const Int_t idim = 20;
4632 if (
m > idim ||
m >
n)
return;
4635 for (
l = 2;
l <=
m; ++
l) {
4637 b[
m +
l*20 - 21] = zero;
4644 for (k = hxfirst; k <= hxlast; ++k) {
4649 for (
l = 2;
l <=
m; ++
l) {
4652 da[
l-1] += power*yk;
4654 for (
l = 2;
l <=
m; ++
l) {
4656 b[
m +
l*20 - 21] += power;
4659 for (i = 3; i <=
m; ++i) {
4660 for (k = i; k <=
m; ++k) {
4661 b[k - 1 + (i-1)*20 - 21] =
b[k + (i-2)*20 - 21];
4666 for (i=0; i<
m; ++i)
a[i] = da[i];
4686 xbar = ybar = x2bar = xybar = 0;
4691 for (i = hxfirst; i <= hxlast; ++i) {
4695 if (yk <= 0) yk = 1
e-9;
4704 det = fn*x2bar - xbar*xbar;
4712 a0 = (x2bar*ybar - xbar*xybar) / det;
4713 a1 = (fn*xybar - xbar*ybar) / det;
4724 Int_t a_dim1, a_offset, b_dim1, b_offset;
4726 Int_t im1, jp1, nm1, nmi;
4732 b_offset = b_dim1 + 1;
4735 a_offset = a_dim1 + 1;
4738 if (idim <
n)
return;
4741 for (j = 1; j <=
n; ++j) {
4742 if (
a[j + j*a_dim1] <= 0) { ifail = -1;
return; }
4743 a[j + j*a_dim1] = one /
a[j + j*a_dim1];
4744 if (j ==
n)
continue;
4746 for (
l = jp1;
l <=
n; ++
l) {
4747 a[j +
l*a_dim1] =
a[j + j*a_dim1] *
a[
l + j*a_dim1];
4748 s1 = -
a[
l + (j+1)*a_dim1];
4749 for (i = 1; i <= j; ++i) {
s1 =
a[
l + i*a_dim1] *
a[i + (j+1)*a_dim1] +
s1; }
4750 a[
l + (j+1)*a_dim1] = -
s1;
4755 for (
l = 1;
l <= k; ++
l) {
4756 b[
l*b_dim1 + 1] =
a[a_dim1 + 1]*
b[
l*b_dim1 + 1];
4759 for (
l = 1;
l <= k; ++
l) {
4760 for (i = 2; i <=
n; ++i) {
4762 s21 = -
b[i +
l*b_dim1];
4763 for (j = 1; j <= im1; ++j) {
4764 s21 =
a[i + j*a_dim1]*
b[j +
l*b_dim1] + s21;
4766 b[i +
l*b_dim1] = -
a[i + i*a_dim1]*s21;
4769 for (i = 1; i <= nm1; ++i) {
4771 s22 = -
b[nmi +
l*b_dim1];
4772 for (j = 1; j <= i; ++j) {
4774 s22 =
a[nmi + nmjp1*a_dim1]*
b[nmjp1 +
l*b_dim1] + s22;
4776 b[nmi +
l*b_dim1] = -s22;
4814 if (binx < 0) binx = 0;
4815 if (binx > ofx) binx = ofx;
4830 binx = binglobal%nx;
4836 binx = binglobal%nx;
4837 biny = ((binglobal-binx)/nx)%ny;
4842 binx = binglobal%nx;
4843 biny = ((binglobal-binx)/nx)%ny;
4844 binz = ((binglobal-binx)/nx -biny)/ny;
4861 Error(
"GetRandom",
"Function only valid for 1-d histograms");
4871 integral = ((
TH1*)
this)->ComputeIntegral(
true);
4873 if (integral == 0)
return 0;
4912 if (bin < 0) bin = 0;
4938 Error(
"GetBinWithContent",
"function is only valid for 1-D histograms");
4944 if (firstx <= 0) firstx = 1;
4948 for (
Int_t i=firstx;i<=lastx;i++) {
4950 if (diff <= 0) {binx = i;
return diff;}
4951 if (diff < curmax && diff <= maxdiff) {curmax = diff, binminx=i;}
4986 return y0 + (
x-x0)*((y1-y0)/(
x1-x0));
4995 Error(
"Interpolate",
"This function must be called with 1 argument for a TH1");
5004 Error(
"Interpolate",
"This function must be called with 1 argument for a TH1");
5032 Int_t binx, biny, binz;
5054 Error(
"IsBinOverflow",
"Invalid axis value");
5064 Int_t binx, biny, binz;
5071 return (binx <= 0 || biny <= 0);
5073 return (binx <= 0 || biny <= 0 || binz <= 0);
5084 Error(
"IsBinUnderflow",
"Invalid axis value");
5101 Error(
"LabelsDeflate",
"Invalid axis option %s",ax);
5112 while ((obj = next())) {
5114 if (ibin > nbins) nbins = ibin;
5116 if (nbins < 1) nbins = 1;
5119 if (nbins==axis->
GetNbins())
return;
5121 TH1 *hold = (
TH1*)IsA()->New();
5144 Int_t bin,binx,biny,binz;
5145 for (bin=0; bin < hold->
fNcells; ++bin) {
5172 TH1 *hold = (
TH1*)IsA()->New();;
5193 Int_t bin,ibin,binx,biny,binz;
5194 for (ibin =0; ibin < hold->
fNcells; ibin++) {
5197 bin =
GetBin(binx,biny,binz);
5234 Warning(
"LabelsOption",
"Cannot sort. No labels");
5267 if (sort < 0)
return;
5269 Error(
"LabelsOption",
"Sorting by value not implemented for 3-D histograms");
5275 std::vector<Int_t>
a(
n+2);
5278 std::vector<Double_t> cont;
5279 std::vector<Double_t> errors;
5281 TIter nextold(labels);
5283 while ((obj=nextold())) {
5296 for (i=1;i<=
n;i++) {
5298 if (!errors.empty()) errors[i-1] =
GetBinError(i);
5302 for (i=1;i<=
n;i++) {
5306 for (i=1;i<=
n;i++) {
5307 obj = labold->
At(
a[i-1]);
5312 std::vector<Double_t> pcont(
n+2);
5315 cont.resize( (nx+2)*(ny+2));
5316 if (
fSumw2.
fN) errors.resize( (nx+2)*(ny+2));
5317 for (i=1;i<=nx;i++) {
5318 for (j=1;j<=ny;j++) {
5320 if (!errors.empty()) errors[i+nx*j] =
GetBinError(i,j);
5323 pcont[k-1] += cont[i+nx*j];
5329 obj = labold->
At(
a[i]);
5334 for (i=1;i<=
n;i++) {
5335 for (j=1;j<=ny;j++) {
5337 if (!errors.empty())
SetBinError(i,j,errors[
a[i-1]+1+nx*j]);
5343 for (i=1;i<=nx;i++) {
5344 for (j=1;j<=
n;j++) {
5346 if (!errors.empty())
SetBinError(i,j,errors[i+nx*(
a[j-1]+1)]);
5355 const UInt_t kUsed = 1<<18;
5359 for (i=1;i<=
n;i++) {
5360 const char *label =
"zzzzzzzzzzzz";
5361 for (j=1;j<=
n;j++) {
5362 obj = labold->
At(j-1);
5364 if (obj->
TestBit(kUsed))
continue;
5366 if (strcmp(label,obj->
GetName()) < 0)
continue;
5377 for (i=1;i<=
n;i++) {
5378 obj = labels->
At(i-1);
5386 for (i=1;i<=
n;i++) {
5390 for (i=1;i<=
n;i++) {
5398 if (
fSumw2.
fN) errors.resize(nx*ny);
5399 for (i=0;i<nx;i++) {
5400 for (j=0;j<ny;j++) {
5402 if (!errors.empty()) errors[i+nx*j] =
GetBinError(i,j);
5406 for (i=1;i<=
n;i++) {
5407 for (j=0;j<ny;j++) {
5409 if (!errors.empty())
SetBinError(i,j,errors[
a[i]+nx*j]);
5413 for (i=0;i<nx;i++) {
5414 for (j=1;j<=
n;j++) {
5416 if (!errors.empty())
SetBinError(i,j,errors[i+nx*
a[j]]);
5424 cont.resize(nx*ny*nz);
5425 if (
fSumw2.
fN) errors.resize(nx*ny*nz);
5426 for (i=0;i<nx;i++) {
5427 for (j=0;j<ny;j++) {
5428 for (k=0;k<nz;k++) {
5430 if (!errors.empty()) errors[i+nx*(j+ny*k)] =
GetBinError(i,j,k);
5436 for (i=1;i<=
n;i++) {
5437 for (j=0;j<ny;j++) {
5438 for (k=0;k<nz;k++) {
5440 if (!errors.empty())
SetBinError(i,j,k,errors[
a[i]+nx*(j+ny*k)]);
5447 for (i=0;i<nx;i++) {
5448 for (j=1;j<=
n;j++) {
5449 for (k=0;k<nz;k++) {
5451 if (!errors.empty())
SetBinError(i,j,k,errors[i+nx*(
a[j]+ny*k)]);
5458 for (i=0;i<nx;i++) {
5459 for (j=0;j<ny;j++) {
5460 for (k=1;k<=
n;k++) {
5462 if (!errors.empty())
SetBinError(i,j,k,errors[i+nx*(j+ny*
a[k])]);
5498 bool isEquidistant =
true;
5500 for (
int i = 1; i < axis.
GetNbins(); ++i) {
5503 isEquidistant &= match;
5507 return isEquidistant;
5533 if (width1 == 0 || width2 == 0)
5579 printf(
"TH1::RecomputeAxisLimits - Impossible\n");
5667 Error(
"Multiply",
"Attempt to multiply by a non-existing function");
5689 for (
Int_t binz = 0; binz < nz; ++binz) {
5691 for (
Int_t biny = 0; biny < ny; ++biny) {
5693 for (
Int_t binx = 0; binx < nx; ++binx) {
5697 Int_t bin = binx + nx * (biny + ny *binz);
5729 Error(
"Multiply",
"Attempt to multiply by a non-existing histogram");
5738 }
catch(DifferentNumberOfBins&) {
5739 Error(
"Multiply",
"Attempt to multiply histograms with different number of bins");
5741 }
catch(DifferentAxisLimits&) {
5742 Warning(
"Multiply",
"Attempt to multiply histograms with different axis limits");
5743 }
catch(DifferentBinLimits&) {
5744 Warning(
"Multiply",
"Attempt to multiply histograms with different bin limits");
5745 }
catch(DifferentLabels&) {
5746 Warning(
"Multiply",
"Attempt to multiply histograms with different labels");
5791 Error(
"Multiply",
"Attempt to multiply by a non-existing histogram");
5801 }
catch(DifferentNumberOfBins&) {
5802 Error(
"Multiply",
"Attempt to multiply histograms with different number of bins");
5804 }
catch(DifferentAxisLimits&) {
5805 Warning(
"Multiply",
"Attempt to multiply histograms with different axis limits");
5806 }
catch(DifferentBinLimits&) {
5807 Warning(
"Multiply",
"Attempt to multiply histograms with different bin limits");
5808 }
catch(DifferentLabels&) {
5809 Warning(
"Multiply",
"Attempt to multiply histograms with different labels");
5911 if ((ngroup <= 0) || (ngroup > nbins)) {
5912 Error(
"Rebin",
"Illegal value of ngroup=%d",ngroup);
5917 Error(
"Rebin",
"Operation valid on 1-D histograms only");
5920 if (!newname && xbins) {
5921 Error(
"Rebin",
"if xbins is specified, newname must be given");
5925 Int_t newbins = nbins/ngroup;
5927 Int_t nbg = nbins/ngroup;
5928 if (nbg*ngroup != nbins) {
5929 Warning(
"Rebin",
"ngroup=%d is not an exact divider of nbins=%d.",ngroup,nbins);
5949 for (bin=0;bin<nbins+2;bin++) oldErrors[bin] =
GetBinError(bin);
5954 Warning(
"Rebin",
"underflow entries will not be used when rebinning");
5955 if (xbins[newbins] >
fXaxis.
GetXmax() && oldBins[nbins+1] != 0 )
5956 Warning(
"Rebin",
"overflow entries will not be used when rebinning");
5962 if ((newname && strlen(newname) > 0) || xbins) {
5972 bool resetStat =
false;
5974 if(!xbins && (newbins*ngroup != nbins)) {
6022 Int_t oldbin = startbin;
6024 for (bin = 1;bin<=newbins;bin++) {
6027 Int_t imax = ngroup;
6035 Warning(
"Rebin",
"Bin edge %d of rebinned histogram does not match any bin edges of the old histogram. Result can be inconsistent",bin);
6037 for (i=0;i<ngroup;i++) {
6038 if( (oldbin+i > nbins) ||
6043 binContent += oldBins[oldbin+i];
6044 if (oldErrors) binError += oldErrors[oldbin+i]*oldErrors[oldbin+i];
6054 for (i = 0; i < startbin; ++i) {
6055 binContent += oldBins[i];
6056 if (oldErrors) binError += oldErrors[i]*oldErrors[i];
6063 for (i = oldbin; i <= nbins+1; ++i) {
6064 binContent += oldBins[i];
6065 if (oldErrors) binError += oldErrors[i]*oldErrors[i];
6074 if (!resetStat) hnew->
PutStats(stat);
6076 if (oldErrors)
delete [] oldErrors;
6101 while (point <
xmin) {
6113 while (point >=
xmax) {
6164 TH1 *hold = (
TH1*)IsA()->New();
6177 if (axis == &
fXaxis) iaxis = 1;
6178 if (axis == &
fYaxis) iaxis = 2;
6179 if (axis == &
fZaxis) iaxis = 3;
6180 bool firstw =
kTRUE;
6181 Int_t binx,biny, binz = 0;
6182 Int_t ix = 0,iy = 0,iz = 0;
6185 for (
Int_t bin = 0; bin < ncells; ++bin) {
6199 if (content == 0)
continue;
6202 Warning(
"ExtendAxis",
"Histogram %s has underflow or overflow in the axis that is extendable"
6203 " their content will be lost",
GetName() );
6263 if (i == 1)
s[i] =
c1*
c1*
s[i];
6264 else s[i] =
c1*
s[i];
6272 if (ncontours == 0)
return;
6274 for (
Int_t i = 0; i < ncontours; ++i) levels[i] *=
c1;
6313 return oldExtendBitMask;
6359 str1 = str1(isc+1, lns);
6360 isc = str1.
Index(
";");
6363 str2.ReplaceAll(
"#semicolon",10,
";",1);
6366 str1 = str1(isc+1, lns);
6367 isc = str1.
Index(
";");
6370 str2.ReplaceAll(
"#semicolon",10,
";",1);
6373 str1 = str1(isc+1, lns);
6399 ::Error(
"SmoothArray",
"Need at least 3 points for smoothing: n = %d",nn);
6406 std::vector<double> yy(nn);
6407 std::vector<double> zz(nn);
6408 std::vector<double> rr(nn);
6410 for (
Int_t pass=0;pass<ntimes;pass++) {
6412 std::copy(xx, xx+nn, zz.begin() );
6414 for (
int noent = 0; noent < 2; ++noent) {
6417 for (
int kk = 0; kk < 3; kk++) {
6418 std::copy(zz.begin(), zz.end(), yy.begin());
6419 int medianType = (kk != 1) ? 3 : 5;
6420 int ifirst = (kk != 1 ) ? 1 : 2;
6421 int ilast = (kk != 1 ) ? nn-1 : nn -2;
6425 for ( ii = ifirst; ii < ilast; ii++) {
6426 assert(ii - ifirst >= 0);
6427 for (
int jj = 0; jj < medianType; jj++) {
6428 hh[jj] = yy[ii - ifirst + jj ];
6437 hh[2] = 3*zz[1] - 2*zz[2];
6442 hh[2] = 3*zz[nn - 2] - 2*zz[nn - 3];
6447 for (ii = 0; ii < 3; ii++) {
6452 for (ii = 0; ii < 3; ii++) {
6453 hh[ii] = yy[nn - 3 + ii];
6460 std::copy ( zz.begin(), zz.end(), yy.begin() );
6463 for (ii = 2; ii < (nn - 2); ii++) {
6464 if (zz[ii - 1] != zz[ii])
continue;
6465 if (zz[ii] != zz[ii + 1])
continue;
6466 hh[0] = zz[ii - 2] - zz[ii];
6467 hh[1] = zz[ii + 2] - zz[ii];
6468 if (hh[0] * hh[1] <= 0)
continue;
6471 yy[ii] = -0.5*zz[ii - 2*jk] + zz[ii]/0.75 + zz[ii + 2*jk] /6.;
6472 yy[ii + jk] = 0.5*(zz[ii + 2*jk] - zz[ii - 2*jk]) + zz[ii];
6477 for (ii = 1; ii < nn - 1; ii++) {
6478 zz[ii] = 0.25*yy[ii - 1] + 0.5*yy[ii] + 0.25*yy[ii + 1];
6481 zz[nn - 1] = yy[nn - 1];
6486 std::copy(zz.begin(), zz.end(), rr.begin());
6489 for (ii = 0; ii < nn; ii++) {
6490 zz[ii] = xx[ii] - zz[ii];
6498 for (ii = 0; ii < nn; ii++) {
6499 if (
xmin < 0) xx[ii] = rr[ii] + zz[ii];
6501 else xx[ii] =
TMath::Max((rr[ii] + zz[ii]),0.0 );
6517 Error(
"Smooth",
"Smooth only supported for 1-d histograms");
6522 Error(
"Smooth",
"Smooth only supported for histograms with >= 3 bins. Nbins = %d",nbins);
6529 Int_t firstbin = 1, lastbin = nbins;
6536 nbins = lastbin - firstbin + 1;
6540 for (i=0;i<nbins;i++) {
6546 for (i=0;i<nbins;i++) {
6570 if (
b.IsReading()) {
6572 Version_t R__v =
b.ReadVersion(&R__s, &R__c);
6576 b.ReadClassBuffer(
TH1::Class(),
this, R__v, R__s, R__c);
6584 while ((obj=next())) {
6590 TNamed::Streamer(
b);
6591 TAttLine::Streamer(
b);
6592 TAttFill::Streamer(
b);
6593 TAttMarker::Streamer(
b);
6609 Float_t maximum, minimum, norm;
6614 Int_t n =
b.ReadArray(contour);
6628 b.CheckByteCount(R__s, R__c, TH1::IsA());
6652 else if (opt.
Contains(
"range")) all = 1;
6653 else if (opt.
Contains(
"base")) all = 2;
6656 Int_t bin, binx, biny, binz;
6657 Int_t firstx=0,lastx=0,firsty=0,lasty=0,firstz=0,lastz=0;
6669 printf(
" Title = %s\n",
GetTitle());
6680 for (binx=firstx;binx<=lastx;binx++) {
6684 if(
fSumw2.
fN) printf(
" fSumw[%d]=%g, x=%g, error=%g\n",binx,w,
x,
e);
6685 else printf(
" fSumw[%d]=%g, x=%g\n",binx,w,
x);
6689 for (biny=firsty;biny<=lasty;biny++) {
6691 for (binx=firstx;binx<=lastx;binx++) {
6696 if(
fSumw2.
fN) printf(
" fSumw[%d][%d]=%g, x=%g, y=%g, error=%g\n",binx,biny,w,
x,
y,
e);
6697 else printf(
" fSumw[%d][%d]=%g, x=%g, y=%g\n",binx,biny,w,
x,
y);
6702 for (binz=firstz;binz<=lastz;binz++) {
6704 for (biny=firsty;biny<=lasty;biny++) {
6706 for (binx=firstx;binx<=lastx;binx++) {
6707 bin =
GetBin(binx,biny,binz);
6711 if(
fSumw2.
fN) printf(
" fSumw[%d][%d][%d]=%g, x=%g, y=%g, z=%g, error=%g\n",binx,biny,binz,w,
x,
y,z,
e);
6712 else printf(
" fSumw[%d][%d][%d]=%g, x=%g, y=%g, z=%g\n",binx,biny,binz,w,
x,
y,z);
6770 if (opt ==
"ICES")
return;
6800 static Int_t nxaxis = 0;
6801 static Int_t nyaxis = 0;
6802 static Int_t nzaxis = 0;
6803 TString sxaxis=
"xAxis",syaxis=
"yAxis",szaxis=
"zAxis";
6814 if (i != 0) out <<
", ";
6817 out <<
"}; " << std::endl;
6830 if (i != 0) out <<
", ";
6833 out <<
"}; " << std::endl;
6846 if (i != 0) out <<
", ";
6849 out <<
"}; " << std::endl;
6853 out <<
" "<<std::endl;
6863 static Int_t hcounter = 0;
6870 histName += hcounter;
6873 const char *hname = histName.
Data();
6874 if (!strlen(hname)) hname =
"unnamed";
6880 out << hname <<
" = new " <<
ClassName() <<
"(" << quote
6881 << hname << quote <<
"," << quote<< t.
Data() << quote
6884 out <<
", "<<sxaxis;
6891 out <<
", "<<syaxis;
6899 out <<
", "<<szaxis;
6904 out <<
");" << std::endl;
6908 for (bin=0;bin<
fNcells;bin++) {
6911 out<<
" "<<hname<<
"->SetBinContent("<<bin<<
","<<bc<<
");"<<std::endl;
6917 for (bin=0;bin<
fNcells;bin++) {
6920 out<<
" "<<hname<<
"->SetBinError("<<bin<<
","<<be<<
");"<<std::endl;
6937 out<<
" "<<hname<<
"->SetBarOffset("<<
GetBarOffset()<<
");"<<std::endl;
6940 out<<
" "<<hname<<
"->SetBarWidth("<<
GetBarWidth()<<
");"<<std::endl;
6943 out<<
" "<<hname<<
"->SetMinimum("<<
fMinimum<<
");"<<std::endl;
6946 out<<
" "<<hname<<
"->SetMaximum("<<
fMaximum<<
");"<<std::endl;
6949 out<<
" "<<hname<<
"->SetNormFactor("<<
fNormFactor<<
");"<<std::endl;
6952 out<<
" "<<hname<<
"->SetEntries("<<
fEntries<<
");"<<std::endl;
6955 out<<
" "<<hname<<
"->SetDirectory(0);"<<std::endl;
6958 out<<
" "<<hname<<
"->SetStats(0);"<<std::endl;
6961 out<<
" "<<hname<<
"->SetOption("<<quote<<
fOption.
Data()<<quote<<
");"<<std::endl;
6966 if (ncontours > 0) {
6967 out<<
" "<<hname<<
"->SetContour("<<ncontours<<
");"<<std::endl;
6969 for (
Int_t bin=0;bin<ncontours;bin++) {
6970 if (
gPad->GetLogz()) {
6975 out<<
" "<<hname<<
"->SetContourLevel("<<bin<<
","<<zlevel<<
");"<<std::endl;
6982 static Int_t funcNumber = 0;
6989 out <<
" " << fname <<
"->SetParent(" << hname <<
");\n";
6990 out<<
" "<<hname<<
"->GetListOfFunctions()->Add("
6991 << fname <<
");"<<std::endl;
6993 out<<
" "<<hname<<
"->GetListOfFunctions()->Add(ptstats);"<<std::endl;
6994 out<<
" ptstats->SetParent("<<hname<<
");"<<std::endl;
6996 out<<
" "<<hname<<
"->GetListOfFunctions()->Add("
6997 <<
"pmarker ,"<<quote<<lnk->
GetOption()<<quote<<
");"<<std::endl;
6999 out<<
" "<<hname<<
"->GetListOfFunctions()->Add("
7001 <<
","<<quote<<lnk->
GetOption()<<quote<<
");"<<std::endl;
7016 out<<
" "<<hname<<
"->Draw("
7017 <<quote<<option<<quote<<
");"<<std::endl;
7060 while ((obj = next())) {
7090 if (axis<1 || (axis>3 && axis<11) || axis>13)
return 0;
7094 if (stats[0] == 0)
return 0;
7096 Int_t ax[3] = {2,4,7};
7097 return stats[ax[axis-1]]/stats[0];
7102 return ( neff > 0 ? stddev/
TMath::Sqrt(neff) : 0. );
7144 if (axis<1 || (axis>3 && axis<11) || axis>13)
return 0;
7149 if (stats[0] == 0)
return 0;
7150 Int_t ax[3] = {2,4,7};
7151 Int_t axm = ax[axis%10 - 1];
7152 x = stats[axm]/stats[0];
7154 stddev2 =
TMath::Max( stats[axm+1]/stats[0] -
x*
x, 0.0 );
7161 return ( neff > 0 ?
TMath::Sqrt(stddev2/(2*neff) ) : 0. );
7197 if (axis > 0 && axis <= 3){
7201 Double_t stddev3 = stddev*stddev*stddev;
7212 if (firstBinX == 1) firstBinX = 0;
7216 if (firstBinY == 1) firstBinY = 0;
7220 if (firstBinZ == 1) firstBinZ = 0;
7228 for (
Int_t binx = firstBinX; binx <= lastBinX; binx++) {
7229 for (
Int_t biny = firstBinY; biny <= lastBinY; biny++) {
7230 for (
Int_t binz = firstBinZ; binz <= lastBinZ; binz++) {
7236 sum+=w*(
x-mean)*(
x-mean)*(
x-mean);
7243 else if (axis > 10 && axis <= 13) {
7250 Error(
"GetSkewness",
"illegal value of parameter");
7266 if (axis > 0 && axis <= 3){
7270 Double_t stddev4 = stddev*stddev*stddev*stddev;
7281 if (firstBinX == 1) firstBinX = 0;
7285 if (firstBinY == 1) firstBinY = 0;
7289 if (firstBinZ == 1) firstBinZ = 0;
7297 for (
Int_t binx = firstBinX; binx <= lastBinX; binx++) {
7298 for (
Int_t biny = firstBinY; biny <= lastBinY; biny++) {
7299 for (
Int_t binz = firstBinZ; binz <= lastBinZ; binz++) {
7305 sum+=w*(
x-mean)*(
x-mean)*(
x-mean)*(
x-mean);
7312 }
else if (axis > 10 && axis <= 13) {
7316 return ( neff > 0 ?
TMath::Sqrt(24./neff ) : 0. );
7319 Error(
"GetKurtosis",
"illegal value of parameter");
7360 for (bin=0;bin<4;bin++) stats[bin] = 0;
7366 if (firstBinX == 1) firstBinX = 0;
7369 for (binx = firstBinX; binx <= lastBinX; binx++) {
7376 stats[1] += err*err;
7432 Int_t bin,binx,biny,binz;
7437 bin =
GetBin(binx,biny,binz);
7467 return DoIntegral(binx1,binx2,0,-1,0,-1,err,option);
7494 if (binx1 < 0) binx1 = 0;
7495 if (binx2 >= nx || binx2 < binx1) binx2 = nx - 1;
7499 if (biny1 < 0) biny1 = 0;
7500 if (biny2 >= ny || biny2 < biny1) biny2 = ny - 1;
7502 biny1 = 0; biny2 = 0;
7507 if (binz1 < 0) binz1 = 0;
7508 if (binz2 >= nz || binz2 < binz1) binz2 = nz - 1;
7510 binz1 = 0; binz2 = 0;
7523 for (
Int_t binx = binx1; binx <= binx2; ++binx) {
7525 for (
Int_t biny = biny1; biny <= biny2; ++biny) {
7527 for (
Int_t binz = binz1; binz <= binz2; ++binz) {
7580 printf(
" AndersonDarlingTest Prob = %g, AD TestStatistic = %g\n",pvalue,advalue);
7582 if (opt.
Contains(
"T") )
return advalue;
7593 Error(
"AndersonDarlingTest",
"Histograms must be 1-D");
7693 if (h2 == 0)
return 0;
7701 Error(
"KolmogorovTest",
"Histograms must be 1-D\n");
7707 Error(
"KolmogorovTest",
"Histograms have different number of bins, %d and %d\n",ncx1,ncx2);
7717 Error(
"KolmogorovTest",
"Histograms are not consistent: they have different bin edges");
7731 if (opt.
Contains(
"O")) ilast = ncx1 +1;
7732 for (bin = ifirst; bin <= ilast; bin++) {
7741 Error(
"KolmogorovTest",
"Histogram1 %s integral is zero\n",
h1->
GetName());
7745 Error(
"KolmogorovTest",
"Histogram2 %s integral is zero\n",h2->
GetName());
7754 esum1 = sum1 * sum1 / w1;
7759 esum2 = sum2 * sum2 / w2;
7763 if (afunc2 && afunc1) {
7764 Error(
"KolmogorovTest",
"Errors are zero for both histograms\n");
7773 Double_t dfmax =0, rsum1 = 0, rsum2 = 0;
7775 for (bin=ifirst;bin<=ilast;bin++) {
7782 Double_t z, prb1=0, prb2=0, prb3=0;
7797 if (opt.
Contains(
"N") && !(afunc1 || afunc2 ) ) {
7801 Double_t chi2 = d12*d12/(esum1+esum2);
7804 if (prob > 0 && prb2 > 0) prob *= prb2*(1-
TMath::Log(prob*prb2));
7808 const Int_t nEXPT = 1000;
7809 if (opt.
Contains(
"X") && !(afunc1 || afunc2 ) ) {
7818 Warning(
"KolmogorovTest",
"Detected bins with negative weights, these have been ignored and output might be "
7819 "skewed. Reduce number of bins for histogram?");
7828 for (
Int_t i=0; i < nEXPT; i++) {
7834 if (dSEXPT>dfmax) prb3 += 1.0;
7844 printf(
" Kolmo Prob h1 = %s, sum bin content =%g effective entries =%g\n",
h1->
GetName(),sum1,esum1);
7845 printf(
" Kolmo Prob h2 = %s, sum bin content =%g effective entries =%g\n",h2->
GetName(),sum2,esum2);
7846 printf(
" Kolmo Prob = %g, Max Dist = %g\n",prob,dfmax);
7848 printf(
" Kolmo Prob = %f for shape alone, =%f for normalisation alone\n",prb1,prb2);
7850 printf(
" Kolmo Prob = %f with %d pseudo-experiments\n",prb3,nEXPT);
7856 if(opt.
Contains(
"M"))
return dfmax;
7857 else if(opt.
Contains(
"X"))
return prb3;
7908 if (level <0 || level >=
fContour.
fN)
return 0;
7915 if (zlevel <= 0)
return 0;
7931 if (buffersize <= 0) {
7935 if (buffersize < 100) buffersize = 100;
7962 for (level=0; level<nlevels; level++)
fContour.
fArray[level] = levels[level];
7967 if ((zmin == zmax) && (zmin != 0)) {
7973 if (zmax <= 0)
return;
7974 if (zmin <= 0) zmin = 0.001*zmax;
7977 dz = (zmax-zmin)/
Double_t(nlevels);
7979 for (level=0; level<nlevels; level++) {
7990 if (level < 0 || level >=
fContour.
fN)
return;
8015 Int_t bin, binx, biny, binz;
8022 Double_t maximum = -FLT_MAX, value;
8023 for (binz=zfirst;binz<=zlast;binz++) {
8024 for (biny=yfirst;biny<=ylast;biny++) {
8025 for (binx=xfirst;binx<=xlast;binx++) {
8026 bin =
GetBin(binx,biny,binz);
8028 if (value > maximum && value < maxval) maximum = value;
8040 Int_t locmax, locmay, locmaz;
8052 Int_t bin, binx, biny, binz;
8060 Double_t maximum = -FLT_MAX, value;
8061 locm = locmax = locmay = locmaz = 0;
8062 for (binz=zfirst;binz<=zlast;binz++) {
8063 for (biny=yfirst;biny<=ylast;biny++) {
8064 for (binx=xfirst;binx<=xlast;binx++) {
8065 bin =
GetBin(binx,biny,binz);
8067 if (value > maximum) {
8100 Int_t bin, binx, biny, binz;
8108 for (binz=zfirst;binz<=zlast;binz++) {
8109 for (biny=yfirst;biny<=ylast;biny++) {
8110 for (binx=xfirst;binx<=xlast;binx++) {
8111 bin =
GetBin(binx,biny,binz);
8113 if (value < minimum && value > minval) minimum = value;
8125 Int_t locmix, locmiy, locmiz;
8137 Int_t bin, binx, biny, binz;
8146 locm = locmix = locmiy = locmiz = 0;
8147 for (binz=zfirst;binz<=zlast;binz++) {
8148 for (biny=yfirst;biny<=ylast;biny++) {
8149 for (binx=xfirst;binx<=xlast;binx++) {
8150 bin =
GetBin(binx,biny,binz);
8152 if (value < minimum) {
8194 Int_t bin, binx, biny, binz;
8204 for (binz=zfirst;binz<=zlast;binz++) {
8205 for (biny=yfirst;biny<=ylast;biny++) {
8206 for (binx=xfirst;binx<=xlast;binx++) {
8207 bin =
GetBin(binx,biny,binz);
8209 if (value < min) min = value;
8210 if (value > max) max = value;
8228 Error(
"SetBins",
"Operation only valid for 1-d histograms");
8255 Error(
"SetBins",
"Operation only valid for 1-d histograms");
8281 Error(
"SetBins",
"Operation only valid for 2-D histograms");
8309 Error(
"SetBins",
"Operation only valid for 2-D histograms");
8336 Error(
"SetBins",
"Operation only valid for 3-D histograms");
8345 fNcells = (nx+2)*(ny+2)*(nz+2);
8366 Error(
"SetBins",
"Operation only valid for 3-D histograms");
8375 fNcells = (nx+2)*(ny+2)*(nz+2);
8488 Warning(
"Sumw2",
"Sum of squares of weights structure already created");
8523 if (bin < 0) bin = 0;
8543 if (bin < 0) bin = 0;
8553 Warning(
"GetBinErrorLow",
"Histogram has negative bin content-force usage to normal errors");
8558 if (
n == 0)
return 0;
8573 if (bin < 0) bin = 0;
8583 Warning(
"GetBinErrorUp",
"Histogram has negative bin content-force usage to normal errors");
8602 Error(
"GetBinCenter",
"Invalid method for a %d-d histogram - return a NaN",
fDimension);
8613 Error(
"GetBinLowEdge",
"Invalid method for a %d-d histogram - return a NaN",
fDimension);
8624 Error(
"GetBinWidth",
"Invalid method for a %d-d histogram - return a NaN",
fDimension);
8651 Error(
"GetLowEdge",
"Invalid method for a %d-d histogram ",
fDimension);
8666 if (bin < 0 || bin>=
fNcells)
return;
8684 if (bin < 0)
return;
8748 return (
TH1*)
gROOT->ProcessLineFast(
Form(
"TSpectrum::StaticBackground((TH1*)0x%lx,%d,\"%s\")",
8749 (
ULong_t)
this, niter, option));
8762 return (
Int_t)
gROOT->ProcessLineFast(
Form(
"TSpectrum::StaticSearch((TH1*)0x%lx,%g,\"%s\",%g)",
8780 if (!fft || !fft->
GetN() ) {
8781 ::Error(
"TransformHisto",
"Invalid FFT transform class");
8786 ::Error(
"TransformHisto",
"Only 1d and 2D transform are supported");
8808 if (
type.Contains(
"2C") ||
type.Contains(
"2HC")) {
8810 for (binx = 1; binx<=hout->
GetNbinsX(); binx++) {
8811 for (biny=1; biny<=hout->
GetNbinsY(); biny++) {
8812 ind[0] = binx-1; ind[1] = biny-1;
8818 for (binx = 1; binx<=hout->
GetNbinsX(); binx++) {
8819 for (biny=1; biny<=hout->
GetNbinsY(); biny++) {
8820 ind[0] = binx-1; ind[1] = biny-1;
8827 if (
type.Contains(
"2C") ||
type.Contains(
"2HC")) {
8829 for (binx = 1; binx<=hout->
GetNbinsX(); binx++) {
8830 for (biny=1; biny<=hout->
GetNbinsY(); biny++) {
8831 ind[0] = binx-1; ind[1] = biny-1;
8837 ::Error(
"TransformHisto",
"No complex numbers in the output");
8842 if (
type.Contains(
"2C") ||
type.Contains(
"2HC")) {
8844 for (binx = 1; binx<=hout->
GetNbinsX(); binx++) {
8845 for (biny=1; biny<=hout->
GetNbinsY(); biny++) {
8846 ind[0] = binx-1; ind[1] = biny-1;
8852 for (binx = 1; binx<=hout->
GetNbinsX(); binx++) {
8853 for (biny=1; biny<=hout->
GetNbinsY(); biny++) {
8854 ind[0] = binx-1; ind[1] = biny-1;
8861 if (
type.Contains(
"2C") ||
type.Contains(
"2HC")){
8863 for (binx = 1; binx<=hout->
GetNbinsX(); binx++){
8864 for (biny=1; biny<=hout->
GetNbinsY(); biny++){
8865 ind[0] = binx-1; ind[1] = biny-1;
8886 printf(
"Pure real output, no phase");
8916std::string cling::printValue(
TH1 *val) {
8917 std::ostringstream strm;
8918 strm << cling::printValue((
TObject*)val) <<
" NbinsX: " << val->
GetNbinsX();
8944:
TH1(
name,title,nbins,xlow,xup)
9006 if (newval > -128 && newval < 128) {
fArray[bin] =
Char_t(newval);
return;}
9007 if (newval < -127)
fArray[bin] = -127;
9008 if (newval > 127)
fArray[bin] = 127;
9125:
TH1(
name,title,nbins,xlow,xup)
9187 if (newval > -32768 && newval < 32768) {
fArray[bin] =
Short_t(newval);
return;}
9188 if (newval < -32767)
fArray[bin] = -32767;
9189 if (newval > 32767)
fArray[bin] = 32767;
9306:
TH1(
name,title,nbins,xlow,xup)
9368 if (newval > -2147483647 && newval < 2147483647) {
fArray[bin] =
Int_t(newval);
return;}
9369 if (newval < -2147483647)
fArray[bin] = -2147483647;
9370 if (newval > 2147483647)
fArray[bin] = 2147483647;
9488:
TH1(
name,title,nbins,xlow,xup)
9526:
TH1(
"TVectorF",
"",
v.GetNrows(),0,
v.GetNrows())
9530 Int_t ivlow =
v.GetLwb();
9667:
TH1(
name,title,nbins,xlow,xup)
9705:
TH1(
"TVectorD",
"",
v.GetNrows(),0,
v.GetNrows())
9709 Int_t ivlow =
v.GetLwb();
9832 if(hid >= 0) hname.
Form(
"h%d",hid);
9833 else hname.
Form(
"h_%d",hid);
static const double x1[5]
include TDocParser_001 C image html pict1_TDocParser_001 png width
static bool IsEquidistantBinning(const TAxis &axis)
Test if the binning is equidistant.
void H1LeastSquareLinearFit(Int_t ndata, Double_t &a0, Double_t &a1, Int_t &ifail)
Least square linear fit without weights.
void H1InitGaus()
Compute Initial values of parameters for a gaussian.
void H1InitExpo()
Compute Initial values of parameters for an exponential.
TH1C operator+(const TH1C &h1, const TH1C &h2)
Operator +.
TH1C operator-(const TH1C &h1, const TH1C &h2)
Operator -.
TH1C operator/(const TH1C &h1, const TH1C &h2)
Operator /.
void H1LeastSquareSeqnd(Int_t n, Double_t *a, Int_t idim, Int_t &ifail, Int_t k, Double_t *b)
Extracted from CERN Program library routine DSEQN.
static Bool_t AlmostEqual(Double_t a, Double_t b, Double_t epsilon=0.00000001)
Test if two double are almost equal.
static Bool_t AlmostInteger(Double_t a, Double_t epsilon=0.00000001)
Test if a double is almost an integer.
TH1 * R__H(Int_t hid)
return pointer to histogram with name hid if id >=0 h_id if id <0
TH1C operator*(Double_t c1, const TH1C &h1)
Operator *.
void H1LeastSquareFit(Int_t n, Int_t m, Double_t *a)
Least squares lpolynomial fitting without weights.
void H1InitPolynom()
Compute Initial values of parameters for a polynom.
double ldexp(double, int)
R__EXTERN TVirtualMutex * gROOTMutex
R__EXTERN TRandom * gRandom
char * Form(const char *fmt,...)
void Printf(const char *fmt,...)
R__EXTERN TStyle * gStyle
#define R__LOCKGUARD(mutex)
#define R__WRITE_LOCKGUARD(mutex)
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
class describing the range in the coordinates it supports multiple range in a coordinate.
void AndersonDarling2SamplesTest(Double_t &pvalue, Double_t &testStat) const
Array of chars or bytes (8 bits per element).
void Set(Int_t n)
Set size of this array to n chars.
void Copy(TArrayC &array) const
Array of doubles (64 bits per element).
Double_t GetAt(Int_t i) const
void Copy(TArrayD &array) const
void Set(Int_t n)
Set size of this array to n doubles.
const Double_t * GetArray() const
Array of floats (32 bits per element).
void Copy(TArrayF &array) const
void Set(Int_t n)
Set size of this array to n floats.
Array of integers (32 bits per element).
void Set(Int_t n)
Set size of this array to n ints.
void Copy(TArrayI &array) const
Array of shorts (16 bits per element).
void Set(Int_t n)
Set size of this array to n shorts.
void Copy(TArrayS &array) const
Abstract array base class.
virtual Color_t GetTitleColor() const
virtual Color_t GetLabelColor() const
virtual Int_t GetNdivisions() const
virtual Color_t GetAxisColor() const
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title.
virtual Style_t GetTitleFont() const
virtual Float_t GetLabelOffset() const
virtual void SetAxisColor(Color_t color=1, Float_t alpha=1.)
Set color of the line axis and tick marks.
virtual void SetLabelSize(Float_t size=0.04)
Set size of axis labels.
virtual Style_t GetLabelFont() const
virtual void SetTitleFont(Style_t font=62)
Set the title font.
virtual void SetLabelOffset(Float_t offset=0.005)
Set distance between the axis and the labels.
virtual void SetLabelFont(Style_t font=62)
Set labels' font.
virtual void SetTitleSize(Float_t size=0.04)
Set size of axis title.
virtual void SetTitleColor(Color_t color=1)
Set color of axis title.
virtual Float_t GetTitleSize() const
virtual Float_t GetLabelSize() const
virtual Float_t GetTickLength() const
virtual void ResetAttAxis(Option_t *option="")
Reset axis attributes.
virtual Float_t GetTitleOffset() const
virtual void SetTickLength(Float_t length=0.03)
Set tick mark length.
virtual void SetNdivisions(Int_t n=510, Bool_t optim=kTRUE)
Set the number of divisions for this axis.
virtual void SetLabelColor(Color_t color=1, Float_t alpha=1.)
Set color of labels.
Fill Area Attributes class.
virtual Color_t GetFillColor() const
Return the fill area color.
void Copy(TAttFill &attfill) const
Copy this fill attributes to a new TAttFill.
virtual Style_t GetFillStyle() const
Return the fill area style.
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
virtual void SetFillStyle(Style_t fstyle)
Set the fill area style.
virtual void SaveFillAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1001)
Save fill attributes as C++ statement(s) on output stream out.
virtual Color_t GetLineColor() const
Return the line color.
virtual void SetLineStyle(Style_t lstyle)
Set the line style.
virtual Width_t GetLineWidth() const
Return the line width.
virtual void SetLineWidth(Width_t lwidth)
Set the line width.
virtual void SetLineColor(Color_t lcolor)
Set the line color.
virtual Style_t GetLineStyle() const
Return the line style.
void Copy(TAttLine &attline) const
Copy this line attributes to a new TAttLine.
virtual void SaveLineAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t widdef=1)
Save line attributes as C++ statement(s) on output stream out.
virtual void SaveMarkerAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t sizdef=1)
Save line attributes as C++ statement(s) on output stream out.
virtual Style_t GetMarkerStyle() const
Return the marker style.
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
virtual Color_t GetMarkerColor() const
Return the marker color.
virtual Size_t GetMarkerSize() const
Return the marker size.
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
void Copy(TAttMarker &attmarker) const
Copy this marker attributes to a new TAttMarker.
virtual void SetMarkerSize(Size_t msize=1)
Set the marker size.
Class to manage histogram axis.
virtual void GetCenter(Double_t *center) const
Return an array with the center of all bins.
virtual Bool_t GetTimeDisplay() const
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
virtual void SetParent(TObject *obj)
const TArrayD * GetXbins() const
void SetCanExtend(Bool_t canExtend)
virtual void SaveAttributes(std::ostream &out, const char *name, const char *subname)
Save axis attributes as C++ statement(s) on output stream out.
const char * GetBinLabel(Int_t bin) const
Return label for bin.
virtual Int_t FindBin(Double_t x)
Find bin number corresponding to abscissa x.
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
virtual void SetTimeDisplay(Int_t value)
virtual void Set(Int_t nbins, Double_t xmin, Double_t xmax)
Initialize axis with fix bins.
virtual Int_t FindFixBin(Double_t x) const
Find bin number corresponding to abscissa x.
virtual void Copy(TObject &axis) const
Copy axis structure to another axis.
Int_t GetLast() const
Return last bin on the axis i.e.
virtual void SetLimits(Double_t xmin, Double_t xmax)
virtual void GetLowEdge(Double_t *edge) const
Return an array with the low edge of all bins.
virtual void SetRange(Int_t first=0, Int_t last=0)
Set the viewing range for the axis from bin first to last.
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
virtual Double_t GetBinUpEdge(Int_t bin) const
Return up edge of bin.
Int_t GetFirst() const
Return first bin on the axis i.e.
THashList * GetLabels() const
Using a TBrowser one can browse all ROOT objects.
Buffer base class used for serializing objects.
Collection abstract base class.
virtual bool UseRWLock()
Set this collection to use a RW lock upon access, making it thread safe.
virtual TObject * Clone(const char *newname="") const
Make a clone of an collection using the Streamer facility.
virtual Bool_t IsEmpty() const
virtual Int_t GetSize() const
Return the capacity of the collection, i.e.
Describe directory structure in memory.
virtual void Append(TObject *obj, Bool_t replace=kFALSE)
Append object to this directory.
virtual TObject * Remove(TObject *)
Remove an object from the in-memory list.
virtual Int_t GetValue(const char *name, Int_t dflt) const
Returns the integer value for a resource.
static void RejectPoint(Bool_t reject=kTRUE)
Static function to set the global flag to reject points the fgRejectPoint global flag is tested by al...
virtual TH1 * GetHistogram() const
Return a pointer to the histogram used to visualise the function.
virtual Int_t GetNpar() const
virtual Double_t Integral(Double_t a, Double_t b, Double_t epsrel=1.e-12)
IntegralOneDim or analytical integral.
virtual Double_t EvalPar(const Double_t *x, const Double_t *params=0)
Evaluate function with given coordinates and parameters.
virtual void InitArgs(const Double_t *x, const Double_t *params)
Initialize parameters addresses.
virtual void GetRange(Double_t *xmin, Double_t *xmax) const
Return range of a generic N-D function.
virtual void SetParLimits(Int_t ipar, Double_t parmin, Double_t parmax)
Set limits for parameter ipar.
static Bool_t RejectedPoint()
See TF1::RejectPoint above.
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const
Evaluate this function.
virtual void SetParameter(Int_t param, Double_t value)
virtual Bool_t IsInside(const Double_t *x) const
return kTRUE if the point is inside the function range
A 2-Dim function with parameters.
A 3-Dim function with parameters.
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
1-D histogram with a byte per channel (see TH1 documentation)
TH1C & operator=(const TH1C &h1)
Operator =.
virtual void Copy(TObject &hnew) const
Copy this to newth1.
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
virtual ~TH1C()
Destructor.
virtual void Reset(Option_t *option="")
Reset.
1-D histogram with a double per channel (see TH1 documentation)}
virtual void Copy(TObject &hnew) const
Copy this to newth1.
virtual ~TH1D()
Destructor.
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
TH1D & operator=(const TH1D &h1)
Operator =.
1-D histogram with a float per channel (see TH1 documentation)}
virtual Double_t RetrieveBinContent(Int_t bin) const
Raw retrieval of bin content on internal data structure see convention for numbering bins in TH1::Get...
virtual ~TH1F()
Destructor.
TH1F & operator=(const TH1F &h1)
Operator =.
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
virtual void Copy(TObject &hnew) const
Copy this to newth1.
1-D histogram with an int per channel (see TH1 documentation)}
virtual void Copy(TObject &hnew) const
Copy this to newth1.
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
virtual ~TH1I()
Destructor.
TH1I & operator=(const TH1I &h1)
Operator =.
1-D histogram with a short per channel (see TH1 documentation)
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
virtual void SetBinsLength(Int_t n=-1)
Set total number of bins including under/overflow Reallocate bin contents array.
virtual ~TH1S()
Destructor.
TH1S & operator=(const TH1S &h1)
Operator =.
virtual void Copy(TObject &hnew) const
Copy this to newth1.
virtual void SetError(const Double_t *error)
Replace bin errors by values in array error.
virtual void SetDirectory(TDirectory *dir)
By default when an histogram is created, it is added to the list of histogram objects in the current ...
virtual void FitPanel()
Display a panel with all histogram fit options.
Double_t * fBuffer
[fBufferSize] entry buffer
virtual Int_t AutoP2FindLimits(Double_t min, Double_t max)
Buffer-based estimate of the histogram range using the power of 2 algorithm.
virtual Double_t GetEffectiveEntries() const
Number of effective entries of the histogram.
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save primitive as a C++ statement(s) on output stream out.
virtual void SetTitle(const char *title)
See GetStatOverflows for more information.
virtual void Smooth(Int_t ntimes=1, Option_t *option="")
Smooth bin contents of this histogram.
virtual void Print(Option_t *option="") const
Print some global quantities for this histogram.
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
virtual void Rebuild(Option_t *option="")
Using the current bin info, recompute the arrays for contents and errors.
static Bool_t fgStatOverflows
!flag to use under/overflows in statistics
virtual Int_t FindLastBinAbove(Double_t threshold=0, Int_t axis=1, Int_t firstBin=1, Int_t lastBin=-1) const
Find last bin with content > threshold for axis (1=x, 2=y, 3=z) if no bins with content > threshold i...
virtual Bool_t Multiply(TF1 *f1, Double_t c1=1)
Performs the operation:
virtual void Browse(TBrowser *b)
Browse the Histogram object.
Int_t fNcells
number of bins(1D), cells (2D) +U/Overflows
virtual void GetStats(Double_t *stats) const
fill the array stats from the contents of this histogram The array stats must be correctly dimensione...
virtual void FillRandom(const char *fname, Int_t ntimes=5000)
Fill histogram following distribution in function fname.
Double_t fTsumw
Total Sum of weights.
virtual Float_t GetBarWidth() const
Double_t fTsumw2
Total Sum of squares of weights.
static void StatOverflows(Bool_t flag=kTRUE)
if flag=kTRUE, underflows and overflows are used by the Fill functions in the computation of statisti...
virtual Float_t GetBarOffset() const
virtual ~TH1()
Histogram default destructor.
TList * fFunctions
->Pointer to list of functions (fits and user)
static Bool_t fgAddDirectory
!flag to add histograms to the directory
virtual Int_t GetQuantiles(Int_t nprobSum, Double_t *q, const Double_t *probSum=0)
Compute Quantiles for this histogram Quantile x_q of a probability distribution Function F is defined...
static Int_t GetDefaultBufferSize()
Static function return the default buffer size for automatic histograms the parameter fgBufferSize ma...
virtual Double_t DoIntegral(Int_t ix1, Int_t ix2, Int_t iy1, Int_t iy2, Int_t iz1, Int_t iz2, Double_t &err, Option_t *opt, Bool_t doerr=kFALSE) const
Internal function compute integral and optionally the error between the limits specified by the bin n...
Double_t fTsumwx2
Total Sum of weight*X*X.
virtual Double_t GetStdDev(Int_t axis=1) const
Returns the Standard Deviation (Sigma).
TH1()
Histogram default constructor.
static TH1 * TransformHisto(TVirtualFFT *fft, TH1 *h_output, Option_t *option)
For a given transform (first parameter), fills the histogram (second parameter) with the transform ou...
virtual void LabelsOption(Option_t *option="h", Option_t *axis="X")
Set option(s) to draw axis with labels.
virtual Int_t GetNbinsY() const
Short_t fBarOffset
(1000*offset) for bar charts or legos
static bool CheckBinLimits(const TAxis *a1, const TAxis *a2)
Check bin limits.
virtual void AddBinContent(Int_t bin)
Increment bin content by 1.
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
static Int_t FitOptionsMake(Option_t *option, Foption_t &Foption)
Decode string choptin and fill fitOption structure.
virtual Int_t GetNbinsZ() const
virtual Double_t GetNormFactor() const
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
virtual Double_t GetSkewness(Int_t axis=1) const
virtual void ClearUnderflowAndOverflow()
Remove all the content from the underflow and overflow bins, without changing the number of entries A...
virtual Double_t GetContourLevelPad(Int_t level) const
Return the value of contour number "level" in Pad coordinates.
virtual TH1 * DrawNormalized(Option_t *option="", Double_t norm=1) const
Draw a normalized copy of this histogram.
virtual Double_t Chi2TestX(const TH1 *h2, Double_t &chi2, Int_t &ndf, Int_t &igood, Option_t *option="UU", Double_t *res=0) const
The computation routine of the Chisquare test.
virtual Int_t GetDimension() const
static void AddDirectory(Bool_t add=kTRUE)
Sets the flag controlling the automatic add of histograms in memory.
@ kIsAverage
Bin contents are average (used by Add)
@ kUserContour
user specified contour levels
@ kNoStats
don't draw stats box
@ kAutoBinPTwo
Use Power(2)-based algorithm for autobinning.
@ kIsNotW
Histogram is forced to be not weighted even when the histogram is filled with weighted different than...
@ kIsHighlight
bit set if histo is highlight
virtual Double_t GetRandom() const
Return a random number distributed according the histogram bin contents.
virtual void SetContourLevel(Int_t level, Double_t value)
Set value for one contour level.
virtual Bool_t CanExtendAllAxes() const
Returns true if all axes are extendable.
TDirectory * fDirectory
!Pointer to directory holding this histogram
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
virtual void GetBinXYZ(Int_t binglobal, Int_t &binx, Int_t &biny, Int_t &binz) const
Return binx, biny, binz corresponding to the global bin number globalbin see TH1::GetBin function abo...
TH1 * GetCumulative(Bool_t forward=kTRUE, const char *suffix="_cumulative") const
Return a pointer to an histogram containing the cumulative The cumulative can be computed both in the...
void UseCurrentStyle()
Copy current attributes from/to current style.
static Double_t AutoP2GetPower2(Double_t x, Bool_t next=kTRUE)
Auxilliary function to get the power of 2 next (larger) or previous (smaller) a given x.
virtual Int_t GetNcells() const
virtual Int_t ShowPeaks(Double_t sigma=2, Option_t *option="", Double_t threshold=0.05)
Interface to TSpectrum::Search.
static Bool_t RecomputeAxisLimits(TAxis &destAxis, const TAxis &anAxis)
Finds new limits for the axis for the Merge function.
virtual void PutStats(Double_t *stats)
Replace current statistics with the values in array stats.
TVirtualHistPainter * GetPainter(Option_t *option="")
Return pointer to painter.
TObject * Clone(const char *newname=0) const
Make a complete copy of the underlying object.
static Bool_t GetDefaultSumw2()
Return kTRUE if TH1::Sumw2 must be called when creating new histograms.
virtual Int_t FindFirstBinAbove(Double_t threshold=0, Int_t axis=1, Int_t firstBin=1, Int_t lastBin=-1) const
Find first bin with content > threshold for axis (1=x, 2=y, 3=z) if no bins with content > threshold ...
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Double_t xmin=0, Double_t xmax=0)
Fit histogram with function fname.
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
@ kNoAxis
NOTE: Must always be 0 !!!
virtual Double_t GetMaximum(Double_t maxval=FLT_MAX) const
Return maximum value smaller than maxval of bins in the range, unless the value has been overridden b...
virtual Int_t GetNbinsX() const
virtual void SetMaximum(Double_t maximum=-1111)
virtual TH1 * FFT(TH1 *h_output, Option_t *option)
This function allows to do discrete Fourier transforms of TH1 and TH2.
virtual void LabelsInflate(Option_t *axis="X")
Double the number of bins for axis.
virtual TH1 * ShowBackground(Int_t niter=20, Option_t *option="same")
This function calculates the background spectrum in this histogram.
virtual Double_t Chi2Test(const TH1 *h2, Option_t *option="UU", Double_t *res=0) const
test for comparing weighted and unweighted histograms
static Bool_t SameLimitsAndNBins(const TAxis &axis1, const TAxis &axis2)
Same limits and bins.
virtual Bool_t Add(TF1 *h1, Double_t c1=1, Option_t *option="")
Performs the operation: this = this + c1*f1 if errors are defined (see TH1::Sumw2),...
Double_t fMaximum
Maximum value for plotting.
Int_t fBufferSize
fBuffer size
virtual void RecursiveRemove(TObject *obj)
Recursively remove object from the list of functions.
virtual Double_t RetrieveBinContent(Int_t bin) const
Raw retrieval of bin content on internal data structure see convention for numbering bins in TH1::Get...
virtual Double_t IntegralAndError(Int_t binx1, Int_t binx2, Double_t &err, Option_t *option="") const
Return integral of bin contents in range [binx1,binx2] and its error.
Int_t fDimension
!Histogram dimension (1, 2 or 3 dim)
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
EBinErrorOpt fBinStatErrOpt
option for bin statistical errors
static Int_t fgBufferSize
!default buffer size for automatic histograms
virtual void SetBinsLength(Int_t=-1)
Double_t fNormFactor
Normalization factor.
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
virtual TObject * FindObject(const char *name) const
Search object named name in the list of functions.
TArrayD fContour
Array to display contour levels.
virtual Double_t GetBinErrorLow(Int_t bin) const
Return lower error associated to bin number bin.
virtual void SetContent(const Double_t *content)
Replace bin contents by the contents of array content.
virtual void SavePrimitiveHelp(std::ostream &out, const char *hname, Option_t *option="")
Helper function for the SavePrimitive functions from TH1 or classes derived from TH1,...
Short_t fBarWidth
(1000*width) for bar charts or legos
virtual void SetContour(Int_t nlevels, const Double_t *levels=0)
Set the number and values of contour levels.
virtual Double_t GetBinErrorSqUnchecked(Int_t bin) const
Int_t AxisChoice(Option_t *axis) const
Choose an axis according to "axis".
virtual void SetMinimum(Double_t minimum=-1111)
Bool_t IsBinUnderflow(Int_t bin, Int_t axis=0) const
Return true if the bin is underflow.
static bool CheckBinLabels(const TAxis *a1, const TAxis *a2)
Check that axis have same labels.
virtual Double_t Interpolate(Double_t x) const
Given a point x, approximates the value via linear interpolation based on the two nearest bin centers...
static void SetDefaultSumw2(Bool_t sumw2=kTRUE)
When this static function is called with sumw2=kTRUE, all new histograms will automatically activate ...
Bool_t IsBinOverflow(Int_t bin, Int_t axis=0) const
Return true if the bin is overflow.
Double_t * fIntegral
!Integral of bins used by GetRandom
Double_t fMinimum
Minimum value for plotting.
virtual Double_t Integral(Option_t *option="") const
Return integral of bin contents.
virtual void SetBarWidth(Float_t width=0.5)
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
virtual void DirectoryAutoAdd(TDirectory *)
Perform the automatic addition of the histogram to the given directory.
virtual void GetLowEdge(Double_t *edge) const
Fill array with low edge of bins for 1D histogram Better to use h1.GetXaxis().GetLowEdge(edge)
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
void Build()
Creates histogram basic data structure.
virtual Double_t GetEntries() const
Return the current number of entries.
virtual TF1 * GetFunction(const char *name) const
Return pointer to function with name.
virtual Int_t BufferFill(Double_t x, Double_t w)
accumulate arguments in buffer.
virtual Double_t GetBinWithContent(Double_t c, Int_t &binx, Int_t firstx=0, Int_t lastx=0, Double_t maxdiff=0) const
Compute first binx in the range [firstx,lastx] for which diff = abs(bin_content-c) <= maxdiff.
virtual UInt_t SetCanExtend(UInt_t extendBitMask)
Make the histogram axes extendable / not extendable according to the bit mask returns the previous bi...
TList * GetListOfFunctions() const
virtual TH1 * DrawCopy(Option_t *option="", const char *name_postfix="_copy") const
Copy this histogram and Draw in the current pad.
virtual void Copy(TObject &hnew) const
Copy this histogram structure to newth1.
Bool_t IsEmpty() const
Check if an histogram is empty (this a protected method used mainly by TH1Merger )
virtual Double_t GetMeanError(Int_t axis=1) const
Return standard error of mean of this histogram along the X axis.
virtual void Draw(Option_t *option="")
Draw this histogram with options.
virtual void SetBarOffset(Float_t offset=0.25)
virtual Double_t AndersonDarlingTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between this histogram and h2, using the Anderson-Darling ...
virtual void ResetStats()
Reset the statistics including the number of entries and replace with values calculates from bin cont...
static void SetDefaultBufferSize(Int_t buffersize=1000)
Static function to set the default buffer size for automatic histograms.
virtual void SetBinErrorOption(EBinErrorOpt type)
virtual void SetBuffer(Int_t buffersize, Option_t *option="")
Set the maximum number of entries to be kept in the buffer.
virtual void DrawPanel()
Display a panel with all histogram drawing options.
virtual Double_t Chisquare(TF1 *f1, Option_t *option="") const
Compute and return the chisquare of this histogram with respect to a function The chisquare is comput...
virtual void DoFillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride=1)
Internal method to fill histogram content from a vector called directly by TH1::BufferEmpty.
virtual void GetMinimumAndMaximum(Double_t &min, Double_t &max) const
Retrieve the minimum and maximum values in the histogram.
virtual Int_t GetMaximumBin() const
Return location of bin with maximum value in the range.
static Int_t AutoP2GetBins(Int_t n)
Auxilliary function to get the next power of 2 integer value larger then n.
Double_t fEntries
Number of entries.
virtual Long64_t Merge(TCollection *list)
virtual void SetName(const char *name)
Change the name of this histogram.
virtual Double_t * GetIntegral()
Return a pointer to the array of bins integral.
TAxis fZaxis
Z axis descriptor.
EStatOverflows fStatOverflows
per object flag to use under/overflows in statistics
virtual void FillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride=1)
Fill this histogram with an array x and weights w.
virtual void UpdateBinContent(Int_t bin, Double_t content)
Raw update of bin content on internal data structure see convention for numbering bins in TH1::GetBin...
static bool CheckEqualAxes(const TAxis *a1, const TAxis *a2)
Check that the axis are the same.
@ kPoisson2
errors from Poisson interval at 95% CL (~ 2 sigma)
@ kNormal
errors with Normal (Wald) approximation: errorUp=errorLow= sqrt(N)
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
TAxis fXaxis
X axis descriptor.
virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py)
Execute action corresponding to one event.
virtual Bool_t IsHighlight() const
virtual void ExtendAxis(Double_t x, TAxis *axis)
Histogram is resized along axis such that x is in the axis range.
virtual void SetNameTitle(const char *name, const char *title)
Change the name and title of this histogram.
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width for 1D histogram.
static bool CheckConsistency(const TH1 *h1, const TH1 *h2)
Check histogram compatibility.
TArrayD fSumw2
Array of sum of squares of weights.
TH1 * GetAsymmetry(TH1 *h2, Double_t c2=1, Double_t dc2=0)
Return an histogram containing the asymmetry of this histogram with h2, where the asymmetry is define...
virtual Double_t GetContourLevel(Int_t level) const
Return value of contour number level.
virtual void SetHighlight(Bool_t set=kTRUE)
Set highlight (enable/disable) mode for the histogram by default highlight mode is disable.
virtual Double_t GetBinErrorUp(Int_t bin) const
Return upper error associated to bin number bin.
virtual void Scale(Double_t c1=1, Option_t *option="")
Multiply this histogram by a constant c1.
virtual void Paint(Option_t *option="")
Control routine to paint any kind of histograms.
virtual Int_t GetMinimumBin() const
Return location of bin with minimum value in the range.
virtual Int_t GetSumw2N() const
virtual Int_t FindBin(Double_t x, Double_t y=0, Double_t z=0)
Return Global bin number corresponding to x,y,z.
Bool_t GetStatOverflowsBehaviour() const
virtual Double_t GetStdDevError(Int_t axis=1) const
Return error of standard deviation estimation for Normal distribution.
virtual Bool_t Divide(TF1 *f1, Double_t c1=1)
Performs the operation: this = this/(c1*f1) if errors are defined (see TH1::Sumw2),...
virtual Double_t GetMinimum(Double_t minval=-FLT_MAX) const
Return minimum value larger than minval of bins in the range, unless the value has been overridden by...
static bool CheckConsistentSubAxes(const TAxis *a1, Int_t firstBin1, Int_t lastBin1, const TAxis *a2, Int_t firstBin2=0, Int_t lastBin2=0)
Check that two sub axis are the same.
TAxis fYaxis
Y axis descriptor.
virtual Double_t KolmogorovTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between this histogram and h2, using Kolmogorov test.
virtual Double_t GetSumOfWeights() const
Return the sum of weights excluding under/overflows.
static void SmoothArray(Int_t NN, Double_t *XX, Int_t ntimes=1)
Smooth array xx, translation of Hbook routine hsmoof.F based on algorithm 353QH twice presented by J.
virtual void GetCenter(Double_t *center) const
Fill array with center of bins for 1D histogram Better to use h1.GetXaxis().GetCenter(center)
TVirtualHistPainter * fPainter
!pointer to histogram painter
virtual void SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Redefine x axis parameters.
virtual Int_t FindFixBin(Double_t x, Double_t y=0, Double_t z=0) const
Return Global bin number corresponding to x,y,z.
virtual char * GetObjectInfo(Int_t px, Int_t py) const
Redefines TObject::GetObjectInfo.
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
virtual void SetEntries(Double_t n)
virtual Bool_t FindNewAxisLimits(const TAxis *axis, const Double_t point, Double_t &newMin, Double_t &newMax)
finds new limits for the axis so that point is within the range and the limits are compatible with th...
static bool CheckAxisLimits(const TAxis *a1, const TAxis *a2)
Check that the axis limits of the histograms are the same.
static Bool_t AddDirectoryStatus()
Static function: cannot be inlined on Windows/NT.
static Bool_t fgDefaultSumw2
!flag to call TH1::Sumw2 automatically at histogram creation time
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
Compute distance from point px,py to a line.
Double_t fTsumwx
Total Sum of weight*X.
virtual void LabelsDeflate(Option_t *axis="X")
Reduce the number of bins for the axis passed in the option to the number of bins having a label.
virtual Double_t ComputeIntegral(Bool_t onlyPositive=false)
Compute integral (cumulative sum of bins) The result stored in fIntegral is used by the GetRandom fun...
TString fOption
histogram options
virtual Int_t GetContour(Double_t *levels=0)
Return contour values into array levels if pointer levels is non zero.
virtual void Eval(TF1 *f1, Option_t *option="")
Evaluate function f1 at the center of bins of this histogram.
virtual Int_t BufferEmpty(Int_t action=0)
Fill histogram with all entries in the buffer.
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
virtual TH1 * Rebin(Int_t ngroup=2, const char *newname="", const Double_t *xbins=0)
Rebin this histogram.
virtual Double_t GetKurtosis(Int_t axis=1) const
2-D histogram with a double per channel (see TH1 documentation)}
static THLimitsFinder * GetLimitsFinder()
Return pointer to the current finder.
virtual Int_t FindGoodLimits(TH1 *h, Double_t xmin, Double_t xmax)
Compute the best axis limits for the X axis.
THashList implements a hybrid collection class consisting of a hash table and a list to store TObject...
void Clear(Option_t *option="")
Remove all objects from the list.
virtual void Add(TObject *obj)
virtual TObject * Remove(TObject *obj)
Remove object from the list.
virtual TObject * FindObject(const char *name) const
Find an object in this list using its name.
virtual TObjLink * FirstLink() const
virtual TObject * At(Int_t idx) const
Returns the object at position idx. Returns 0 if idx is out of range.
virtual void RecursiveRemove(TObject *obj)
Remove object from this collection and recursively remove the object from all other objects (and coll...
virtual void Delete(Option_t *option="")
Remove all objects from the list AND delete all heap based objects.
virtual TObject * First() const
Return the first object in the list. Returns 0 when list is empty.
The TNamed class is the base class for all named ROOT classes.
virtual void Copy(TObject &named) const
Copy this to obj.
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
virtual void SetName(const char *name)
Set the name of the TNamed.
virtual const char * GetTitle() const
Returns title of object.
virtual const char * GetName() const
Returns name of object.
TObject * GetObject() const
Option_t * GetOption() const
Mother of all ROOT objects.
void AbstractMethod(const char *method) const
Use this method to implement an "abstract" method that you don't want to leave purely abstract.
virtual const char * GetName() const
Returns name of object.
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
virtual UInt_t GetUniqueID() const
Return the unique object id.
@ kNotDeleted
object has not been deleted
virtual const char * ClassName() const
Returns name of class to which the object belongs.
virtual void UseCurrentStyle()
Set current style settings in this object This function is called when either TCanvas::UseCurrentStyl...
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual void AppendPad(Option_t *option="")
Append graphics object to current pad.
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
virtual void SetUniqueID(UInt_t uid)
Set the unique object id.
@ kCanDelete
if object in a list can be deleted
@ kInvalidObject
if object ctor succeeded but object should not be used
@ kMustCleanup
if object destructor must call RecursiveRemove()
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Long_t ExecPlugin(int nargs, const T &... params)
Int_t LoadPlugin()
Load the plugin library for this handler.
virtual Int_t Poisson(Double_t mean)
Generates a random integer N according to a Poisson law.
virtual Double_t PoissonD(Double_t mean)
Generates a random number according to a Poisson law.
virtual Double_t Rndm()
Machine independent random number generator.
void ToLower()
Change string to lower-case.
const char * Data() const
TString & ReplaceAll(const TString &s1, const TString &s2)
void ToUpper()
Change string to upper case.
TString & Remove(Ssiz_t pos)
TString & Append(const char *cs)
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
void Form(const char *fmt,...)
Formats a string using a printf style format descriptor.
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
void SetOptStat(Int_t stat=1)
The type of information printed in the histogram statistics box can be selected via the parameter mod...
void SetHistFillColor(Color_t color=1)
Color_t GetHistLineColor() const
Float_t GetBarOffset() const
void SetHistLineStyle(Style_t styl=0)
Style_t GetHistFillStyle() const
Color_t GetHistFillColor() const
Float_t GetBarWidth() const
Bool_t GetCanvasPreferGL() const
void SetHistLineColor(Color_t color=1)
void SetBarOffset(Float_t baroff=0.5)
Style_t GetHistLineStyle() const
void SetBarWidth(Float_t barwidth=0.5)
void SetHistFillStyle(Style_t styl=0)
Width_t GetHistLineWidth() const
void SetHistLineWidth(Width_t width=1)
TVirtualFFT is an interface class for Fast Fourier Transforms.
static TVirtualFFT * FFT(Int_t ndim, Int_t *n, Option_t *option)
Returns a pointer to the FFT of requested size and type.
virtual Int_t GetNdim() const =0
static TVirtualFFT * SineCosine(Int_t ndim, Int_t *n, Int_t *r2rkind, Option_t *option)
Returns a pointer to a sine or cosine transform of requested size and kind.
virtual Option_t * GetType() const =0
virtual void Transform()=0
virtual void GetPointComplex(Int_t ipoint, Double_t &re, Double_t &im, Bool_t fromInput=kFALSE) const =0
virtual Int_t * GetN() const =0
virtual Double_t GetPointReal(Int_t ipoint, Bool_t fromInput=kFALSE) const =0
virtual void SetPoint(Int_t ipoint, Double_t re, Double_t im=0)=0
Abstract Base Class for Fitting.
virtual Int_t GetXlast() const
virtual TObject * GetObjectFit() const
virtual Int_t GetXfirst() const
static TVirtualFitter * GetFitter()
static: return the current Fitter
virtual TObject * GetUserFunc() const
Abstract interface to a histogram painter.
virtual void DrawPanel()=0
virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py)=0
Execute action corresponding to an event at (px,py).
virtual void Paint(Option_t *option="")=0
This method must be overridden if a class wants to paint itself.
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)=0
Computes distance from point (px,py) to the object.
virtual void SetHighlight()=0
static TVirtualHistPainter * HistPainter(TH1 *obj)
Static function returning a pointer to the current histogram painter.
virtual void SetParent(TObject *)=0
double gamma_quantile_c(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the upper tail of the gamma distribution (gamm...
double gamma_quantile(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the lower tail of the gamma distribution (gamm...
TFitResultPtr FitObject(TH1 *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
fitting function for a TH1 (called from TH1::Fit)
void FitOptionsMake(EFitObjectType type, const char *option, Foption_t &fitOption)
Decode list of options into fitOption.
void FillData(BinData &dv, const TH1 *hist, TF1 *func=0)
fill the data vector from a TH1.
double Chisquare(const TH1 &h1, TF1 &f1, bool useRange, bool usePL=false)
compute the chi2 value for an histogram given a function (see TH1::Chisquare for the documentation)
R__EXTERN TVirtualRWMutex * gCoreMutex
static constexpr double s
void forward(const LAYERDATA &prevLayerData, LAYERDATA &currLayerData)
apply the weights (and functions) in forward direction of the DNN
Int_t Nint(T x)
Round to nearest integer. Rounds half integers to the nearest even integer.
Short_t Max(Short_t a, Short_t b)
Double_t Prob(Double_t chi2, Int_t ndf)
Computation of the probability for a certain Chi-squared (chi2) and number of degrees of freedom (ndf...
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754
Double_t Floor(Double_t x)
Double_t Ceil(Double_t x)
T MinElement(Long64_t n, const T *a)
Return minimum of array a of length n.
constexpr Double_t E()
Base of natural log:
Double_t Sqrt(Double_t x)
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Short_t Min(Short_t a, Short_t b)
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Bool_t AreEqualAbs(Double_t af, Double_t bf, Double_t epsilon)
Double_t KolmogorovProb(Double_t z)
Calculates the Kolmogorov distribution function,.
void Sort(Index n, const Element *a, Index *index, Bool_t down=kTRUE)
Double_t Median(Long64_t n, const T *a, const Double_t *w=0, Long64_t *work=0)
Return the median of the array a where each entry i has weight w[i] .
Long64_t BinarySearch(Long64_t n, const T *array, T value)
Double_t Log10(Double_t x)
Double_t Infinity()
Returns an infinity as defined by the IEEE standard.
static long int sum(long int i)