Logo ROOT  
Reference Guide
StandardBayesianNumericalDemo.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roostats
3/// \notebook -js
4/// Standard demo of the numerical Bayesian calculator
5///
6/// This is a standard demo that can be used with any ROOT file
7/// prepared in the standard way. You specify:
8/// - name for input ROOT file
9/// - name of workspace inside ROOT file that holds model and data
10/// - name of ModelConfig that specifies details for calculator tools
11/// - name of dataset
12///
13/// With default parameters the macro will attempt to run the
14/// standard hist2workspace example and read the ROOT file
15/// that it produces.
16///
17/// The actual heart of the demo is only about 10 lines long.
18///
19/// The BayesianCalculator is based on Bayes's theorem
20/// and performs the integration using ROOT's numeric integration utilities
21///
22/// \macro_image
23/// \macro_output
24/// \macro_code
25///
26/// \author Kyle Cranmer
27
28#include "TFile.h"
29#include "TROOT.h"
30#include "RooWorkspace.h"
31#include "RooAbsData.h"
32#include "RooRealVar.h"
33
34#include "RooUniform.h"
39#include "RooPlot.h"
40#include "TSystem.h"
41
42#include <cassert>
43
44using namespace RooFit;
45using namespace RooStats;
46
47struct BayesianNumericalOptions {
48
49 double confLevel = 0.95; // interval CL
50 TString integrationType = ""; // integration Type (default is adaptive (numerical integration)
51 // possible values are "TOYMC" (toy MC integration, work when nuisances have a constraints pdf)
52 // "VEGAS" , "MISER", or "PLAIN" (these are all possible MC integration)
53 int nToys =
54 10000; // number of toys used for the MC integrations - for Vegas should be probably set to an higher value
55 bool scanPosterior =
56 false; // flag to compute interval by scanning posterior (it is more robust but maybe less precise)
57 bool plotPosterior = false; // plot posterior function after having computed the interval
58 int nScanPoints = 50; // number of points for scanning the posterior (if scanPosterior = false it is used only for
59 // plotting). Use by default a low value to speed-up tutorial
60 int intervalType = 1; // type of interval (0 is shortest, 1 central, 2 upper limit)
61 double maxPOI = -999; // force a different value of POI for doing the scan (default is given value)
62 double nSigmaNuisance = -1; // force integration of nuisance parameters to be within nSigma of their error (do first
63 // a model fit to find nuisance error)
64};
65
66BayesianNumericalOptions optBayes;
67
68void StandardBayesianNumericalDemo(const char *infile = "", const char *workspaceName = "combined",
69 const char *modelConfigName = "ModelConfig", const char *dataName = "obsData")
70{
71
72 // option definitions
73 double confLevel = optBayes.confLevel;
74 TString integrationType = optBayes.integrationType;
75 int nToys = optBayes.nToys;
76 bool scanPosterior = optBayes.scanPosterior;
77 bool plotPosterior = optBayes.plotPosterior;
78 int nScanPoints = optBayes.nScanPoints;
79 int intervalType = optBayes.intervalType;
80 int maxPOI = optBayes.maxPOI;
81 double nSigmaNuisance = optBayes.nSigmaNuisance;
82
83 // -------------------------------------------------------
84 // First part is just to access a user-defined file
85 // or create the standard example file if it doesn't exist
86
87 const char *filename = "";
88 if (!strcmp(infile, "")) {
89 filename = "results/example_combined_GaussExample_model.root";
90 bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code
91 // if file does not exists generate with histfactory
92 if (!fileExist) {
93#ifdef _WIN32
94 cout << "HistFactory file cannot be generated on Windows - exit" << endl;
95 return;
96#endif
97 // Normally this would be run on the command line
98 cout << "will run standard hist2workspace example" << endl;
99 gROOT->ProcessLine(".! prepareHistFactory .");
100 gROOT->ProcessLine(".! hist2workspace config/example.xml");
101 cout << "\n\n---------------------" << endl;
102 cout << "Done creating example input" << endl;
103 cout << "---------------------\n\n" << endl;
104 }
105
106 } else
107 filename = infile;
108
109 // Try to open the file
110 TFile *file = TFile::Open(filename);
111
112 // if input file was specified byt not found, quit
113 if (!file) {
114 cout << "StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
115 return;
116 }
117
118 // -------------------------------------------------------
119 // Tutorial starts here
120 // -------------------------------------------------------
121
122 // get the workspace out of the file
123 RooWorkspace *w = (RooWorkspace *)file->Get(workspaceName);
124 if (!w) {
125 cout << "workspace not found" << endl;
126 return;
127 }
128
129 // get the modelConfig out of the file
130 ModelConfig *mc = (ModelConfig *)w->obj(modelConfigName);
131
132 // get the modelConfig out of the file
133 RooAbsData *data = w->data(dataName);
134
135 // make sure ingredients are found
136 if (!data || !mc) {
137 w->Print();
138 cout << "data or ModelConfig was not found" << endl;
139 return;
140 }
141
142 // ------------------------------------------
143 // create and use the BayesianCalculator
144 // to find and plot the 95% credible interval
145 // on the parameter of interest as specified
146 // in the model config
147
148 // before we do that, we must specify our prior
149 // it belongs in the model config, but it may not have
150 // been specified
151 RooUniform prior("prior", "", *mc->GetParametersOfInterest());
152 w->import(prior);
153 mc->SetPriorPdf(*w->pdf("prior"));
154
155 // do without systematics
156 // mc->SetNuisanceParameters(RooArgSet() );
157 if (nSigmaNuisance > 0) {
158 RooAbsPdf *pdf = mc->GetPdf();
159 assert(pdf);
160 RooFitResult *res =
163
164 res->Print();
165 RooArgList nuisPar(*mc->GetNuisanceParameters());
166 for (int i = 0; i < nuisPar.getSize(); ++i) {
167 RooRealVar *v = dynamic_cast<RooRealVar *>(&nuisPar[i]);
168 assert(v);
169 v->setMin(TMath::Max(v->getMin(), v->getVal() - nSigmaNuisance * v->getError()));
170 v->setMax(TMath::Min(v->getMax(), v->getVal() + nSigmaNuisance * v->getError()));
171 std::cout << "setting interval for nuisance " << v->GetName() << " : [ " << v->getMin() << " , "
172 << v->getMax() << " ]" << std::endl;
173 }
174 }
175
176 BayesianCalculator bayesianCalc(*data, *mc);
177 bayesianCalc.SetConfidenceLevel(confLevel); // 95% interval
178
179 // default of the calculator is central interval. here use shortest , central or upper limit depending on input
180 // doing a shortest interval might require a longer time since it requires a scan of the posterior function
181 if (intervalType == 0)
182 bayesianCalc.SetShortestInterval(); // for shortest interval
183 if (intervalType == 1)
184 bayesianCalc.SetLeftSideTailFraction(0.5); // for central interval
185 if (intervalType == 2)
186 bayesianCalc.SetLeftSideTailFraction(0.); // for upper limit
187
188 if (!integrationType.IsNull()) {
189 bayesianCalc.SetIntegrationType(integrationType); // set integrationType
190 bayesianCalc.SetNumIters(nToys); // set number of iterations (i.e. number of toys for MC integrations)
191 }
192
193 // in case of toyMC make a nuisance pdf
194 if (integrationType.Contains("TOYMC")) {
195 RooAbsPdf *nuisPdf = RooStats::MakeNuisancePdf(*mc, "nuisance_pdf");
196 cout << "using TOYMC integration: make nuisance pdf from the model " << std::endl;
197 nuisPdf->Print();
198 bayesianCalc.ForceNuisancePdf(*nuisPdf);
199 scanPosterior = true; // for ToyMC the posterior is scanned anyway so used given points
200 }
201
202 // compute interval by scanning the posterior function
203 if (scanPosterior)
204 bayesianCalc.SetScanOfPosterior(nScanPoints);
205
207 if (maxPOI != -999 && maxPOI > poi->getMin())
208 poi->setMax(maxPOI);
209
210 SimpleInterval *interval = bayesianCalc.GetInterval();
211
212 // print out the interval on the first Parameter of Interest
213 cout << "\n>>>> RESULT : " << confLevel * 100 << "% interval on " << poi->GetName() << " is : ["
214 << interval->LowerLimit() << ", " << interval->UpperLimit() << "] " << endl;
215
216 // end in case plotting is not requested
217 if (!plotPosterior)
218 return;
219
220 // make a plot
221 // since plotting may take a long time (it requires evaluating
222 // the posterior in many points) this command will speed up
223 // by reducing the number of points to plot - do 50
224
225 // ignore errors of PDF if is zero
227
228 cout << "\nDrawing plot of posterior function....." << endl;
229
230 // always plot using numer of scan points
231 bayesianCalc.SetScanOfPosterior(nScanPoints);
232
233 RooPlot *plot = bayesianCalc.GetPosteriorPlot();
234 plot->Draw();
235}
#define gROOT
Definition: TROOT.h:406
R__EXTERN TSystem * gSystem
Definition: TSystem.h:556
static const std::string & DefaultMinimizerType()
virtual void Print(Option_t *options=0) const
Print the object to the defaultPrintStream().
Definition: RooAbsArg.h:302
RooAbsArg * first() const
RooAbsData is the common abstract base class for binned and unbinned datasets.
Definition: RooAbsData.h:44
virtual RooFitResult * fitTo(RooAbsData &data, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none())
Fit PDF to given dataset.
Definition: RooAbsPdf.cxx:1254
virtual Double_t getMin(const char *name=0) const
Get miniminum of currently defined range.
static void setEvalErrorLoggingMode(ErrorLoggingMode m)
Set evaluation error logging mode.
RooArgList is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgList.h:21
RooFitResult is a container class to hold the input and output of a PDF fit to a dataset.
Definition: RooFitResult.h:40
virtual void Print(Option_t *options=0) const
Print TNamed name and title.
Definition: RooFitResult.h:66
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:44
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:712
RooRealVar represents a variable that can be changed from the outside.
Definition: RooRealVar.h:35
void setMax(const char *name, Double_t value)
Set maximum of name range to given value.
Definition: RooRealVar.cxx:496
BayesianCalculator is a concrete implementation of IntervalCalculator, providing the computation of a...
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
Definition: ModelConfig.h:30
virtual void SetPriorPdf(const RooAbsPdf &pdf)
Set the Prior Pdf, add to the the workspace if not already there.
Definition: ModelConfig.h:87
const RooArgSet * GetParametersOfInterest() const
get RooArgSet containing the parameter of interest (return NULL if not existing)
Definition: ModelConfig.h:237
const RooArgSet * GetNuisanceParameters() const
get RooArgSet containing the nuisance parameters (return NULL if not existing)
Definition: ModelConfig.h:240
RooAbsPdf * GetPdf() const
get model PDF (return NULL if pdf has not been specified or does not exist)
Definition: ModelConfig.h:234
SimpleInterval is a concrete implementation of the ConfInterval interface.
virtual Double_t UpperLimit()
virtual Double_t LowerLimit()
Flat p.d.f.
Definition: RooUniform.h:24
The RooWorkspace is a persistable container for RooFit projects.
Definition: RooWorkspace.h:43
RooAbsData * data(const char *name) const
Retrieve dataset (binned or unbinned) with given name. A null pointer is returned if not found.
void Print(Option_t *opts=0) const
Print contents of the workspace.
Bool_t import(const RooAbsArg &arg, const RooCmdArg &arg1=RooCmdArg(), const RooCmdArg &arg2=RooCmdArg(), const RooCmdArg &arg3=RooCmdArg(), const RooCmdArg &arg4=RooCmdArg(), const RooCmdArg &arg5=RooCmdArg(), const RooCmdArg &arg6=RooCmdArg(), const RooCmdArg &arg7=RooCmdArg(), const RooCmdArg &arg8=RooCmdArg(), const RooCmdArg &arg9=RooCmdArg())
Import a RooAbsArg object, e.g.
TObject * obj(const char *name) const
Return any type of object (RooAbsArg, RooAbsData or generic object) with given name)
RooAbsPdf * pdf(const char *name) const
Retrieve p.d.f (RooAbsPdf) with given name. A null pointer is returned if not found.
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
Definition: TFile.h:53
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
Definition: TFile.cxx:3942
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
Basic string class.
Definition: TString.h:131
Bool_t IsNull() const
Definition: TString.h:402
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Definition: TString.h:619
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
Definition: TSystem.cxx:1291
RooCmdArg Hesse(Bool_t flag=kTRUE)
RooCmdArg Save(Bool_t flag=kTRUE)
RooCmdArg PrintLevel(Int_t code)
RooCmdArg Minimizer(const char *type, const char *alg=0)
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Namespace for the RooStats classes.
Definition: Asimov.h:19
RooAbsPdf * MakeNuisancePdf(RooAbsPdf &pdf, const RooArgSet &observables, const char *name)
Short_t Max(Short_t a, Short_t b)
Definition: TMathBase.h:212
Short_t Min(Short_t a, Short_t b)
Definition: TMathBase.h:180
Definition: file.py:1