Logo ROOT  
Reference Guide
fitConvolution.C File Reference

Detailed Description

View in nbviewer Open in SWAN Tutorial for convolution of two functions

FCN=298.12 FROM MIGRAD STATUS=CONVERGED 457 CALLS 458 TOTAL
EDM=1.08093e-08 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 p0 7.32859e+00 3.70795e-02 1.23437e-05 -3.46193e-02
2 p1 7.33040e-02 2.44083e-03 3.62176e-06 -7.16223e-02
3 p2 -2.26420e+00 4.91803e-02 5.24021e-05 -1.27917e-02
4 p3 1.12811e+00 6.28810e-02 1.94847e-05 -2.72591e-02
#include <stdio.h>
#include <TMath.h>
#include <TCanvas.h>
#include <iostream>
#include <TROOT.h>
#include <TChain.h>
#include <TObject.h>
#include <TRandom.h>
#include <TFile.h>
#include <math.h>
#include <TF1Convolution.h>
#include <TF1.h>
#include <TH1F.h>
#include <TGraph.h>
#include <TStopwatch.h>
using namespace std;
void fitConvolution()
{
//construction of histogram to fit
TH1F *h_ExpGauss = new TH1F("h_ExpGauss","Exponential convoluted by gaussian",100,0.,5.);
for (int i=0;i<1e6;i++)
{
Double_t x = gRandom->Exp(1./0.3);//gives a alpha of -0.3 in the exp
x += gRandom->Gaus(0.,3.);
h_ExpGauss->Fill(x);//probability density function of the addition of two variables is the convolution of 2 dens. functions
}
TF1Convolution *f_conv = new TF1Convolution("expo","gaus",-1,6,true);
f_conv->SetRange(-1.,6.);
f_conv->SetNofPointsFFT(1000);
TF1 *f = new TF1("f",*f_conv, 0., 5., f_conv->GetNpar());
f->SetParameters(1.,-0.3,0.,1.);
//fit
new TCanvas("c","c",800,1000);
h_ExpGauss -> Fit("f");
h_ExpGauss->Draw();
}
#define f(i)
Definition: RSha256.hxx:104
double Double_t
Definition: RtypesCore.h:57
R__EXTERN TRandom * gRandom
Definition: TRandom.h:62
The Canvas class.
Definition: TCanvas.h:27
Class wrapping convolution of two functions.
void SetRange(Double_t a, Double_t b)
Int_t GetNpar() const
void SetNofPointsFFT(Int_t n)
1-Dim function class
Definition: TF1.h:210
1-D histogram with a float per channel (see TH1 documentation)}
Definition: TH1.h:571
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition: TH1.cxx:3275
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition: TH1.cxx:2998
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
Definition: TRandom.cxx:263
virtual Double_t Exp(Double_t tau)
Returns an exponential deviate.
Definition: TRandom.cxx:240
Double_t x[n]
Definition: legend1.C:17
TFitResultPtr Fit(FitObject *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
Definition: HFitImpl.cxx:134
Author
Aurelie Flandi

Definition in file fitConvolution.C.