ROOT   Reference Guide
rs302_JeffreysPriorDemo.C File Reference

## Detailed Description

tutorial demonstrating and validates the RooJeffreysPrior class

Jeffreys's prior is an 'objective prior' based on formal rules. It is calculated from the Fisher information matrix.

The analytic form is not known for most PDFs, but it is for simple cases like the Poisson mean, Gaussian mean, Gaussian sigma.

This class uses numerical tricks to calculate the Fisher Information Matrix efficiently. In particular, it takes advantage of a property of the 'Asimov data' as described in Asymptotic formulae for likelihood-based tests of new physics Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells http://arxiv.org/abs/arXiv:1007.1727

This Demo has four parts:

1. TestJeffreysPriorDemo – validates Poisson mean case 1/sqrt(mu)
2. TestJeffreysGaussMean – validates Gaussian mean case
3. TestJeffreysGaussSigma – validates Gaussian sigma case 1/sigma
4. TestJeffreysGaussMeanAndSigma – demonstrates 2-d example
#include "RooWorkspace.h"
#include "RooDataHist.h"
#include "RooGenericPdf.h"
#include "RooPlot.h"
#include "RooFitResult.h"
#include "RooRealVar.h"
#include "RooAbsPdf.h"
#include "TH1F.h"
#include "TCanvas.h"
#include "TLegend.h"
#include "TMatrixDSym.h"
using namespace RooFit;
void JeffreysPriorDemo()
{
RooWorkspace w("w");
w.factory("Uniform::u(x[0,1])");
w.factory("mu[100,1,200]");
w.factory("ExtendPdf::p(u,mu)");
RooDataHist *asimov = w.pdf("p")->generateBinned(*w.var("x"), ExpectedData());
RooFitResult *res = w.pdf("p")->fitTo(*asimov, Save(), SumW2Error(kTRUE));
asimov->Print();
res->Print();
cout << "variance = " << (cov.Determinant()) << endl;
cout << "stdev = " << sqrt(cov.Determinant()) << endl;
cov.Invert();
cout << "jeffreys = " << sqrt(cov.Determinant()) << endl;
w.defineSet("poi", "mu");
w.defineSet("obs", "x");
RooJeffreysPrior pi("jeffreys", "jeffreys", *w.pdf("p"), *w.set("poi"), *w.set("obs"));
RooGenericPdf *test = new RooGenericPdf("Expected", "Expected = 1/#sqrt{#mu}", "1./sqrt(mu)",
*w.set("poi"));
TCanvas *c1 = new TCanvas;
RooPlot *plot = w.var("mu")->frame();
pi.plotOn(plot);
plot->Draw();
auto legend = plot->BuildLegend();
legend->DrawClone();
}
//_________________________________________________
void TestJeffreysGaussMean()
{
RooWorkspace w("w");
w.factory("Gaussian::g(x[0,-20,20],mu[0,-5.,5],sigma[1,0,10])");
w.factory("n[10,.1,200]");
w.factory("ExtendPdf::p(g,n)");
w.var("sigma")->setConstant();
w.var("n")->setConstant();
RooDataHist *asimov = w.pdf("p")->generateBinned(*w.var("x"), ExpectedData());
RooFitResult *res = w.pdf("p")->fitTo(*asimov, Save(), SumW2Error(kTRUE));
asimov->Print();
res->Print();
cout << "variance = " << (cov.Determinant()) << endl;
cout << "stdev = " << sqrt(cov.Determinant()) << endl;
cov.Invert();
cout << "jeffreys = " << sqrt(cov.Determinant()) << endl;
w.defineSet("poi", "mu");
w.defineSet("obs", "x");
RooJeffreysPrior pi("jeffreys", "jeffreys", *w.pdf("p"), *w.set("poi"), *w.set("obs"));
const RooArgSet *temp = w.set("poi");
pi.getParameters(*temp)->Print();
// return;
RooGenericPdf *test = new RooGenericPdf("constant", "Expected = constant", "1", *w.set("poi"));
TCanvas *c1 = new TCanvas;
RooPlot *plot = w.var("mu")->frame();
pi.plotOn(plot);
plot->Draw();
auto legend = plot->BuildLegend();
legend->DrawClone();
}
//_________________________________________________
void TestJeffreysGaussSigma()
{
// this one is VERY sensitive
// if the Gaussian is narrow ~ range(x)/nbins(x) then the peak isn't resolved
// and you get really bizarre shapes
// if the Gaussian is too wide range(x) ~ sigma then PDF gets renormalized
// and the PDF falls off too fast at high sigma
RooWorkspace w("w");
w.factory("Gaussian::g(x[0,-20,20],mu[0,-5,5],sigma[1,1,5])");
w.factory("n[100,.1,2000]");
w.factory("ExtendPdf::p(g,n)");
// w.var("sigma")->setConstant();
w.var("mu")->setConstant();
w.var("n")->setConstant();
w.var("x")->setBins(301);
RooDataHist *asimov = w.pdf("p")->generateBinned(*w.var("x"), ExpectedData());
RooFitResult *res = w.pdf("p")->fitTo(*asimov, Save(), SumW2Error(kTRUE));
asimov->Print();
res->Print();
cout << "variance = " << (cov.Determinant()) << endl;
cout << "stdev = " << sqrt(cov.Determinant()) << endl;
cov.Invert();
cout << "jeffreys = " << sqrt(cov.Determinant()) << endl;
w.defineSet("poi", "sigma");
w.defineSet("obs", "x");
RooJeffreysPrior pi("jeffreys", "jeffreys", *w.pdf("p"), *w.set("poi"), *w.set("obs"));
const RooArgSet *temp = w.set("poi");
pi.getParameters(*temp)->Print();
RooGenericPdf *test = new RooGenericPdf("test", "Expected = #sqrt{2}/#sigma", "sqrt(2.)/sigma", *w.set("poi"));
TCanvas *c1 = new TCanvas;
RooPlot *plot = w.var("sigma")->frame();
pi.plotOn(plot);
plot->Draw();
auto legend = plot->BuildLegend();
legend->DrawClone();
}
//_________________________________________________
void TestJeffreysGaussMeanAndSigma()
{
// this one is VERY sensitive
// if the Gaussian is narrow ~ range(x)/nbins(x) then the peak isn't resolved
// and you get really bizarre shapes
// if the Gaussian is too wide range(x) ~ sigma then PDF gets renormalized
// and the PDF falls off too fast at high sigma
RooWorkspace w("w");
w.factory("Gaussian::g(x[0,-20,20],mu[0,-5,5],sigma[1,1.,5.])");
w.factory("n[100,.1,2000]");
w.factory("ExtendPdf::p(g,n)");
w.var("n")->setConstant();
w.var("x")->setBins(301);
RooDataHist *asimov = w.pdf("p")->generateBinned(*w.var("x"), ExpectedData());
RooFitResult *res = w.pdf("p")->fitTo(*asimov, Save(), SumW2Error(kTRUE));
asimov->Print();
res->Print();
cout << "variance = " << (cov.Determinant()) << endl;
cout << "stdev = " << sqrt(cov.Determinant()) << endl;
cov.Invert();
cout << "jeffreys = " << sqrt(cov.Determinant()) << endl;
w.defineSet("poi", "mu,sigma");
w.defineSet("obs", "x");
RooJeffreysPrior pi("jeffreys", "jeffreys", *w.pdf("p"), *w.set("poi"), *w.set("obs"));
const RooArgSet *temp = w.set("poi");
pi.getParameters(*temp)->Print();
// return;
TCanvas *c1 = new TCanvas;
TH1 *Jeff2d = pi.createHistogram("2dJeffreys", *w.var("mu"), Binning(10, -5., 5), YVar(*w.var("sigma"), Binning(10, 1., 5.)));
Jeff2d->Draw("surf");
}
const Bool_t kTRUE
Definition: RtypesCore.h:89
@ kRed
Definition: Rtypes.h:64
@ kDashDotted
Definition: TAttLine.h:48
double sqrt(double)
virtual void Print(Option_t *options=0) const
Print TNamed name and title.
Definition: RooAbsData.h:175
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
The RooDataHist is a container class to hold N-dimensional binned data.
Definition: RooDataHist.h:40
RooFitResult is a container class to hold the input and output of a PDF fit to a dataset.
Definition: RooFitResult.h:40
virtual void Print(Option_t *options=0) const
Print TNamed name and title.
Definition: RooFitResult.h:66
const TMatrixDSym & covarianceMatrix() const
Return covariance matrix.
RooGenericPdf is a concrete implementation of a probability density function, which takes a RooArgLis...
Definition: RooGenericPdf.h:25
Implementation of Jeffrey's prior.
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:44
static RooPlot * frame(const RooAbsRealLValue &var, Double_t xmin, Double_t xmax, Int_t nBins)
Create a new frame for a given variable in x.
Definition: RooPlot.cxx:277
std::unique_ptr< TLegend > BuildLegend() const
Build a legend that contains all objects that have been drawn on the plot.
Definition: RooPlot.cxx:1384
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:712
The RooWorkspace is a persistable container for RooFit projects.
Definition: RooWorkspace.h:43
The Canvas class.
Definition: TCanvas.h:27
The TH1 histogram class.
Definition: TH1.h:56
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition: TH1.cxx:2998
virtual Double_t Determinant() const
TMatrixTSym< Element > & Invert(Double_t *det=0)
Invert the matrix and calculate its determinant Notice that the LU decomposition is used instead of B...
RooCmdArg YVar(const RooAbsRealLValue &var, const RooCmdArg &arg=RooCmdArg::none())
RooCmdArg SumW2Error(Bool_t flag)
RooCmdArg Save(Bool_t flag=kTRUE)
RooCmdArg ExpectedData(Bool_t flag=kTRUE)
RooCmdArg Binning(const RooAbsBinning &binning)
RooCmdArg LineColor(Color_t color)
RooCmdArg LineStyle(Style_t style)
return c1
Definition: legend1.C:41
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
static constexpr double pi
Definition: test.py:1

Definition in file rs302_JeffreysPriorDemo.C.