Logo ROOT  
Reference Guide
webdemo.C File Reference

Detailed Description

Web-based GUI to draw the geometry shapes.

Using functionality of web geometry viewer Based on original geodemo.C macro

#include <vector>
#include <string>
#include "TMath.h"
#include "TRandom.h"
#include "TROOT.h"
#include "TGeoManager.h"
#include "TGeoNode.h"
#include "TGeoBBox.h"
#include "TGeoPara.h"
#include "TGeoTube.h"
#include "TGeoCone.h"
#include "TGeoEltu.h"
#include "TGeoSphere.h"
#include "TGeoTorus.h"
#include "TGeoTrd1.h"
#include "TGeoTrd2.h"
#include "TGeoParaboloid.h"
#include "TGeoHype.h"
#include "TGeoPcon.h"
#include "TGeoPgon.h"
#include "TGeoArb8.h"
#include "TGeoXtru.h"
Bool_t comments = kTRUE;
Bool_t grotate = kFALSE;
Bool_t axis = kTRUE;
std::string getOptions()
{
std::string opt;
if (grotate) opt.append("rotate;");
if (axis) opt.append("axis;");
return opt;
}
// create here to keep it in memory
auto geomViewer = std::make_shared<ROOT::Experimental::REveGeomViewer>();
void display()
{
geomViewer->SetShowHierarchy(false);
geomViewer->SetGeometry(gGeoManager);
geomViewer->Show({600, 600, 160, 0});
}
//______________________________________________________________________________
void autorotate()
{
grotate = !grotate;
geomViewer->SetDrawOptions(getOptions());
}
//______________________________________________________________________________
void axes()
{
axis = !axis;
geomViewer->SetDrawOptions(getOptions());
}
//______________________________________________________________________________
void gcomments()
{
comments = !comments;
if (!comments)
helpWindow->CloseConnections();
}
//______________________________________________________________________________
void SavePicture(const char *name, TObject *objcanvas, TObject *objvol, Int_t iaxis, Double_t step)
{
// TDOD: provide in geom viewer
}
//______________________________________________________________________________
Int_t randomColor()
{
Double_t color = 7.*gRandom->Rndm();
return (1+Int_t(color));
}
//______________________________________________________________________________
std::string AddDbl(const char *datamember, Double_t value, const char *comment)
{
return TString::Format("%10s = %5.2f => %s", datamember, value, comment).Data();
}
//______________________________________________________________________________
std::string AddInt(const char *datamember, Int_t value, const char *comment)
{
return TString::Format("%10s = %5d => %s", datamember, value, comment).Data();
}
//______________________________________________________________________________
void help(const std::vector<std::string> &info = {}, TGeoVolume *fvol = nullptr, Int_t iaxis = 0, const std::vector<std::string> &info2 = {})
{
if (!info.empty() && !comments)
return;
std::vector<std::string> lines({
" >>>>>>> web geometry viewer <<<<<< ",
" Demo for building TGeo basic shapes and simple geometry. Shape parameters are",
" displayed in the right pad",
"- Click left mouse button to execute one demo",
"- While pointing the mouse to the pad containing the geometry, do:",
"- .... click-and-move to rotate",
"- .... use mouse wheel for zooming",
"- .... double click for reset position",
"- Execute box(1,8) to divide a box in 8 equal slices along X",
"- Most shapes can be divided on X,Y,Z,Rxy or Phi :",
"- .... root[0] <shape>(IAXIS, NDIV, START, STEP);",
" .... IAXIS = 1,2,3 meaning (X,Y,Z) or (Rxy, Phi, Z)",
" .... NDIV = number of slices",
" .... START = start slicing position",
" .... STEP = division step",
"- Click Comments ON/OFF to toggle comments",
"- Click Ideal/Align geometry to see how alignment works"
});
helpWindow->SetDefaultPage("file:webhelp.html");
unsigned connid = helpWindow->GetDisplayConnection();
if (!info.empty()) {
lines = info;
TGeoPatternFinder *finder = (fvol && (iaxis > 0) && (iaxis < 4)) ? fvol->GetFinder() : nullptr;
if (finder) {
TGeoVolume *volume = finder->GetVolume();
TGeoShape *sh = volume->GetShape();
lines.emplace_back(Form("Division of %s on axis %d (%s)", volume->GetName(), iaxis, sh->GetAxisName(iaxis)));
lines.emplace_back(AddInt("fNdiv",finder->GetNdiv(),"number of divisions"));
lines.emplace_back(AddDbl("fStart",finder->GetStart(),"start divisioning position"));
lines.emplace_back(AddDbl("fStep",finder->GetStep(),"division step"));
}
if (!info2.empty())
lines.insert(lines.end(), info2.begin(), info2.end());
}
int height = 200;
if (lines.size() > 10) height = 50 + lines.size()*20;
if (!connid) connid = helpWindow->Show({600, height, 160, 650});
std::string msg = "";
bool first = true;
for (auto &line : lines) {
if (line.empty()) continue;
std::string style = "", p = "<p style='";
if (first) { style = "font-size:150%;color:red"; first = false; }
else if (line.find("----")==0) { style = "color:red"; }
else if (line.find("Execute")==0) { style = "color:blue"; }
else if (line.find("Division")==0) { style = "font-size:120%;color:green"; }
if (style.empty()) p = "<p>"; else { p.append(style); p.append("'>"); }
p.append(line);
p.append("</p>");
msg.append(p);
}
if (msg.empty())
helpWindow->Send(connid, "Initial text");
else
helpWindow->Send(connid, msg);
}
//______________________________________________________________________________
void box(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (iaxis<0 || iaxis>3) {
printf("Wrong division axis. Range is 1-3.\n");
return;
}
if (gGeoManager) delete gGeoManager;
new TGeoManager("box", "poza1");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakeBox("BOX",med, 20,30,40);
vol->SetLineColor(randomColor());
vol->SetLineWidth(2);
top->AddNode(vol,1);
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(randomColor());
}
display();
TGeoBBox *bbox = (TGeoBBox*)(vol->GetShape());
help({"TGeoBBox - box class",
AddDbl("fDX",bbox->GetDX(),"half length in X"),
AddDbl("fDY",bbox->GetDY(),"half length in Y"),
AddDbl("fDZ",bbox->GetDZ(),"half length in Z"),
AddDbl("fOrigin[0]",(bbox->GetOrigin())[0],"box origin on X"),
AddDbl("fOrigin[1]",(bbox->GetOrigin())[1],"box origin on Y"),
AddDbl("fOrigin[2]",(bbox->GetOrigin())[2],"box origin on Z")},
vol, iaxis,
{"Execute: box(iaxis, ndiv, start, step) to divide this.",
"----- IAXIS can be 1, 2 or 3 (X, Y, Z)",
"----- NDIV must be a positive integer",
"----- START must be a valid axis offset within shape range on divided axis",
"----- STEP is the division step. START+NDIV*STEP must be in range also",
"----- If START and STEP are omitted, all range of the axis will be divided"});
}
//______________________________________________________________________________
void para(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (iaxis<0 || iaxis>3) {
printf("Wrong division axis. Range is 1-3.\n");
return;
}
if (gGeoManager) delete gGeoManager;
new TGeoManager("para", "poza1");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakePara("PARA",med, 20,30,40,30,15,30);
vol->SetLineColor(randomColor());
vol->SetLineWidth(2);
top->AddNode(vol,1);
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(randomColor());
}
display();
TGeoPara *para = (TGeoPara*)(vol->GetShape());
help({"TGeoPara - parallelepiped class",
AddDbl("fX", para->GetX(), "half length in X"),
AddDbl("fY", para->GetY(), "half length in Y"),
AddDbl("fZ", para->GetZ(), "half length in Z"),
AddDbl("fAlpha", para->GetAlpha(), "angle about Y of the Z bases"),
AddDbl("fTheta", para->GetTheta(), "inclination of para axis about Z"),
AddDbl("fPhi", para->GetPhi(), "phi angle of para axis")},
vol, iaxis,
{"Execute: para(iaxis, ndiv, start, step) to divide this.",
"----- IAXIS can be 1, 2 or 3 (X, Y, Z)", "----- NDIV must be a positive integer",
"----- START must be a valid axis offset within shape range on divided axis",
"----- STEP is the division step. START+NDIV*STEP must be in range also",
"----- If START and STEP are omitted, all range of the axis will be divided"});
// SavePicture("para",c,vol,iaxis,step);
}
//______________________________________________________________________________
void tube(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (iaxis<0 || iaxis>3) {
printf("Wrong division axis. Range is 1-3.\n");
return;
}
if (gGeoManager) delete gGeoManager;
new TGeoManager("tube", "poza2");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakeTube("TUBE",med, 20,30,40);
vol->SetLineColor(randomColor());
vol->SetLineWidth(2);
top->AddNode(vol,1);
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(randomColor());
}
display();
TGeoTube *tube = (TGeoTube*)(vol->GetShape());
help({"TGeoTube - tube class",
AddDbl("fRmin",tube->GetRmin(),"minimum radius"),
AddDbl("fRmax",tube->GetRmax(),"maximum radius"),
AddDbl("fDZ", tube->GetDZ(), "half length in Z")},
vol, iaxis,
{"Execute: tube(iaxis, ndiv, start, step) to divide this.",
"----- IAXIS can be 1, 2 or 3 (Rxy, Phi, Z)",
"----- NDIV must be a positive integer",
"----- START must be a valid axis offset within shape range on divided axis",
"----- STEP is the division step. START+NDIV*STEP must be in range also",
"----- If START and STEP are omitted, all range of the axis will be divided"});
// SavePicture("tube",c,vol,iaxis,step);
}
//______________________________________________________________________________
void tubeseg(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (iaxis<0 || iaxis>3) {
printf("Wrong division axis. Range is 1-3.\n");
return;
}
if (gGeoManager) delete gGeoManager;
new TGeoManager("tubeseg", "poza3");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakeTubs("TUBESEG",med, 20,30,40,-30,270);
vol->SetLineColor(randomColor());
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(randomColor());
}
vol->SetLineWidth(2);
top->AddNode(vol,1);
// gGeoManager->SetNsegments(40);
display();
TGeoTubeSeg *tubeseg = (TGeoTubeSeg*)(vol->GetShape());
help({ "TGeoTubeSeg - tube segment class",
AddDbl("fRmin",tubeseg->GetRmin(),"minimum radius"),
AddDbl("fRmax",tubeseg->GetRmax(),"maximum radius"),
AddDbl("fDZ", tubeseg->GetDZ(), "half length in Z"),
AddDbl("fPhi1",tubeseg->GetPhi1(),"first phi limit"),
AddDbl("fPhi2",tubeseg->GetPhi2(),"second phi limit")},
vol, iaxis,
{"Execute: tubeseg(iaxis, ndiv, start, step) to divide this.",
"----- IAXIS can be 1, 2 or 3 (Rxy, Phi, Z)",
"----- NDIV must be a positive integer",
"----- START must be a valid axis offset within shape range on divided axis",
"----- STEP is the division step. START+NDIV*STEP must be in range also",
"----- If START and STEP are omitted, all range of the axis will be divided"});
// SavePicture("tubeseg",c,vol,iaxis,step);
}
//______________________________________________________________________________
void ctub(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (iaxis<0 || iaxis>2) {
printf("Wrong division axis. Range is 1-2.\n");
return;
}
if (gGeoManager) delete gGeoManager;
new TGeoManager("ctub", "poza3");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
Double_t theta = 160.*TMath::Pi()/180.;
Double_t phi = 30.*TMath::Pi()/180.;
Double_t nlow[3];
nlow[0] = TMath::Sin(theta)*TMath::Cos(phi);
nlow[1] = TMath::Sin(theta)*TMath::Sin(phi);
nlow[2] = TMath::Cos(theta);
theta = 20.*TMath::Pi()/180.;
phi = 60.*TMath::Pi()/180.;
Double_t nhi[3];
nhi[0] = TMath::Sin(theta)*TMath::Cos(phi);
nhi[1] = TMath::Sin(theta)*TMath::Sin(phi);
nhi[2] = TMath::Cos(theta);
TGeoVolume *vol = gGeoManager->MakeCtub("CTUB",med, 20,30,40,-30,250, nlow[0], nlow[1], nlow[2], nhi[0],nhi[1],nhi[2]);
vol->SetLineColor(randomColor());
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(randomColor());
}
vol->SetLineWidth(2);
top->AddNode(vol,1);
// gGeoManager->SetNsegments(40);
display();
TGeoTubeSeg *tubeseg = (TGeoTubeSeg*)(vol->GetShape());
help({ "TGeoTubeSeg - tube segment class",
AddDbl("fRmin",tubeseg->GetRmin(),"minimum radius"),
AddDbl("fRmax",tubeseg->GetRmax(),"maximum radius"),
AddDbl("fDZ", tubeseg->GetDZ(), "half length in Z"),
AddDbl("fPhi1",tubeseg->GetPhi1(),"first phi limit"),
AddDbl("fPhi2",tubeseg->GetPhi2(),"second phi limit")},
vol, iaxis);
// SavePicture("tubeseg",c,vol,iaxis,step);
}
//______________________________________________________________________________
void cone(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (iaxis<0 || iaxis>3) {
printf("Wrong division axis. Range is 1-3.\n");
return;
} else if (iaxis==1) {
printf("cannot divide cone on Rxy\n");
return;
}
if (gGeoManager) delete gGeoManager;
new TGeoManager("cone", "poza4");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakeCone("CONE",med, 40,10,20,35,45);
vol->SetLineColor(randomColor());
vol->SetLineWidth(2);
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(randomColor());
}
top->AddNode(vol,1);
display();
TGeoCone *cone = (TGeoCone*)(vol->GetShape());
help({ "TGeoCone - cone class",
AddDbl("fDZ", cone->GetDZ(), "half length in Z"),
AddDbl("fRmin1",cone->GetRmin1(),"inner radius at -dz"),
AddDbl("fRmax1",cone->GetRmax1(),"outer radius at -dz"),
AddDbl("fRmin2",cone->GetRmin2(),"inner radius at +dz"),
AddDbl("fRmax2",cone->GetRmax2(),"outer radius at +dz")},
vol, iaxis,
{"Execute: cone(iaxis, ndiv, start, step) to divide this.",
"----- IAXIS can be 2 or 3 (Phi, Z)",
"----- NDIV must be a positive integer",
"----- START must be a valid axis offset within shape range on divided axis",
"----- STEP is the division step. START+NDIV*STEP must be in range also",
"----- If START and STEP are omitted, all range of the axis will be divided"});
// SavePicture("cone",c,vol,iaxis,step);
}
//______________________________________________________________________________
void coneseg(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (iaxis<0 || iaxis>3) {
printf("Wrong division axis. Range is 1-3.\n");
return;
}
if (gGeoManager) delete gGeoManager;
new TGeoManager("coneseg", "poza5");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakeCons("CONESEG",med, 40,30,40,10,20,-30,250);
vol->SetLineColor(randomColor());
// vol->SetLineWidth(2);
top->AddNode(vol,1);
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(randomColor());
}
display();
TGeoConeSeg *coneseg = (TGeoConeSeg*)(vol->GetShape());
help({ "TGeoConeSeg - coneseg class",
AddDbl("fDZ", coneseg->GetDZ(), "half length in Z"),
AddDbl("fRmin1",coneseg->GetRmin1(),"inner radius at -dz"),
AddDbl("fRmax1",coneseg->GetRmax1(),"outer radius at -dz"),
AddDbl("fRmin2",coneseg->GetRmin1(),"inner radius at +dz"),
AddDbl("fRmax2",coneseg->GetRmax1(),"outer radius at +dz"),
AddDbl("fPhi1",coneseg->GetPhi1(),"first phi limit"),
AddDbl("fPhi2",coneseg->GetPhi2(),"second phi limit")},
vol, iaxis,
{"Execute: coneseg(iaxis, ndiv, start, step) to divide this.",
"----- IAXIS can be 2 or 3 (Phi, Z)",
"----- NDIV must be a positive integer",
"----- START must be a valid axis offset within shape range on divided axis",
"----- STEP is the division step. START+NDIV*STEP must be in range also",
"----- If START and STEP are omitted, all range of the axis will be divided"});
// SavePicture("coneseg",c,vol,iaxis,step);
}
//______________________________________________________________________________
void eltu(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (gGeoManager) delete gGeoManager;
new TGeoManager("eltu", "poza6");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakeEltu("ELTU",med, 30,10,40);
vol->SetLineColor(randomColor());
// vol->SetLineWidth(2);
top->AddNode(vol,1);
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(randomColor());
}
display();
TGeoEltu *eltu = (TGeoEltu*)(vol->GetShape());
help({ "TGeoEltu - eltu class",
AddDbl("fA",eltu->GetA(), "semi-axis along x"),
AddDbl("fB",eltu->GetB(), "semi-axis along y"),
AddDbl("fDZ", eltu->GetDZ(), "half length in Z")},
vol, iaxis,
{"Execute: eltu(iaxis, ndiv, start, step) to divide this.",
"----- IAXIS can be 2 or 3 (Phi, Z)",
"----- NDIV must be a positive integer",
"----- START must be a valid axis offset within shape range on divided axis",
"----- STEP is the division step. START+NDIV*STEP must be in range also",
"----- If START and STEP are omitted, all range of the axis will be divided"});
// SavePicture("eltu",c,vol,iaxis,step);
}
//______________________________________________________________________________
void sphere(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (iaxis!=0) {
printf("Cannot divide spheres\n");
return;
}
if (gGeoManager) delete gGeoManager;
new TGeoManager("sphere", "poza7");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakeSphere("SPHERE",med, 30,40,60,120,30,240);
vol->SetLineColor(randomColor());
vol->SetLineWidth(2);
top->AddNode(vol,1);
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(randomColor());
}
display();
TGeoSphere *sphere = (TGeoSphere*)(vol->GetShape());
help({ "TGeoSphere- sphere class",
AddDbl("fRmin",sphere->GetRmin(),"inner radius"),
AddDbl("fRmax",sphere->GetRmax(),"outer radius"),
AddDbl("fTheta1",sphere->GetTheta1(),"lower theta limit"),
AddDbl("fTheta2",sphere->GetTheta2(),"higher theta limit"),
AddDbl("fPhi1",sphere->GetPhi1(),"lower phi limit"),
AddDbl("fPhi2",sphere->GetPhi2(),"higher phi limit")},
vol, iaxis);
// SavePicture("sphere",c,vol,iaxis,step);
}
//______________________________________________________________________________
void torus(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (iaxis!=0) {
printf("Cannot divide a torus\n");
return;
}
if (gGeoManager) delete gGeoManager;
new TGeoManager("torus", "poza2");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakeTorus("TORUS",med, 40,20,25,0,270);
vol->SetLineColor(randomColor());
top->AddNode(vol,1);
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(2);
}
display();
TGeoTorus *tor = (TGeoTorus*)(vol->GetShape());
help({ "TGeoTorus - torus class",
AddDbl("fR",tor->GetR(),"radius of the ring"),
AddDbl("fRmin",tor->GetRmin(),"minimum radius"),
AddDbl("fRmax",tor->GetRmax(),"maximum radius"),
AddDbl("fPhi1", tor->GetPhi1(), "starting phi angle"),
AddDbl("fDphi", tor->GetDphi(), "phi range")},
vol, iaxis);
}
//______________________________________________________________________________
void trd1(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (iaxis<0 || iaxis>3) {
printf("Wrong division axis. Range is 1-3.\n");
return;
} else if (iaxis==1) {
printf("Cannot divide trd1 on X axis\n");
return;
}
if (gGeoManager) delete gGeoManager;
new TGeoManager("trd1", "poza8");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakeTrd1("Trd1",med, 10,20,30,40);
vol->SetLineColor(randomColor());
vol->SetLineWidth(2);
top->AddNode(vol,1);
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(randomColor());
}
display();
TGeoTrd1 *trd1 = (TGeoTrd1*)(vol->GetShape());
help({ "TGeoTrd1 - Trd1 class",
AddDbl("fDx1",trd1->GetDx1(),"half length in X at lower Z surface(-dz)"),
AddDbl("fDx2",trd1->GetDx2(),"half length in X at higher Z surface(+dz)"),
AddDbl("fDy",trd1->GetDy(),"half length in Y"),
AddDbl("fDz",trd1->GetDz(),"half length in Z")},
vol, iaxis,
{"Execute: trd1(iaxis, ndiv, start, step) to divide this.",
"----- IAXIS can be 2 or 3 (Y, Z)",
"----- NDIV must be a positive integer",
"----- START must be a valid axis offset within shape range on divided axis",
"----- STEP is the division step. START+NDIV*STEP must be in range also",
"----- If START and STEP are omitted, all range of the axis will be divided"});
// SavePicture("trd1",c,vol,iaxis,step);
}
//______________________________________________________________________________
void parab()
{
if (gGeoManager) delete gGeoManager;
new TGeoManager("parab", "paraboloid");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakeParaboloid("PARAB",med,0, 40, 50);
vol->SetLineColor(randomColor());
vol->SetLineWidth(2);
top->AddNode(vol,1);
display();
help({ "TGeoParaboloid - Paraboloid class",
AddDbl("fRlo",par->GetRlo(),"radius at Z=-dz"),
AddDbl("fRhi",par->GetRhi(),"radius at Z=+dz"),
AddDbl("fDz",par->GetDz(),"half-length on Z axis"),
"----- A paraboloid is described by the equation:",
"----- z = a*r*r + b; where: r = x*x + y*y",
"----- Create with: TGeoParaboloid *parab = new TGeoParaboloid(rlo, rhi, dz);",
"----- dz: half-length in Z (range from -dz to +dz",
"----- rlo: radius at z=-dz given by: -dz = a*rlo*rlo + b",
"----- rhi: radius at z=+dz given by: dz = a*rhi*rhi + b",
"----- rlo != rhi; both >= 0"});
}
//______________________________________________________________________________
void hype()
{
if (gGeoManager) delete gGeoManager;
new TGeoManager("hype", "hyperboloid");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakeHype("HYPE",med,10, 45 ,20,45,40);
TGeoHype *hype = (TGeoHype*)vol->GetShape();
vol->SetLineColor(randomColor());
vol->SetLineWidth(2);
top->AddNode(vol,1);
display();
help({ "TGeoHype - Hyperboloid class",
AddDbl("fRmin",hype->GetRmin(),"minimum inner radius"),
AddDbl("fStIn",hype->GetStIn(),"inner surface stereo angle [deg]"),
AddDbl("fRmax",hype->GetRmax(),"minimum outer radius"),
AddDbl("fStOut",hype->GetStOut(),"outer surface stereo angle [deg]"),
AddDbl("fDz",hype->GetDz(),"half-length on Z axis"),
"----- A hyperboloid is described by the equation:",
"----- r^2 - (tan(stereo)*z)^2 = rmin^2; where: r = x*x + y*y",
"----- Create with: TGeoHype *hype = new TGeoHype(rin, stin, rout, stout, dz);",
"----- rin < rout; rout > 0",
"----- rin = 0; stin > 0 => inner surface conical",
"----- stin/stout = 0 => corresponding surface cylindrical"});
}
//______________________________________________________________________________
void pcon(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (iaxis<0 || iaxis>3) {
printf("Wrong division axis. Range is 1-3.\n");
return;
} else if (iaxis==1) {
printf("Cannot divide pcon on Rxy\n");
return;
}
if (gGeoManager) delete gGeoManager;
new TGeoManager("pcon", "poza10");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakePcon("PCON",med, -30.0,300,4);
TGeoPcon *pcon = (TGeoPcon*)(vol->GetShape());
pcon->DefineSection(0,0,15,20);
pcon->DefineSection(1,20,15,20);
pcon->DefineSection(2,20,15,25);
pcon->DefineSection(3,50,15,20);
vol->SetLineColor(randomColor());
vol->SetLineWidth(2);
top->AddNode(vol,1);
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(randomColor());
}
display();
std::vector<std::string> lines = { "TGeoPcon - pcon class",
AddDbl("fPhi1",pcon->GetPhi1(),"lower phi limit"),
AddDbl("fDphi",pcon->GetDphi(),"phi range"),
AddDbl("fNz",pcon->GetNz(),"number of z planes")};
for (Int_t j=0; j<pcon->GetNz(); j++)
lines.emplace_back(Form("fZ[%i]=%5.2f fRmin[%i]=%5.2f fRmax[%i]=%5.2f",
j,pcon->GetZ()[j],j,pcon->GetRmin()[j],j,pcon->GetRmax()[j]));
help(lines, vol, iaxis,
{"Execute: pcon(iaxis, ndiv, start, step) to divide this.",
"----- IAXIS can be 2 or 3 (Phi, Z)",
"----- NDIV must be a positive integer",
"----- START must be a valid axis offset within shape range on divided axis",
"----- STEP is the division step. START+NDIV*STEP must be in range also",
"----- If START and STEP are omitted, all range of the axis will be divided"});
// SavePicture("pcon",c,vol,iaxis,step);
}
//______________________________________________________________________________
void pgon(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (iaxis<0 || iaxis>3) {
printf("Wrong division axis. Range is 1-3.\n");
return;
} else if (iaxis==1) {
printf("Cannot divide pgon on Rxy\n");
return;
}
if (gGeoManager) delete gGeoManager;
new TGeoManager("pgon", "poza11");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,150,150,100);
TGeoVolume *vol = gGeoManager->MakePgon("PGON",med, -45.0,270.0,4,4);
TGeoPgon *pgon = (TGeoPgon*)(vol->GetShape());
pgon->DefineSection(0,-70,45,50);
pgon->DefineSection(1,0,35,40);
pgon->DefineSection(2,0,30,35);
pgon->DefineSection(3,70,90,100);
vol->SetLineColor(randomColor());
vol->SetLineWidth(2);
top->AddNode(vol,1);
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(randomColor());
}
display();
std::vector<std::string> lines({ "TGeoPgon - pgon class",
AddDbl("fPhi1",pgon->GetPhi1(),"lower phi limit"),
AddDbl("fDphi",pgon->GetDphi(),"phi range"),
AddDbl("fNedges",pgon->GetNedges(),"number of edges"),
AddDbl("fNz",pgon->GetNz(),"number of z planes")});
for (Int_t j=0; j<pgon->GetNz(); j++)
lines.emplace_back(Form("fZ[%i]=%5.2f fRmin[%i]=%5.2f fRmax[%i]=%5.2f",
j,pgon->GetZ()[j],j,pgon->GetRmin()[j],j,pgon->GetRmax()[j]));
help(lines, vol, iaxis,
{"Execute: pgon(iaxis, ndiv, start, step) to divide this.",
"----- IAXIS can be 2 or 3 (Phi, Z)",
"----- NDIV must be a positive integer",
"----- START must be a valid axis offset within shape range on divided axis",
"----- STEP is the division step. START+NDIV*STEP must be in range also",
"----- If START and STEP are omitted, all range of the axis will be divided"});
// SavePicture("pgon",c,vol,iaxis,step);
}
//______________________________________________________________________________
void arb8(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (iaxis!=0) {
printf("Cannot divide arb8\n");
return;
}
if (gGeoManager) delete gGeoManager;
new TGeoManager("arb8", "poza12");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoArb8 *arb = new TGeoArb8(20);
arb->SetVertex(0,-30,-25);
arb->SetVertex(1,-25,25);
arb->SetVertex(2,5,25);
arb->SetVertex(3,25,-25);
arb->SetVertex(4,-28,-23);
arb->SetVertex(5,-23,27);
arb->SetVertex(6,-23,27);
arb->SetVertex(7,13,-27);
TGeoVolume *vol = new TGeoVolume("ARB8",arb,med);
vol->SetLineColor(randomColor());
vol->SetLineWidth(2);
top->AddNode(vol,1);
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(randomColor());
}
display();
std::vector<std::string> lines({"TGeoArb8 - arb8 class",
AddDbl("fDz",arb->GetDz(),"Z half length"),
"Vertices on lower Z plane:"});
Double_t *vert = arb->GetVertices();
for (Int_t i=0; i<8; i++) {
if (i==4) lines.emplace_back("Vertices on higher Z plane:");
lines.emplace_back(Form(" fXY[%d] = (%5.2f, %5.2f)", i, vert[2*i], vert[2*i+1]));
}
help(lines, vol, iaxis);
// SavePicture("arb8",c,vol,iaxis,step);
}
//______________________________________________________________________________
void trd2(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (iaxis && iaxis!=3) {
printf("Wrong division axis. trd2 can divide only in Z (3)\n");
return;
}
if (gGeoManager) delete gGeoManager;
new TGeoManager("trd2", "poza9");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakeTrd2("Trd2",med, 10,20,30,10,40);
vol->SetLineColor(randomColor());
vol->SetLineWidth(2);
top->AddNode(vol,1);
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(randomColor());
}
display();
TGeoTrd2 *trd2 = (TGeoTrd2*)(vol->GetShape());
help({ "TGeoTrd2 - Trd2 class",
AddDbl("fDx1",trd2->GetDx1(),"half length in X at lower Z surface(-dz)"),
AddDbl("fDx2",trd2->GetDx2(),"half length in X at higher Z surface(+dz)"),
AddDbl("fDy1",trd2->GetDy1(),"half length in Y at lower Z surface(-dz)"),
AddDbl("fDy2",trd2->GetDy2(),"half length in Y at higher Z surface(-dz)"),
AddDbl("fDz",trd2->GetDz(),"half length in Z")},
vol, iaxis,
{"Execute: trd2(iaxis, ndiv, start, step) to divide this.",
"----- IAXIS can be only 3 (Z)",
"----- NDIV must be a positive integer",
"----- START must be a valid axis offset within shape range on divided axis",
"----- STEP is the division step. START+NDIV*STEP must be in range also",
"----- If START and STEP are omitted, all range of the axis will be divided"});
// SavePicture("trd2",c,vol,iaxis,step);
}
//______________________________________________________________________________
void trap(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (iaxis && iaxis!=3) {
printf("Wrong division axis. Can divide only in Z (3)\n");
return;
}
if (gGeoManager) delete gGeoManager;
new TGeoManager("trap", "poza10");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakeTrap("Trap",med, 30,15,30,20,10,15,0,20,10,15,0);
vol->SetLineColor(randomColor());
vol->SetLineWidth(2);
top->AddNode(vol,1);
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(randomColor());
}
display();
TGeoTrap *trap = (TGeoTrap*)(vol->GetShape());
help({ "TGeoTrap - Trapezoid class",
AddDbl("fDz",trap->GetDz(),"half length in Z"),
AddDbl("fTheta",trap->GetTheta(),"theta angle of trapezoid axis"),
AddDbl("fPhi",trap->GetPhi(),"phi angle of trapezoid axis"),
AddDbl("fH1",trap->GetH1(),"half length in y at -fDz"),
AddDbl("fAlpha1",trap->GetAlpha1(),"angle between centers of x edges and y axis at -fDz"),
AddDbl("fBl1",trap->GetBl1(),"half length in x at -dZ and y=-fH1"),
AddDbl("fTl1",trap->GetTl1(),"half length in x at -dZ and y=+fH1"),
AddDbl("fH2",trap->GetH2(),"half length in y at +fDz"),
AddDbl("fBl2",trap->GetBl2(),"half length in x at +dZ and y=-fH1"),
AddDbl("fTl2",trap->GetTl2(),"half length in x at +dZ and y=+fH1"),
AddDbl("fAlpha2",trap->GetAlpha2(),"angle between centers of x edges and y axis at +fDz")},
vol, iaxis,
{"Execute: trap(iaxis, ndiv, start, step) to divide this.",
"----- IAXIS can be only 3 (Z)",
"----- NDIV must be a positive integer",
"----- START must be a valid axis offset within shape range on divided axis",
"----- STEP is the division step. START+NDIV*STEP must be in range also",
"----- If START and STEP are omitted, all range of the axis will be divided"});
// SavePicture("trap",c,vol,iaxis,step);
}
//______________________________________________________________________________
void gtra(Int_t iaxis=0, Int_t ndiv=8, Double_t start=0, Double_t step=0)
{
if (iaxis && iaxis!=3) {
printf("Wrong division axis. Can divide only in Z (3)\n");
return;
}
if (gGeoManager) delete gGeoManager;
new TGeoManager("gtra", "poza11");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakeGtra("Gtra",med, 30,15,30,30,20,10,15,0,20,10,15,0);
vol->SetLineColor(randomColor());
vol->SetLineWidth(2);
top->AddNode(vol,1);
if (iaxis) {
TGeoVolume *slice = vol->Divide("SLICE",iaxis,ndiv,start,step);
if (!slice) return;
slice->SetLineColor(randomColor());
}
display();
TGeoGtra *trap = (TGeoGtra*)(vol->GetShape());
help({ "TGeoGtra - Twisted trapezoid class",
AddDbl("fDz",trap->GetDz(),"half length in Z"),
AddDbl("fTheta",trap->GetTheta(),"theta angle of trapezoid axis"),
AddDbl("fPhi",trap->GetPhi(),"phi angle of trapezoid axis"),
AddDbl("fTwist",trap->GetTwistAngle(), "twist angle"),
AddDbl("fH1",trap->GetH1(),"half length in y at -fDz"),
AddDbl("fAlpha1",trap->GetAlpha1(),"angle between centers of x edges and y axis at -fDz"),
AddDbl("fBl1",trap->GetBl1(),"half length in x at -dZ and y=-fH1"),
AddDbl("fTl1",trap->GetTl1(),"half length in x at -dZ and y=+fH1"),
AddDbl("fH2",trap->GetH2(),"half length in y at +fDz"),
AddDbl("fBl2",trap->GetBl2(),"half length in x at +dZ and y=-fH1"),
AddDbl("fTl2",trap->GetTl2(),"half length in x at +dZ and y=+fH1"),
AddDbl("fAlpha2",trap->GetAlpha2(),"angle between centers of x edges and y axis at +fDz")},
vol, iaxis,
{"Execute: gtra(iaxis, ndiv, start, step) to divide this.",
"----- IAXIS can be only 3 (Z)",
"----- NDIV must be a positive integer",
"----- START must be a valid axis offset within shape range on divided axis",
"----- STEP is the division step. START+NDIV*STEP must be in range also",
"----- If START and STEP are omitted, all range of the axis will be divided"});
// SavePicture("gtra",c,vol,iaxis,step);
}
//______________________________________________________________________________
void xtru()
{
if (gGeoManager) delete gGeoManager;
new TGeoManager("xtru", "poza12");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
TGeoVolume *vol = gGeoManager->MakeXtru("XTRU",med,4);
TGeoXtru *xtru = (TGeoXtru*)vol->GetShape();
Double_t x[8] = {-30,-30,30,30,15,15,-15,-15};
Double_t y[8] = {-30,30,30,-30,-30,15,15,-30};
xtru->DefinePolygon(8,x,y);
xtru->DefineSection(0,-40, -20., 10., 1.5);
xtru->DefineSection(1, 10, 0., 0., 0.5);
xtru->DefineSection(2, 10, 0., 0., 0.7);
xtru->DefineSection(3, 40, 10., 20., 0.9);
vol->SetLineColor(randomColor());
vol->SetLineWidth(2);
top->AddNode(vol,1);
display();
help({ "TGeoXtru - Polygonal extrusion class",
AddDbl("fNvert",xtru->GetNvert(),"number of polygone vertices"),
AddDbl("fNz",xtru->GetNz(),"number of Z sections"),
"----- Any Z section is an arbitrary polygone",
"----- The shape can have an arbitrary number of Z sections, as for pcon/pgon",
"----- Create with: TGeoXtru *xtru = new TGeoXtru(nz);",
"----- Define the blueprint polygon :",
"----- Double_t x[8] = {-30,-30,30,30,15,15,-15,-15};",
"----- Double_t y[8] = {-30,30,30,-30,-30,15,15,-30};",
"----- xtru->DefinePolygon(8,x,y);",
"----- Define translations/scales of the blueprint for Z sections :",
"----- xtru->DefineSection(i, Zsection, x0, y0, scale);",
"----- Sections have to be defined in increasing Z order",
"----- 2 sections can be defined at same Z (not for first/last sections)"});
}
//______________________________________________________________________________
void tessellated()
{
if (gGeoManager) delete gGeoManager;
new TGeoManager("tessellated", "tessellated");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,10,10,10);
TGeoTessellated *tsl = new TGeoTessellated("triaconthaedron", 30);
const Double_t sqrt5 = TMath::Sqrt(5.);
std::vector<Tessellated::Vertex_t> vert;
vert.reserve(120);
vert.emplace_back(0, 0.5 * (1 + sqrt5), -1); vert.emplace_back(0, 0.5 * (-1 + sqrt5), 0.5 * (-1 - sqrt5)); vert.emplace_back(-1, 0, 0.5 * (-1 - sqrt5)); vert.emplace_back(-1, 1, -1);
vert.emplace_back(1, 1, -1); vert.emplace_back(0, 0.5 * (1 + sqrt5), -1); vert.emplace_back(0, 0.5 * (-1 + sqrt5), 0.5 * (-1 - sqrt5)); vert.emplace_back(1, 0, 0.5 * (-1 - sqrt5));
vert.emplace_back(1, 1, -1); vert.emplace_back(0, 0.5 * (1 + sqrt5), -1); vert.emplace_back(0.5 * (-1 + sqrt5), 0.5 * (1 + sqrt5), 0); vert.emplace_back(0.5 * (1 + sqrt5), 1, 0);
vert.emplace_back(0.5 * (1 - sqrt5), 0.5 * (1 + sqrt5), 0); vert.emplace_back(0, 0.5 * (1 + sqrt5), -1); vert.emplace_back(0.5 * (-1 + sqrt5), 0.5 * (1 + sqrt5), 0); vert.emplace_back(0, 0.5 * (1 + sqrt5), 1);
vert.emplace_back(0.5 * (1 - sqrt5), 0.5 * (1 + sqrt5), 0); vert.emplace_back(0, 0.5 * (1 + sqrt5), -1); vert.emplace_back(-1, 1, -1); vert.emplace_back(0.5 * (-1 - sqrt5), 1, 0);
vert.emplace_back(1, 1, -1); vert.emplace_back(0.5 * (1 + sqrt5), 1, 0); vert.emplace_back(0.5 * (1 + sqrt5), 0, 0.5 * (1 - sqrt5)); vert.emplace_back(1, 0, 0.5 * (-1 - sqrt5));
vert.emplace_back(0.5 * (1 + sqrt5), 0, 0.5 * (1 - sqrt5)); vert.emplace_back(0.5 * (1 + sqrt5), -1, 0); vert.emplace_back(1, -1, -1); vert.emplace_back(1, 0, 0.5 * (-1 - sqrt5));
vert.emplace_back(1, -1, -1); vert.emplace_back(0, 0.5 * (-1 - sqrt5), -1); vert.emplace_back(0, 0.5 * (1 - sqrt5), 0.5 * (-1 - sqrt5)); vert.emplace_back(1, 0, 0.5 * (-1 - sqrt5));
vert.emplace_back(1, 0, 0.5 * (-1 - sqrt5)); vert.emplace_back(0, 0.5 * (-1 + sqrt5), 0.5 * (-1 - sqrt5)); vert.emplace_back(-1, 0, 0.5 * (-1 - sqrt5)); vert.emplace_back(0, 0.5 * (1 - sqrt5), 0.5 * (-1 - sqrt5));
vert.emplace_back(0.5 * (-1 + sqrt5), 0.5 * (1 + sqrt5), 0); vert.emplace_back(0.5 * (1 + sqrt5), 1, 0); vert.emplace_back(1, 1, 1); vert.emplace_back(0, 0.5 * (1 + sqrt5), 1);
vert.emplace_back(0.5 * (1 + sqrt5), 1, 0); vert.emplace_back(1, 1, 1); vert.emplace_back(1, 0, 0.5 * (1 + sqrt5)); vert.emplace_back(0.5 * (1 + sqrt5), 0, 0.5 * (-1 + sqrt5));
vert.emplace_back(0.5 * (1 + sqrt5), 0, 0.5 * (1 - sqrt5)); vert.emplace_back(0.5 * (1 + sqrt5), 1, 0); vert.emplace_back(0.5 * (1 + sqrt5), 0, 0.5 * (-1 + sqrt5)); vert.emplace_back(0.5 * (1 + sqrt5), -1, 0);
vert.emplace_back(0.5 * (1 - sqrt5), 0.5 * (1 + sqrt5), 0); vert.emplace_back(0, 0.5 * (1 + sqrt5), 1); vert.emplace_back(-1, 1, 1); vert.emplace_back(0.5 * (-1 - sqrt5), 1, 0);
vert.emplace_back(0, 0.5 * (1 + sqrt5), 1); vert.emplace_back(0, 0.5 * (-1 + sqrt5), 0.5 * (1 + sqrt5)); vert.emplace_back(-1, 0, 0.5 * (1 + sqrt5)); vert.emplace_back(-1, 1, 1);
vert.emplace_back(1, 1, 1); vert.emplace_back(0, 0.5 * (1 + sqrt5), 1); vert.emplace_back(0, 0.5 * (-1 + sqrt5), 0.5 * (1 + sqrt5)); vert.emplace_back(1, 0, 0.5 * (1 + sqrt5));
vert.emplace_back(0, 0.5 * (1 - sqrt5), 0.5 * (1 + sqrt5)); vert.emplace_back(-1, 0, 0.5 * (1 + sqrt5)); vert.emplace_back(0, 0.5 * (-1 + sqrt5), 0.5 * (1 + sqrt5)); vert.emplace_back(1, 0, 0.5 * (1 + sqrt5));
vert.emplace_back(0, 0.5 * (1 - sqrt5), 0.5 * (1 + sqrt5)); vert.emplace_back(1, 0, 0.5 * (1 + sqrt5)); vert.emplace_back(1, -1, 1); vert.emplace_back(0, 0.5 * (-1 - sqrt5), 1);
vert.emplace_back(0.5 * (1 + sqrt5), 0, 0.5 * (-1 + sqrt5)); vert.emplace_back(0.5 * (1 + sqrt5), -1, 0); vert.emplace_back(1, -1, 1); vert.emplace_back(1, 0, 0.5 * (1 + sqrt5));
vert.emplace_back(-1, 0, 0.5 * (1 + sqrt5)); vert.emplace_back(-1, 1, 1); vert.emplace_back(0.5 * (-1 - sqrt5), 1, 0); vert.emplace_back(0.5 * (-1 - sqrt5), 0, 0.5 * (-1 + sqrt5));
vert.emplace_back(-1, -1, 1); vert.emplace_back(-1, 0, 0.5 * (1 + sqrt5)); vert.emplace_back(0.5 * (-1 - sqrt5), 0, 0.5 * (-1 + sqrt5)); vert.emplace_back(0.5 * (-1 - sqrt5), -1, 0);
vert.emplace_back(0, 0.5 * (1 - sqrt5), 0.5 * (1 + sqrt5)); vert.emplace_back(-1, 0, 0.5 * (1 + sqrt5)); vert.emplace_back(-1, -1, 1); vert.emplace_back(0, 0.5 * (-1 - sqrt5), 1);
vert.emplace_back(0.5 * (-1 - sqrt5), -1, 0); vert.emplace_back(0.5 * (-1 - sqrt5), 0, 0.5 * (1 - sqrt5)); vert.emplace_back(0.5 * (-1 - sqrt5), 1, 0); vert.emplace_back(0.5 * (-1 - sqrt5), 0, 0.5 * (-1 + sqrt5));
vert.emplace_back(0.5 * (-1 - sqrt5), -1, 0); vert.emplace_back(0.5 * (-1 - sqrt5), 0, 0.5 * (1 - sqrt5)); vert.emplace_back(-1, 0, 0.5 * (-1 - sqrt5)); vert.emplace_back(-1, -1, -1);
vert.emplace_back(0, 0.5 * (-1 - sqrt5), -1); vert.emplace_back(0.5 * (1 - sqrt5), 0.5 * (-1 - sqrt5), 0); vert.emplace_back(0.5 * (-1 - sqrt5), -1, 0); vert.emplace_back(-1, -1, -1);
vert.emplace_back(0.5 * (1 - sqrt5), 0.5 * (-1 - sqrt5), 0); vert.emplace_back(0.5 * (-1 - sqrt5), -1, 0); vert.emplace_back(-1, -1, 1); vert.emplace_back(0, 0.5 * (-1 - sqrt5), 1);
vert.emplace_back(-1, 1, -1); vert.emplace_back(-1, 0, 0.5 * (-1 - sqrt5)); vert.emplace_back(0.5 * (-1 - sqrt5), 0, 0.5 * (1 - sqrt5)); vert.emplace_back(0.5 * (-1 - sqrt5), 1, 0);
vert.emplace_back(0, 0.5 * (-1 - sqrt5), -1); vert.emplace_back(0, 0.5 * (1 - sqrt5), 0.5 * (-1 - sqrt5)); vert.emplace_back(-1, 0, 0.5 * (-1 - sqrt5)); vert.emplace_back(-1, -1, -1);
vert.emplace_back(0, 0.5 * (-1 - sqrt5), -1); vert.emplace_back(0.5 * (1 - sqrt5), 0.5 * (-1 - sqrt5), 0); vert.emplace_back(0, 0.5 * (-1 - sqrt5), 1); vert.emplace_back(0.5 * (-1 + sqrt5), 0.5 * (-1 - sqrt5), 0);
vert.emplace_back(1, -1, -1); vert.emplace_back(0.5 * (1 + sqrt5), -1, 0); vert.emplace_back(0.5 * (-1 + sqrt5), 0.5 * (-1 - sqrt5), 0); vert.emplace_back(0, 0.5 * (-1 - sqrt5), -1);
vert.emplace_back(0.5 * (1 + sqrt5), -1, 0); vert.emplace_back(1, -1, 1); vert.emplace_back(0, 0.5 * (-1 - sqrt5), 1); vert.emplace_back(0.5 * (-1 + sqrt5), 0.5 * (-1 - sqrt5), 0);
tsl->AddFacet(vert[0], vert[1], vert[2], vert[3]);
tsl->AddFacet(vert[4], vert[7], vert[6], vert[5]);
tsl->AddFacet(vert[8], vert[9], vert[10], vert[11]);
tsl->AddFacet(vert[12], vert[15], vert[14], vert[13]);
tsl->AddFacet(vert[16], vert[17], vert[18], vert[19]);
tsl->AddFacet(vert[20], vert[21], vert[22], vert[23]);
tsl->AddFacet(vert[24], vert[25], vert[26], vert[27]);
tsl->AddFacet(vert[28], vert[29], vert[30], vert[31]);
tsl->AddFacet(vert[32], vert[35], vert[34], vert[33]);
tsl->AddFacet(vert[36], vert[39], vert[38], vert[37]);
tsl->AddFacet(vert[40], vert[41], vert[42], vert[43]);
tsl->AddFacet(vert[44], vert[45], vert[46], vert[47]);
tsl->AddFacet(vert[48], vert[51], vert[50], vert[49]);
tsl->AddFacet(vert[52], vert[55], vert[54], vert[53]);
tsl->AddFacet(vert[56], vert[57], vert[58], vert[59]);
tsl->AddFacet(vert[60], vert[63], vert[62], vert[61]);
tsl->AddFacet(vert[64], vert[67], vert[66], vert[65]);
tsl->AddFacet(vert[68], vert[71], vert[70], vert[69]);
tsl->AddFacet(vert[72], vert[73], vert[74], vert[75]);
tsl->AddFacet(vert[76], vert[77], vert[78], vert[79]);
tsl->AddFacet(vert[80], vert[81], vert[82], vert[83]);
tsl->AddFacet(vert[84], vert[87], vert[86], vert[85]);
tsl->AddFacet(vert[88], vert[89], vert[90], vert[91]);
tsl->AddFacet(vert[92], vert[93], vert[94], vert[95]);
tsl->AddFacet(vert[96], vert[99], vert[98], vert[97]);
tsl->AddFacet(vert[100], vert[101], vert[102], vert[103]);
tsl->AddFacet(vert[104], vert[107], vert[106], vert[105]);
tsl->AddFacet(vert[108], vert[111], vert[110], vert[109]);
tsl->AddFacet(vert[112], vert[113], vert[114], vert[115]);
tsl->AddFacet(vert[116], vert[117], vert[118], vert[119]);
TGeoVolume *vol = new TGeoVolume("TRIACONTHAEDRON", tsl, med);
vol->SetLineColor(randomColor());
vol->SetLineWidth(2);
top->AddNode(vol,1);
display();
help( {"TGeoTessellated - Tessellated shape class",
AddInt("fNfacets",tsl->GetNfacets(),"number of facets"),
AddInt("fNvertices",tsl->GetNvertices(),"number of vertices"),
"----- A tessellated shape is defined by the number of facets",
"----- facets can be added using AddFacet",
"----- Create with: TGeoTessellated *tsl = new TGeoTessellated(nfacets);"});
}
//______________________________________________________________________________
void composite()
{
if (gGeoManager) delete gGeoManager;
new TGeoManager("xtru", "poza12");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,100);
// define shape components with names
TGeoPgon *pgon = new TGeoPgon("pg",0.,360.,6,2);
pgon->DefineSection(0,0,0,20);
pgon->DefineSection(1, 30,0,20);
new TGeoSphere("sph", 40., 45.);
// define named geometrical transformations with names
TGeoTranslation *tr = new TGeoTranslation(0., 0., 45.);
tr->SetName("tr");
// register all used transformations
// create the composite shape based on a Boolean expression
TGeoCompositeShape *cs = new TGeoCompositeShape("mir", "sph:tr*pg");
TGeoVolume *vol = new TGeoVolume("COMP",cs);
vol->SetLineColor(randomColor());
top->AddNode(vol,1);
display();
help({ "TGeoCompositeShape - composite shape class",
"----- Define the shape components and don't forget to name them",
"----- Define geometrical transformations that apply to shape components",
"----- Name all transformations and register them",
"----- Define the composite shape based on a Boolean expression",
" TGeoCompositeShape(\"someName\", \"expression\")",
"----- Expression is made of <shapeName:transfName> components related by Boolean operators",
"----- Boolean operators can be: (+) union, (-) subtraction and (*) intersection",
"----- Use parenthesis in the expression to force precedence"});
}
//______________________________________________________________________________
void ideal()
{
// This is an ideal geometry. In real life, some geometry pieces are moved/rotated
// with respect to their ideal positions. This is called alignment. Alignment
// operations can be handled by TGeo starting from a CLOSED geometry (applied a posteriori)
// Alignment is handled by PHYSICAL NODES, representing an unique object in geometry.
//
// Creating physical nodes:
// 1. TGeoPhysicalNode *node = gGeoManager->MakePhysicalNode(const char *path)
// - creates a physical node represented by path
// - path can be : TOP_1/A_2/B_3
// - B_3 is the 'final node' e.g. the logical node represented by this physical node
// 2. TGeoPhysicalNode *node = gGeoManager->MakePhysicalNode()
// - creates a physical node representing the current modeller state
// Setting visualisation options for TGeoPhysicalNode *node:
// 1. node->SetVisibility(Bool_t flag); // set node visible(*) or invisible
// 2. node->SetIsVolAtt(Bool_t flag); // set line attributes to match the ones of the volumes in the branch
// - default - TRUE
// - when called with FALSE - the attributes defined for the physical node will be taken
// node->SetLineColor(color);
// node->SetLineWidth(width);
// node->SetLineStyle(style);
// 3. node->SetVisibleFull(Bool_t flag); // not only last node in the branch is visible (default)
//
// Activating/deactivating physical nodes drawing - not needed in case of alignment
// Aligning physical nodes
//==========================
// node->Align(TGeoMatrix *newmat, TGeoShape *newshape, Bool_t check=kFALSE);
// newmat = new matrix to replace final node LOCAL matrix
// newshape = new shape to replace final node shape
// check = optional check if the new aligned node is overlapping
// gGeoManager->SetDrawExtraPaths(Bool_t flag)
if (gGeoManager) delete gGeoManager;
new TGeoManager("alignment", "Ideal geometry");
TGeoMaterial *mat = new TGeoMaterial("Al", 26.98,13,2.7);
TGeoMedium *med = new TGeoMedium("MED",1,mat);
TGeoVolume *top = gGeoManager->MakeBox("TOP",med,100,100,10);
TGeoVolume *slicex = top->Divide("SX",1,10,-100,10);
TGeoVolume *slicey = slicex->Divide("SY",2,10,-100,10);
TGeoVolume *vol = gGeoManager->MakePgon("CELL",med,0.,360.,6,2);
TGeoPgon *pgon = (TGeoPgon*)(vol->GetShape());
pgon->DefineSection(0,-5,0.,2.);
pgon->DefineSection(1,5,0.,2.);
vol->SetLineColor(randomColor());
slicey->AddNode(vol,1);
display();
help({ "Ideal / Aligned geometry",
"-- Create physical nodes for the objects you want to align",
"-- You must start from a valid CLOSED geometry",
" TGeoPhysicalNode *node = gGeoManager->MakePhysicalNode(const char *path)",
" + creates a physical node represented by path, e.g. TOP_1/A_2/B_3",
" node->Align(TGeoMatrix *newmat, TGeoShape *newshape, Bool_t check=kFALSE)",
" + newmat = new matrix to replace final node LOCAL matrix",
" + newshape = new shape to replace final node shape",
" + check = optional check if the new aligned node is overlapping"});
}
//______________________________________________________________________________
void align()
{
if (!gGeoManager) return;
if (strcmp(gGeoManager->GetName(),"alignment")) {
printf("Click: <Ideal geometry> first\n");
return;
}
char name[30];
for (Int_t i=1; i<=10; i++) {
for (Int_t j=1; j<=10; j++) {
node = 0;
sprintf(name, "TOP_1/SX_%d/SY_%d/CELL_1",i,j);
if (list) node = (TGeoPhysicalNode*)list->At(10*(i-1)+j-1);
if (!node) node = gGeoManager->MakePhysicalNode(name);
if (node->IsAligned()) {
tr = (TGeoTranslation*)node->GetNode()->GetMatrix();
tr->SetTranslation(2.*gRandom->Rndm(), 2.*gRandom->Rndm(),0.);
} else {
tr = new TGeoTranslation(2.*gRandom->Rndm(), 2.*gRandom->Rndm(),0.);
}
node->Align(tr);
}
}
display();
}
//______________________________________________________________________________
void quit()
{
mainWindow->TerminateROOT();
}
//______________________________________________________________________________
void webdemo ()
{
// configure default html page
// either HTML code can be specified or just name of file after 'file:' prefix
mainWindow->SetDefaultPage("file:webdemo.html");
// this is call-back, invoked when message received from client
mainWindow->SetDataCallBack([](unsigned connid, const std::string &arg) {
gROOT->ProcessLine(arg.c_str());
});
mainWindow->Show({150,750, 0,0});
geomViewer->SetDrawOptions(getOptions());
}
int Int_t
Definition: RtypesCore.h:43
const Bool_t kFALSE
Definition: RtypesCore.h:90
bool Bool_t
Definition: RtypesCore.h:61
double Double_t
Definition: RtypesCore.h:57
const Bool_t kTRUE
Definition: RtypesCore.h:89
char name[80]
Definition: TGX11.cxx:109
R__EXTERN TGeoManager * gGeoManager
Definition: TGeoManager.h:600
#define gROOT
Definition: TROOT.h:406
R__EXTERN TRandom * gRandom
Definition: TRandom.h:62
char * Form(const char *fmt,...)
static std::shared_ptr< RWebWindow > Create()
Create new RWebWindow Using default RWebWindowsManager.
An arbitrary trapezoid with less than 8 vertices standing on two parallel planes perpendicular to Z a...
Definition: TGeoArb8.h:18
virtual void SetVertex(Int_t vnum, Double_t x, Double_t y)
Set values for a given vertex.
Definition: TGeoArb8.cxx:1255
Double_t GetDz() const
Definition: TGeoArb8.h:65
Double_t * GetVertices()
Definition: TGeoArb8.h:69
Box class.
Definition: TGeoBBox.h:18
virtual const Double_t * GetOrigin() const
Definition: TGeoBBox.h:73
virtual Double_t GetDX() const
Definition: TGeoBBox.h:70
virtual Double_t GetDZ() const
Definition: TGeoBBox.h:72
virtual Double_t GetDY() const
Definition: TGeoBBox.h:71
Class handling Boolean composition of shapes.
A phi segment of a conical tube.
Definition: TGeoCone.h:99
Double_t GetPhi1() const
Definition: TGeoCone.h:160
Double_t GetPhi2() const
Definition: TGeoCone.h:161
Conical tube class.
Definition: TGeoCone.h:18
virtual Double_t GetRmax2() const
Definition: TGeoCone.h:76
virtual Double_t GetRmin2() const
Definition: TGeoCone.h:75
virtual Double_t GetRmin1() const
Definition: TGeoCone.h:73
virtual Double_t GetRmax1() const
Definition: TGeoCone.h:74
Elliptical tube class.
Definition: TGeoEltu.h:18
virtual Double_t GetA() const
Definition: TGeoEltu.h:43
virtual Double_t GetB() const
Definition: TGeoEltu.h:44
Gtra is a twisted trapezoid.
Definition: TGeoArb8.h:146
Double_t GetTwistAngle() const
Definition: TGeoArb8.h:168
Hyperboloid class defined by 5 parameters.
Definition: TGeoHype.h:18
Double_t GetStIn() const
Definition: TGeoHype.h:68
Double_t GetStOut() const
Definition: TGeoHype.h:69
The manager class for any TGeo geometry.
Definition: TGeoManager.h:43
TGeoVolume * MakeCone(const char *name, TGeoMedium *medium, Double_t dz, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2)
Make in one step a volume pointing to a cone shape with given medium.
TGeoVolume * MakeXtru(const char *name, TGeoMedium *medium, Int_t nz)
Make a TGeoXtru-shaped volume with nz planes.
TGeoVolume * MakePcon(const char *name, TGeoMedium *medium, Double_t phi, Double_t dphi, Int_t nz)
Make in one step a volume pointing to a polycone shape with given medium.
TGeoVolume * MakeTube(const char *name, TGeoMedium *medium, Double_t rmin, Double_t rmax, Double_t dz)
Make in one step a volume pointing to a tube shape with given medium.
TGeoVolume * MakeCons(const char *name, TGeoMedium *medium, Double_t dz, Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2, Double_t phi1, Double_t phi2)
Make in one step a volume pointing to a cone segment shape with given medium.
TGeoVolume * MakePara(const char *name, TGeoMedium *medium, Double_t dx, Double_t dy, Double_t dz, Double_t alpha, Double_t theta, Double_t phi)
Make in one step a volume pointing to a parallelepiped shape with given medium.
TGeoVolume * MakeTorus(const char *name, TGeoMedium *medium, Double_t r, Double_t rmin, Double_t rmax, Double_t phi1=0, Double_t dphi=360)
Make in one step a volume pointing to a torus shape with given medium.
void CloseGeometry(Option_t *option="d")
Closing geometry implies checking the geometry validity, fixing shapes with negative parameters (run-...
TGeoVolume * MakeTrd2(const char *name, TGeoMedium *medium, Double_t dx1, Double_t dx2, Double_t dy1, Double_t dy2, Double_t dz)
Make in one step a volume pointing to a TGeoTrd2 shape with given medium.
TGeoVolume * MakeGtra(const char *name, TGeoMedium *medium, Double_t dz, Double_t theta, Double_t phi, Double_t twist, Double_t h1, Double_t bl1, Double_t tl1, Double_t alpha1, Double_t h2, Double_t bl2, Double_t tl2, Double_t alpha2)
Make in one step a volume pointing to a twisted trapezoid shape with given medium.
TGeoVolume * MakeBox(const char *name, TGeoMedium *medium, Double_t dx, Double_t dy, Double_t dz)
Make in one step a volume pointing to a box shape with given medium.
TGeoVolume * MakeTrd1(const char *name, TGeoMedium *medium, Double_t dx1, Double_t dx2, Double_t dy, Double_t dz)
Make in one step a volume pointing to a TGeoTrd1 shape with given medium.
TGeoVolume * MakeSphere(const char *name, TGeoMedium *medium, Double_t rmin, Double_t rmax, Double_t themin=0, Double_t themax=180, Double_t phimin=0, Double_t phimax=360)
Make in one step a volume pointing to a sphere shape with given medium.
void SetTopVolume(TGeoVolume *vol)
Set the top volume and corresponding node as starting point of the geometry.
TGeoVolume * MakeCtub(const char *name, TGeoMedium *medium, Double_t rmin, Double_t rmax, Double_t dz, Double_t phi1, Double_t phi2, Double_t lx, Double_t ly, Double_t lz, Double_t tx, Double_t ty, Double_t tz)
Make in one step a volume pointing to a tube segment shape with given medium.
TGeoVolume * MakePgon(const char *name, TGeoMedium *medium, Double_t phi, Double_t dphi, Int_t nedges, Int_t nz)
Make in one step a volume pointing to a polygone shape with given medium.
TGeoVolume * MakeTrap(const char *name, TGeoMedium *medium, Double_t dz, Double_t theta, Double_t phi, Double_t h1, Double_t bl1, Double_t tl1, Double_t alpha1, Double_t h2, Double_t bl2, Double_t tl2, Double_t alpha2)
Make in one step a volume pointing to a trapezoid shape with given medium.
void SetNsegments(Int_t nseg)
Set number of segments for approximating circles in drawing.
TGeoPhysicalNode * MakePhysicalNode(const char *path=0)
Makes a physical node corresponding to a path.
TObjArray * GetListOfPhysicalNodes()
Definition: TGeoManager.h:486
TGeoVolume * MakeHype(const char *name, TGeoMedium *medium, Double_t rin, Double_t stin, Double_t rout, Double_t stout, Double_t dz)
Make in one step a volume pointing to a tube shape with given medium.
TGeoVolume * MakeParaboloid(const char *name, TGeoMedium *medium, Double_t rlo, Double_t rhi, Double_t dz)
Make in one step a volume pointing to a tube shape with given medium.
TGeoVolume * MakeTubs(const char *name, TGeoMedium *medium, Double_t rmin, Double_t rmax, Double_t dz, Double_t phi1, Double_t phi2)
Make in one step a volume pointing to a tube segment shape with given medium.
TGeoVolume * MakeEltu(const char *name, TGeoMedium *medium, Double_t a, Double_t b, Double_t dz)
Make in one step a volume pointing to a tube shape with given medium.
Base class describing materials.
Definition: TGeoMaterial.h:31
virtual void RegisterYourself()
Register the matrix in the current manager, which will become the owner.
Definition: TGeoMatrix.cxx:526
Media are used to store properties related to tracking and which are useful only when using geometry ...
Definition: TGeoMedium.h:24
virtual TGeoMatrix * GetMatrix() const =0
Parallelepiped class.
Definition: TGeoPara.h:18
Double_t GetZ() const
Definition: TGeoPara.h:63
Double_t GetPhi() const
Definition: TGeoPara.h:66
Double_t GetAlpha() const
Definition: TGeoPara.h:64
Double_t GetX() const
Definition: TGeoPara.h:61
Double_t GetY() const
Definition: TGeoPara.h:62
Double_t GetTheta() const
Definition: TGeoPara.h:65
Paraboloid class.
Double_t GetDz() const
Double_t GetRhi() const
Double_t GetRlo() const
Base finder class for patterns.
Int_t GetNdiv() const
TGeoVolume * GetVolume() const
Double_t GetStep() const
Double_t GetStart() const
A polycone.
Definition: TGeoPcon.h:18
Double_t * GetRmax() const
Definition: TGeoPcon.h:81
Double_t GetDphi() const
Definition: TGeoPcon.h:76
virtual void DefineSection(Int_t snum, Double_t z, Double_t rmin, Double_t rmax)
Defines z position of a section plane, rmin and rmax at this z.
Definition: TGeoPcon.cxx:571
Double_t * GetZ() const
Definition: TGeoPcon.h:83
Int_t GetNz() const
Definition: TGeoPcon.h:77
Double_t * GetRmin() const
Definition: TGeoPcon.h:79
Double_t GetPhi1() const
Definition: TGeoPcon.h:75
A polygone.
Definition: TGeoPgon.h:20
Int_t GetNedges() const
Definition: TGeoPgon.h:82
Physical nodes are the actual 'touchable' objects in the geometry, representing a path of positioned ...
Bool_t IsAligned() const
TGeoNode * GetNode(Int_t level=-1) const
Return node in branch at LEVEL. If not specified, return last leaf.
Bool_t Align(TGeoMatrix *newmat=0, TGeoShape *newshape=0, Bool_t check=kFALSE, Double_t ovlp=0.001)
Align a physical node with a new relative matrix/shape.
Base abstract class for all shapes.
Definition: TGeoShape.h:26
virtual const char * GetAxisName(Int_t iaxis) const =0
Spherical shell class.
Definition: TGeoSphere.h:18
Double_t GetPhi1() const
Definition: TGeoSphere.h:71
Double_t GetPhi2() const
Definition: TGeoSphere.h:72
virtual Double_t GetRmin() const
Definition: TGeoSphere.h:67
Double_t GetTheta2() const
Definition: TGeoSphere.h:70
virtual Double_t GetRmax() const
Definition: TGeoSphere.h:68
Double_t GetTheta1() const
Definition: TGeoSphere.h:69
Tessellated solid class.
int GetNvertices() const
bool AddFacet(const Vertex_t &pt0, const Vertex_t &pt1, const Vertex_t &pt2)
Adding a triangular facet from vertex positions in absolute coordinates.
int GetNfacets() const
Torus segment class.
Definition: TGeoTorus.h:18
Double_t GetRmax() const
Definition: TGeoTorus.h:71
Double_t GetRmin() const
Definition: TGeoTorus.h:70
Double_t GetR() const
Definition: TGeoTorus.h:69
Double_t GetPhi1() const
Definition: TGeoTorus.h:72
Double_t GetDphi() const
Definition: TGeoTorus.h:73
Class describing translations.
Definition: TGeoMatrix.h:122
void SetTranslation(Double_t dx, Double_t dy, Double_t dz)
Set translation components.
Definition: TGeoMatrix.cxx:750
TRAP is a general trapezoid, i.e.
Definition: TGeoArb8.h:92
Double_t GetTl1() const
Definition: TGeoArb8.h:130
Double_t GetPhi() const
Definition: TGeoArb8.h:127
Double_t GetAlpha2() const
Definition: TGeoArb8.h:135
Double_t GetTheta() const
Definition: TGeoArb8.h:126
Double_t GetAlpha1() const
Definition: TGeoArb8.h:131
Double_t GetBl2() const
Definition: TGeoArb8.h:133
Double_t GetTl2() const
Definition: TGeoArb8.h:134
Double_t GetH1() const
Definition: TGeoArb8.h:128
Double_t GetH2() const
Definition: TGeoArb8.h:132
Double_t GetBl1() const
Definition: TGeoArb8.h:129
A trapezoid with only x length varying with z.
Definition: TGeoTrd1.h:18
Double_t GetDy() const
Definition: TGeoTrd1.h:57
Double_t GetDx2() const
Definition: TGeoTrd1.h:56
Double_t GetDz() const
Definition: TGeoTrd1.h:58
Double_t GetDx1() const
Definition: TGeoTrd1.h:55
A trapezoid with both x and y lengths varying with z.
Definition: TGeoTrd2.h:18
Double_t GetDy2() const
Definition: TGeoTrd2.h:59
Double_t GetDy1() const
Definition: TGeoTrd2.h:58
Double_t GetDx2() const
Definition: TGeoTrd2.h:57
Double_t GetDz() const
Definition: TGeoTrd2.h:60
Double_t GetDx1() const
Definition: TGeoTrd2.h:56
A phi segment of a tube.
Definition: TGeoTube.h:89
Double_t GetPhi2() const
Definition: TGeoTube.h:149
Double_t GetPhi1() const
Definition: TGeoTube.h:148
Cylindrical tube class.
Definition: TGeoTube.h:18
virtual Double_t GetRmin() const
Definition: TGeoTube.h:66
virtual Double_t GetDz() const
Definition: TGeoTube.h:68
virtual Double_t GetRmax() const
Definition: TGeoTube.h:67
TGeoVolume, TGeoVolumeMulti, TGeoVolumeAssembly are the volume classes.
Definition: TGeoVolume.h:47
TGeoPatternFinder * GetFinder() const
Definition: TGeoVolume.h:173
TGeoShape * GetShape() const
Definition: TGeoVolume.h:186
virtual TGeoVolume * Divide(const char *divname, Int_t iaxis, Int_t ndiv, Double_t start, Double_t step, Int_t numed=0, Option_t *option="")
Division a la G3.
virtual void SetLineWidth(Width_t lwidth)
Set the line width.
virtual void SetLineColor(Color_t lcolor)
Set the line color.
virtual void AddNode(TGeoVolume *vol, Int_t copy_no, TGeoMatrix *mat=0, Option_t *option="")
Add a TGeoNode to the list of nodes.
Definition: TGeoVolume.cxx:931
An extrusion with fixed outline shape in x-y and a sequence of z extents (segments).
Definition: TGeoXtru.h:22
Int_t GetNvert() const
Definition: TGeoXtru.h:94
Bool_t DefinePolygon(Int_t nvert, const Double_t *xv, const Double_t *yv)
Creates the polygon representing the blueprint of any Xtru section.
Definition: TGeoXtru.cxx:658
virtual void DefineSection(Int_t snum, Double_t z, Double_t x0=0., Double_t y0=0., Double_t scale=1.)
defines z position of a section plane, rmin and rmax at this z.
Definition: TGeoXtru.cxx:691
Int_t GetNz() const
Definition: TGeoXtru.h:93
virtual void SetName(const char *name)
Set the name of the TNamed.
Definition: TNamed.cxx:140
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
An array of TObjects.
Definition: TObjArray.h:37
TObject * At(Int_t idx) const
Definition: TObjArray.h:166
Mother of all ROOT objects.
Definition: TObject.h:37
virtual Double_t Rndm()
Machine independent random number generator.
Definition: TRandom.cxx:541
const char * Data() const
Definition: TString.h:364
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Definition: TString.cxx:2311
TLine * line
void box(Int_t pat, Double_t x1, Double_t y1, Double_t x2, Double_t y2)
Definition: fillpatterns.C:1
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
static const std::string comment("comment")
Double_t Sqrt(Double_t x)
Definition: TMath.h:681
Double_t Cos(Double_t)
Definition: TMath.h:631
constexpr Double_t Pi()
Definition: TMath.h:38
Double_t Sin(Double_t)
Definition: TMath.h:627
Definition: first.py:1
TCanvas * style()
Definition: style.C:1
Author
Andrei Gheata

Definition in file webdemo.C.