13#ifndef ROOT_TUnfoldDensity
14#define ROOT_TUnfoldDensity
81 const char *axisSteering);
95 const char *regularisationDistribution=0,
96 const char *regularisationAxisSteering=
"*[UOB]");
98 virtual ~ TUnfoldDensity(
void);
101 const char *distribution,
102 const char *axisSteering);
122 const char *distribution=0,
const char *projectionMode=0,
TGraph **lCurvePlot=0,
TSpline **logTauXPlot=0,
TSpline **logTauYPlot=0);
126 const char *histogramTitle=0,
const char *distributionName=0,
127 const char *projectionMode=0,
Bool_t useAxisBinning=
kTRUE)
const;
129 const char *histogramTitle=0,
const char *distributionName=0,
130 const char *projectionMode=0,
Bool_t useAxisBinning=
kTRUE)
const;
132 const char *histogramTitle=0,
133 const char *distributionName=0,
134 const char *projectionMode=0,
Bool_t useAxisBinning=
kTRUE,
137 const char *histogramTitle=0,
138 const char *distributionName=0,
139 const char *projectionMode=0,
Bool_t useAxisBinning=
kTRUE,
Int_t includeError=3)
const;
140 TH1 *
GetInput(
const char *histogramName,
const char *histogramTitle=0,
141 const char *distributionName=0,
142 const char *projectionMode=0,
Bool_t useAxisBinning=
kTRUE)
const;
144 const char *histogramName,
145 const char *histogramTitle=0,
146 const char *distributionName=0,
147 const char *projectionMode=0,
Bool_t useAxisBinning=
kTRUE);
149 const char *histogramName,
150 const char *histogramTitle=0,
151 const char *distributionName=0,
152 const char *projectionMode=0,
Bool_t useAxisBinning=
kTRUE);
154 const char *histogramTitle=0,
155 const char *distributionName=0,
156 const char *projectionMode=0,
Bool_t useAxisBinning=
kTRUE);
158 const char *histogramTitle=0,
159 const char *distributionName=0,
160 const char *projectionMode=0,
Bool_t useAxisBinning=
kTRUE);
162 const char *histogramName,
163 const char *histogramTitle=0,
164 const char *distributionName=0,
165 const char *projectionMode=0,
Bool_t useAxisBinning=
kTRUE);
167 const char *histogramTitle=0,
168 const char *distributionName=0,
169 const char *projectionMode=0,
Bool_t useAxisBinning=
kTRUE);
171 const char *histogramTitle=0,
172 const char *distributionName=0,
173 const char *projectionMode=0,
Bool_t useAxisBinning=
kTRUE);
175 const char *distributionName=0,
176 const char *projectionMode=0,
Bool_t useAxisBinning=
kTRUE,
178 TH1 *
GetRhoItotal(
const char *histogramName,
const char *histogramTitle=0,
179 const char *distributionName=0,
180 const char *projectionMode=0,
Bool_t useAxisBinning=
kTRUE,
183 const char *histogramTitle=0,
184 const char *distributionName=0,
185 const char *projectionMode=0,
Bool_t useAxisBinning=
kTRUE);
186 TH2 *
GetL(
const char *histogramName,
187 const char *histogramTitle=0,
192 const char *histogramTitle=0,
Bool_t useAxisBinning=
kTRUE)
const;
#define ClassDef(name, id)
#define TUnfold_CLASS_VERSION
A TGraph is an object made of two arrays X and Y with npoints each.
TH1 is the base class of all histogram classes in ROOT.
Service class for 2-Dim histogram classes.
Base class for spline implementation containing the Draw/Paint methods.
Binning schemes for use with the unfolding algorithm TUnfoldDensity.
An algorithm to unfold distributions from detector to truth level.
TH2 * GetRhoIJtotal(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE)
Retrieve correlation coefficients, including all uncertainties.
void RegularizeOneDistribution(const TUnfoldBinning *binning, ERegMode regmode, EDensityMode densityMode, const char *axisSteering)
Regularize the distribution of the given node.
TH1 * GetRhoItotal(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE, TH2 **ematInv=0)
Retrieve global correlation coefficients including all uncertainty sources.
EScanTauMode
scan mode for correlation scan
@ kEScanTauRhoAvg
average global correlation coefficient (from TUnfold::GetRhoI())
@ kEScanTauRhoMax
maximum global correlation coefficient (from TUnfold::GetRhoI())
@ kEScanTauRhoSquareAvgSys
average global correlation coefficient squared (from TUnfoldSys::GetRhoItotal())
@ kEScanTauRhoMaxSys
maximum global correlation coefficient (from TUnfoldSys::GetRhoItotal())
@ kEScanTauRhoSquareAvg
average global correlation coefficient squared (from TUnfold::GetRhoI())
@ kEScanTauRhoAvgSys
average global correlation coefficient (from TUnfoldSys::GetRhoItotal())
TH2 * GetL(const char *histogramName, const char *histogramTitle=0, Bool_t useAxisBinning=kTRUE)
Access matrix of regularisation conditions in a new histogram.
Double_t GetDensityFactor(EDensityMode densityMode, Int_t iBin) const
Density correction factor for a given bin.
TH2 * GetEmatrixInput(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE)
Get covariance contribution from the input uncertainties (data statistical uncertainties).
TH1 * GetDeltaSysTau(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE)
Retrieve 1-sigma shift corresponding to the previously specified uncertainty on tau.
TH2 * GetEmatrixSysUncorr(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE)
Retrieve covariance contribution from uncorrelated (statistical) uncertainties of the response matrix...
const TUnfoldBinning * fConstOutputBins
binning scheme for the output (truth level)
TUnfoldBinning * GetLBinning(void) const
return binning scheme for regularisation conditions (matrix L)
virtual TString GetOutputBinName(Int_t iBinX) const
Get bin name of an output bin.
TUnfoldBinning * fRegularisationConditions
binning scheme for the regularisation conditions
TH1 * GetBackground(const char *histogramName, const char *bgrSource=0, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE, Int_t includeError=3) const
Retrieve a background source in a new histogram.
TH2 * GetProbabilityMatrix(const char *histogramName, const char *histogramTitle=0, Bool_t useAxisBinning=kTRUE) const
Get matrix of probabilities in a new histogram.
TH1 * GetDeltaSysBackgroundScale(const char *bgrSource, const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE)
Retrieve systematic 1-sigma shift corresponding to a background scale uncertainty.
TH1 * GetFoldedOutput(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE, Bool_t addBgr=kFALSE) const
Retrieve unfolding result folded back as a new histogram.
TUnfoldBinning * fOwnedOutputBins
pointer to output binning scheme if owned by this class
TUnfoldBinning * fOwnedInputBins
pointer to input binning scheme if owned by this class
void RegularizeDistribution(ERegMode regmode, EDensityMode densityMode, const char *distribution, const char *axisSteering)
Set up regularisation conditions.
TH1 * GetBias(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE) const
Retrieve bias vector as a new histogram.
TH1 * GetLxMinusBias(const char *histogramName, const char *histogramTitle=0)
Get regularisation conditions multiplied by result vector minus bias L(x-biasScale*biasVector).
TH2 * GetEmatrixTotal(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE)
Get covariance matrix including all contributions.
const TUnfoldBinning * GetOutputBinning(const char *distributionName=0) const
Locate a binning node for the unfolded (truth level) quantities.
TH1 * GetDeltaSysSource(const char *source, const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE)
Retrieve a correlated systematic 1-sigma shift.
TH2 * GetEmatrixSysBackgroundUncorr(const char *bgrSource, const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE)
Retrieve covariance contribution from uncorrelated background uncertainties.
TH1 * GetOutput(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE) const
retrieve unfolding result as a new histogram
TH1 * GetInput(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE) const
Retrieve input distribution in a new histogram.
const TUnfoldBinning * fConstInputBins
binning scheme for the input (detector level)
void RegularizeDistributionRecursive(const TUnfoldBinning *binning, ERegMode regmode, EDensityMode densityMode, const char *distribution, const char *axisSteering)
Recursively add regularisation conditions for this node and its children.
TUnfoldDensity(void)
Only for use by root streamer or derived classes.
virtual Int_t ScanTau(Int_t nPoint, Double_t tauMin, Double_t tauMax, TSpline **scanResult, Int_t mode=kEScanTauRhoAvg, const char *distribution=0, const char *projectionMode=0, TGraph **lCurvePlot=0, TSpline **logTauXPlot=0, TSpline **logTauYPlot=0)
Scan a function wrt tau and determine the minimum.
TH1 * GetRhoIstatbgr(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE, TH2 **ematInv=0)
Retrieve global correlation coefficients including input (statistical) and background uncertainties.
const TUnfoldBinning * GetInputBinning(const char *distributionName=0) const
Locate a binning node for the input (measured) quantities.
virtual Double_t GetScanVariable(Int_t mode, const char *distribution, const char *projectionMode)
Calculate the function for ScanTau().
EDensityMode
choice of regularisation scale factors to cinstruct the matrix L
@ kDensityModeUser
scale factors from user function in TUnfoldBinning
@ kDensityModeNone
no scale factors, matrix L is similar to unity matrix
@ kDensityModeBinWidthAndUser
scale factors from multidimensional bin width and user function
@ kDensityModeBinWidth
scale factors from multidimensional bin width
An algorithm to unfold distributions from detector to truth level, with background subtraction and pr...
EConstraint
type of extra constraint
@ kEConstraintArea
enforce preservation of the area
ERegMode
choice of regularisation scheme
@ kRegModeCurvature
regularize the 2nd derivative of the output distribution
EHistMap
arrangement of axes for the response matrix (TH2 histogram)