220 const TUnfoldBinning *inputBins,
const char *regularisationDistribution,
221 const char *regularisationAxisSteering) :
222 TUnfoldSys(hist_A,histmap,kRegModeNone,constraint)
228 TAxis const *genAxis,*detAxis;
245 Error(
"TUnfoldDensity",
246 "Invalid output binning scheme (node is not the root node)");
258 Error(
"TUnfoldDensity",
259 "Invalid input binning scheme (node is not the root node)");
267 if((nOutMappedT!= nOut)&&(nOutMappedF!=nOut)) {
268 Error(
"TUnfoldDensity",
269 "Output binning incompatible number of bins: axis %d binning scheme %d (%d)",
270 nOut,nOutMappedT,nOutMappedF);
277 if((nInputMappedT!= nInput)&&(nInputMappedF!= nInput)) {
278 Error(
"TUnfoldDensity",
279 "Input binning incompatible number of bins:axis %d binning scheme %d (%d) ",
280 nInput,nInputMappedT,nInputMappedF);
284 for (
Int_t ix = 0; ix <= nOut+1; ix++) {
293 (regmode,densityMode,regularisationDistribution,
294 regularisationAxisSteering);
339 if(binSize>0.0) factor /= binSize;
385 const char *axisSteering)
389 distribution,axisSteering);
403 EDensityMode densityMode,
const char *distribution,
const char *axisSteering) {
404 if((!distribution)|| !
TString(distribution).CompareTo(binning->
GetName())) {
408 child=child->GetNextNode()) {
427 cout<<
"TUnfoldDensity::RegularizeOneDistribution node="
428 <<binning->
GetName()<<
" "<<regmode<<
" "<<densityMode
429 <<
" "<<(axisSteering ? axisSteering :
"")<<
"\n";
438 Int_t isOptionGiven[8];
441 isOptionGiven[0] |= isOptionGiven[1];
443 isOptionGiven[2] |= isOptionGiven[3];
445 isOptionGiven[4] |= isOptionGiven[5];
447 for(
Int_t i=0;i<7;i++) {
448 isOptionGiven[7] &= ~isOptionGiven[i];
451 if(isOptionGiven[6] & (isOptionGiven[0]|isOptionGiven[2]) ) {
452 Error(
"RegularizeOneDistribution",
453 "axis steering %s is not valid",axisSteering);
456 cout<<
" "<<isOptionGiven[0]
457 <<
" "<<isOptionGiven[1]
458 <<
" "<<isOptionGiven[2]
459 <<
" "<<isOptionGiven[3]
460 <<
" "<<isOptionGiven[4]
461 <<
" "<<isOptionGiven[5]
462 <<
" "<<isOptionGiven[6]
463 <<
" "<<isOptionGiven[7]
466 Info(
"RegularizeOneDistribution",
"regularizing %s regMode=%d"
467 " densityMode=%d axisSteering=%s",
469 axisSteering ? axisSteering :
"");
472 std::vector<Double_t> factor(endBin-startBin);
474 for(
Int_t bin=startBin;bin<endBin;bin++) {
476 if(factor[bin-startBin] !=0.0) nbin++;
479 cout<<
"initial number of bins "<<nbin<<
"\n";
485 for(
Int_t bin=startBin;bin<endBin;bin++) {
486 Int_t uStatus,oStatus;
488 if(uStatus & isOptionGiven[1]) factor[bin-startBin]=0.;
489 if(oStatus & isOptionGiven[3]) factor[bin-startBin]=0.;
490 if(factor[bin-startBin] !=0.0) nbin++;
493 cout<<
"after underflow/overflow bin removal "<<nbin<<
"\n";
499 for(
Int_t bin=startBin;bin<endBin;bin++) {
500 if(factor[bin-startBin]==0.0)
continue;
506 thisRegularisationBinning->
AddBinning(
"size",nRegBins);
509 for(
Int_t direction=0;direction<dimension;direction++) {
512 Int_t directionMask=(1<<direction);
513 if(isOptionGiven[7] & directionMask) {
515 cout<<
"skip direction "<<direction<<
"\n";
520 (isOptionGiven[5] & directionMask) ?
522 (direction,isOptionGiven[0] & directionMask,
523 isOptionGiven[2] & directionMask) : 1.0;
524 for(
Int_t bin=startBin;bin<endBin;bin++) {
526 if(factor[bin-startBin]==0.0)
continue;
531 (bin,direction,&iPrev,&distPrev,&iNext,&distNext,
532 isOptionGiven[6] & directionMask);
534 Error(
"RegularizeOneDistribution",
535 "invalid option %s (isPeriodic) for axis %s"
536 " (has underflow or overflow)",axisSteering,
540 Double_t f0 = -factor[bin-startBin];
542 if(isOptionGiven[4] & directionMask) {
544 f0 *= binDistanceNormalisation/distNext;
545 f1 *= binDistanceNormalisation/distNext;
551 if((f0==0.0)||(
f1==0.0))
continue;
555 std::cout<<
"Added Reg: bin "<<bin<<
" "<<f0
556 <<
" next: "<<iNext<<
" "<<
f1<<
"\n";
560 Double_t f0 = factor[iPrev-startBin];
562 Double_t f2 = factor[iNext-startBin];
563 if(isOptionGiven[4] & directionMask) {
564 if((distPrev<0.)&&(distNext>0.)) {
569 f1 *=
f*(1./distPrev+1./distNext);
577 if((f0==0.0)||(
f1==0.0)||(f2==0.0))
continue;
581 std::cout<<
"Added Reg: prev "<<iPrev<<
" "<<f0
582 <<
" bin: "<<bin<<
" "<<
f1
583 <<
" next: "<<iNext<<
" "<<f2<<
"\n";
651(
const char *histogramName,
const char *histogramTitle,
652 const char *distributionName,
const char *axisSteering,
653 Bool_t useAxisBinning)
const
658 (histogramName,useAxisBinning,&binMap,histogramTitle,axisSteering);
683(
const char *histogramName,
const char *histogramTitle,
684 const char *distributionName,
const char *axisSteering,
685 Bool_t useAxisBinning)
const
690 (histogramName,useAxisBinning,&binMap,histogramTitle,axisSteering);
694 if(binMap)
delete [] binMap;
715(
const char *histogramName,
const char *histogramTitle,
716 const char *distributionName,
const char *axisSteering,
722 (histogramName,useAxisBinning,&binMap,histogramTitle,axisSteering);
729 if(binMap)
delete [] binMap;
751(
const char *histogramName,
const char *bgrSource,
const char *histogramTitle,
752 const char *distributionName,
const char *axisSteering,
Bool_t useAxisBinning,
753 Int_t includeError)
const
758 (histogramName,useAxisBinning,&binMap,histogramTitle,axisSteering);
762 if(binMap)
delete [] binMap;
781(
const char *histogramName,
const char *histogramTitle,
782 const char *distributionName,
const char *axisSteering,
783 Bool_t useAxisBinning)
const
788 (histogramName,useAxisBinning,&binMap,histogramTitle,axisSteering);
792 if(binMap)
delete [] binMap;
814(
const char *histogramName,
const char *histogramTitle,
815 const char *distributionName,
const char *axisSteering,
820 (histogramName,useAxisBinning,&binMap,histogramTitle,axisSteering);
824 if(
r->GetDimension()==1) {
825 TString ematName(histogramName);
826 ematName +=
"_inverseEMAT";
829 (ematName,useAxisBinning,&binMap2D,histogramTitle,
831 if(binMap2D)
delete [] binMap2D;
833 Error(
"GetRhoItotal",
834 "can not return inverse of error matrix for this binning");
842 if(binMap)
delete [] binMap;
865(
const char *histogramName,
const char *histogramTitle,
866 const char *distributionName,
const char *axisSteering,
871 (histogramName,useAxisBinning,&binMap,histogramTitle,axisSteering);
875 if(
r->GetDimension()==1) {
876 TString ematName(histogramName);
877 ematName +=
"_inverseEMAT";
880 (ematName,useAxisBinning,&binMap2D,histogramTitle,
882 if(binMap2D)
delete [] binMap2D;
884 Error(
"GetRhoItotal",
885 "can not return inverse of error matrix for this binning");
893 if(binMap)
delete [] binMap;
913(
const char *source,
const char *histogramName,
914 const char *histogramTitle,
const char *distributionName,
915 const char *axisSteering,
Bool_t useAxisBinning) {
919 (histogramName,useAxisBinning,&binMap,histogramTitle,axisSteering);
926 if(binMap)
delete [] binMap;
947(
const char *bgrSource,
const char *histogramName,
948 const char *histogramTitle,
const char *distributionName,
949 const char *axisSteering,
Bool_t useAxisBinning) {
953 (histogramName,useAxisBinning,&binMap,histogramTitle,axisSteering);
960 if(binMap)
delete [] binMap;
980(
const char *histogramName,
const char *histogramTitle,
981 const char *distributionName,
const char *axisSteering,
Bool_t useAxisBinning)
986 (histogramName,useAxisBinning,&binMap,histogramTitle,axisSteering);
993 if(binMap)
delete [] binMap;
1012(
const char *histogramName,
const char *histogramTitle,
1013 const char *distributionName,
const char *axisSteering,
1017 (histogramName,histogramTitle,distributionName,
1018 axisSteering,useAxisBinning);
1020 for(
Int_t i=0;i<=
r->GetNbinsX()+1;i++) {
1024 for(
Int_t j=0;j<=
r->GetNbinsY()+1;j++) {
1030 if((e_i>0.0)&&(e_j>0.0)) {
1031 r->SetBinContent(i,j,e_ij/e_i/e_j);
1033 r->SetBinContent(i,j,0.0);
1037 for(
Int_t i=0;i<=
r->GetNbinsX()+1;i++) {
1038 if(
r->GetBinContent(i,i)>0.0) {
1039 r->SetBinContent(i,i,1.0);
1041 r->SetBinContent(i,i,0.0);
1064(
const char *histogramName,
const char *histogramTitle,
1065 const char *distributionName,
const char *axisSteering,
1071 (histogramName,useAxisBinning,&binMap,histogramTitle,axisSteering);
1075 if(binMap)
delete [] binMap;
1095(
const char *bgrSource,
const char *histogramName,
1096 const char *histogramTitle,
const char *distributionName,
1097 const char *axisSteering,
Bool_t useAxisBinning)
1102 (histogramName,useAxisBinning,&binMap,histogramTitle,axisSteering);
1106 if(binMap)
delete [] binMap;
1126(
const char *histogramName,
const char *histogramTitle,
1127 const char *distributionName,
const char *axisSteering,
1133 (histogramName,useAxisBinning,&binMap,histogramTitle,axisSteering);
1137 if(binMap)
delete [] binMap;
1153(
const char *histogramName,
const char *histogramTitle,
1154 Bool_t useAxisBinning)
const
1158 useAxisBinning,useAxisBinning,histogramTitle);
1178(
const char *histogramName,
const char *histogramTitle,
1179 const char *distributionName,
const char *axisSteering,
1185 (histogramName,useAxisBinning,&binMap,histogramTitle,axisSteering);
1189 if(binMap)
delete [] binMap;
1205(
const char *histogramName,
const char *histogramTitle,
Bool_t useAxisBinning)
1211 "remove invalid scheme of regularisation conditions %d %d",
1218 Warning(
"GetL",
"create flat regularisation conditions scheme");
1222 useAxisBinning,useAxisBinning,histogramTitle);
1243(
const char *histogramName,
const char *histogramTitle)
1251 "remove invalid scheme of regularisation conditions %d %d",
1258 Warning(
"GetLxMinusBias",
"create flat regularisation conditions scheme");
1261 (histogramName,
kFALSE,0,histogramTitle);
1265 if(Ldx_rows[row]<Ldx_rows[row+1]) {
1266 r->SetBinContent(row+1,Ldx_data[Ldx_rows[row]]);
1282(
const char *distributionName)
const
1298(
const char *distributionName)
const
1345 Int_t mode,
const char *distribution,
const char *axisSteering,
1348 typedef std::map<Double_t,Double_t> TauScan_t;
1349 typedef std::map<Double_t,std::pair<Double_t,Double_t> > LCurve_t;
1374 if((tauMin<=0)||(tauMax<=0.0)||(tauMin>=tauMax)) {
1384 Error(
"ScanTau",
"too few input bins, NDF<=0 %d",
GetNdf());
1389 Info(
"ScanTau",
"logtau=-Infinity y=%lf X=%lf Y=%lf",y0,X0,Y0);
1397 Fatal(
"ScanTau",
"problem (missing regularisation?) X=%f Y=%f",
1403 Info(
"ScanTau",
"logtau=%lf y=%lf X=%lf Y=%lf",logTau,
y,
1409 while(((
int)curve.size()<nPoint-1)&&
1417 Info(
"ScanTay",
"logtau=%lf y=%lf X=%lf Y=%lf",logTau,
y,
1429 Info(
"ScanTau",
"logtau=%lf y=%lf X=%lf Y=%lf",logTauMax,
y,
1437 Info(
"ScanTau",
"logtau=%lf y=%lf X=%lf Y=%lf",logTauMin,
y,
1444 while((
int)curve.size()<nPoint-1) {
1450 TauScan_t::const_iterator i0,i1;
1455 for (; i0 != curve.end(); ++i0) {
1456 if((*i0).second<yMin) {
1458 logTauYMin=(*i0).first;
1467 for (++i1; i1 != curve.end(); ++i1) {
1472 +0.25*
TMath::Power(0.5*((*i0).first+(*i1).first)-logTauYMin,2.)/
1473 ((*curve.rbegin()).
first-(*curve.begin()).
first)/nPoint;
1474 if((dist<=0.0)||(dist>distMax)) {
1476 logTau=0.5*((*i0).first+(*i1).first);
1484 Info(
"ScanTau",
"logtau=%lf y=%lf X=%lf Y=%lf",logTau,
y,
1499 for (TauScan_t::const_iterator i = curve.begin(); i != curve.end(); ++i) {
1516 for(
Int_t i=iskip;i<
n-1-iskip;i++) {
1539 xx = m_p_half + discr;
1541 xx = m_p_half - discr;
1545 if((xx>0.0)&&(xx<dx)) {
1559 if((xx>0.0)&&(xx<dx)) {
1583 Info(
"ScanTau",
"Result logtau=%lf y=%lf X=%lf Y=%lf",logTauFin,
y,
1590 Int_t bestChoice=-1;
1591 if(curve.size()>0) {
1595 for (TauScan_t::const_iterator i = curve.begin(); i != curve.end(); ++i) {
1596 if(logTauFin==(*i).first) {
1606 if(distribution)
name+= distribution;
1608 if(axisSteering)
name += axisSteering;
1620 for (LCurve_t::const_iterator i = lcurve.begin(); i != lcurve.end(); ++i) {
1622 x[
n]=(*i).second.first;
1623 y[
n]=(*i).second.second;
1629 (*lCurvePlot)->SetTitle(
"L curve");
1632 *logTauXPlot=
new TSpline3(
"log(chi**2)%log(tau)",logT,
x,
n);
1634 *logTauYPlot=
new TSpline3(
"log(reg.cond)%log(tau)",logT,
y,
n);
1668(
Int_t mode,
const char *distribution,
const char *axisSteering)
1673 if(distribution)
name += distribution;
1675 if(axisSteering)
name += axisSteering;
1693 if(
c>rhoMax) rhoMax=
c;
1710 Fatal(
"GetScanVariable",
"mode %d not implemented",mode);
Class to manage histogram axis.
A TGraph is an object made of two arrays X and Y with npoints each.
TH1 is the base class of all histogram classes in ROOT.
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
virtual Int_t GetNbinsX() const
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Service class for 2-Dim histogram classes.
virtual const Int_t * GetRowIndexArray() const
virtual const Element * GetMatrixArray() const
virtual const char * GetName() const
Returns name of object.
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
virtual void Fatal(const char *method, const char *msgfmt,...) const
Issue fatal error message.
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Class to create third splines to interpolate knots Arbitrary conditions can be introduced for first a...
Double_t Eval(Double_t x) const
Eval this spline at x.
void GetCoeff(Int_t i, Double_t &x, Double_t &y, Double_t &b, Double_t &c, Double_t &d)
Base class for spline implementation containing the Draw/Paint methods.
const char * Data() const
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Binning schemes for use with the unfolding algorithm TUnfoldDensity.
Int_t GetTH1xNumberOfBins(Bool_t originalAxisBinning=kTRUE, const char *axisSteering=0) const
Return the number of histogram bins required when storing this binning in a one-dimensional histogram...
TH1 * CreateHistogram(const char *histogramName, Bool_t originalAxisBinning=kFALSE, Int_t **binMap=0, const char *histogramTitle=0, const char *axisSteering=0) const
Create a THxx histogram capable to hold the bins of this binning node and its children.
Int_t GetDistributionDimension(void) const
query dimension of this node's distribution
TString GetBinName(Int_t iBin) const
Get the name of a bin.
Double_t GetBinSize(Int_t iBin) const
Get N-dimensional bin size.
Int_t GetDistributionNumberOfBins(void) const
number of bins in the distribution possibly including under/overflow
virtual Double_t GetBinFactor(Int_t iBin) const
Return scaling factor for the given global bin number.
Int_t GetEndBin(void) const
last+1 bin of this node (includes children)
static TH2D * CreateHistogramOfMigrations(TUnfoldBinning const *xAxis, TUnfoldBinning const *yAxis, char const *histogramName, Bool_t originalXAxisBinning=kFALSE, Bool_t originalYAxisBinning=kFALSE, char const *histogramTitle=0)
Create a TH2D histogram capable to hold the bins of the two input binning schemes on the x and y axes...
TUnfoldBinning const * GetParentNode(void) const
mother node
void GetBinUnderflowOverflowStatus(Int_t iBin, Int_t *uStatus, Int_t *oStatus) const
Return bit maps indicating underflow and overflow status.
virtual Double_t GetDistributionAverageBinSize(Int_t axis, Bool_t includeUnderflow, Bool_t includeOverflow) const
Get average bin size on the specified axis.
void DecodeAxisSteering(const char *axisSteering, const char *options, Int_t *isOptionGiven) const
Decode axis steering.
TString GetDistributionAxisLabel(Int_t axis) const
get name of an axis
TH2D * CreateErrorMatrixHistogram(const char *histogramName, Bool_t originalAxisBinning, Int_t **binMap=0, const char *histogramTitle=0, const char *axisSteering=0) const
Create a TH2D histogram capable to hold a covariance matrix.
TUnfoldBinning * AddBinning(TUnfoldBinning *binning)
Add a TUnfoldBinning as the last child of this node.
Int_t GetBinNeighbours(Int_t globalBin, Int_t axis, Int_t *prev, Double_t *distPrev, Int_t *next, Double_t *distNext, Bool_t isPeriodic=kFALSE) const
Get neighbour bins along the specified axis.
Int_t GetStartBin(void) const
first bin of this node
TUnfoldBinning const * FindNode(char const *name) const
Traverse the tree and return the first node which matches the given name.
TUnfoldBinning const * GetChildNode(void) const
first daughter node
An algorithm to unfold distributions from detector to truth level.
TH2 * GetRhoIJtotal(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE)
Retrieve correlation coefficients, including all uncertainties.
void RegularizeOneDistribution(const TUnfoldBinning *binning, ERegMode regmode, EDensityMode densityMode, const char *axisSteering)
Regularize the distribution of the given node.
TH1 * GetRhoItotal(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE, TH2 **ematInv=0)
Retrieve global correlation coefficients including all uncertainty sources.
@ kEScanTauRhoAvg
average global correlation coefficient (from TUnfold::GetRhoI())
@ kEScanTauRhoMax
maximum global correlation coefficient (from TUnfold::GetRhoI())
@ kEScanTauRhoSquareAvgSys
average global correlation coefficient squared (from TUnfoldSys::GetRhoItotal())
@ kEScanTauRhoMaxSys
maximum global correlation coefficient (from TUnfoldSys::GetRhoItotal())
@ kEScanTauRhoSquareAvg
average global correlation coefficient squared (from TUnfold::GetRhoI())
@ kEScanTauRhoAvgSys
average global correlation coefficient (from TUnfoldSys::GetRhoItotal())
TH2 * GetL(const char *histogramName, const char *histogramTitle=0, Bool_t useAxisBinning=kTRUE)
Access matrix of regularisation conditions in a new histogram.
Double_t GetDensityFactor(EDensityMode densityMode, Int_t iBin) const
Density correction factor for a given bin.
TH2 * GetEmatrixInput(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE)
Get covariance contribution from the input uncertainties (data statistical uncertainties).
TH1 * GetDeltaSysTau(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE)
Retrieve 1-sigma shift corresponding to the previously specified uncertainty on tau.
virtual ~TUnfoldDensity(void)
TH2 * GetEmatrixSysUncorr(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE)
Retrieve covariance contribution from uncorrelated (statistical) uncertainties of the response matrix...
const TUnfoldBinning * fConstOutputBins
binning scheme for the output (truth level)
virtual TString GetOutputBinName(Int_t iBinX) const
Get bin name of an output bin.
TUnfoldBinning * fRegularisationConditions
binning scheme for the regularisation conditions
TH1 * GetBackground(const char *histogramName, const char *bgrSource=0, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE, Int_t includeError=3) const
Retrieve a background source in a new histogram.
TH2 * GetProbabilityMatrix(const char *histogramName, const char *histogramTitle=0, Bool_t useAxisBinning=kTRUE) const
Get matrix of probabilities in a new histogram.
TH1 * GetDeltaSysBackgroundScale(const char *bgrSource, const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE)
Retrieve systematic 1-sigma shift corresponding to a background scale uncertainty.
TH1 * GetFoldedOutput(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE, Bool_t addBgr=kFALSE) const
Retrieve unfolding result folded back as a new histogram.
TUnfoldBinning * fOwnedOutputBins
pointer to output binning scheme if owned by this class
TUnfoldBinning * fOwnedInputBins
pointer to input binning scheme if owned by this class
void RegularizeDistribution(ERegMode regmode, EDensityMode densityMode, const char *distribution, const char *axisSteering)
Set up regularisation conditions.
TH1 * GetBias(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE) const
Retrieve bias vector as a new histogram.
TH1 * GetLxMinusBias(const char *histogramName, const char *histogramTitle=0)
Get regularisation conditions multiplied by result vector minus bias L(x-biasScale*biasVector).
TH2 * GetEmatrixTotal(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE)
Get covariance matrix including all contributions.
const TUnfoldBinning * GetOutputBinning(const char *distributionName=0) const
Locate a binning node for the unfolded (truth level) quantities.
TH1 * GetDeltaSysSource(const char *source, const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE)
Retrieve a correlated systematic 1-sigma shift.
TH2 * GetEmatrixSysBackgroundUncorr(const char *bgrSource, const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE)
Retrieve covariance contribution from uncorrelated background uncertainties.
TH1 * GetOutput(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE) const
retrieve unfolding result as a new histogram
TH1 * GetInput(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE) const
Retrieve input distribution in a new histogram.
const TUnfoldBinning * fConstInputBins
binning scheme for the input (detector level)
void RegularizeDistributionRecursive(const TUnfoldBinning *binning, ERegMode regmode, EDensityMode densityMode, const char *distribution, const char *axisSteering)
Recursively add regularisation conditions for this node and its children.
TUnfoldDensity(void)
Only for use by root streamer or derived classes.
virtual Int_t ScanTau(Int_t nPoint, Double_t tauMin, Double_t tauMax, TSpline **scanResult, Int_t mode=kEScanTauRhoAvg, const char *distribution=0, const char *projectionMode=0, TGraph **lCurvePlot=0, TSpline **logTauXPlot=0, TSpline **logTauYPlot=0)
Scan a function wrt tau and determine the minimum.
TH1 * GetRhoIstatbgr(const char *histogramName, const char *histogramTitle=0, const char *distributionName=0, const char *projectionMode=0, Bool_t useAxisBinning=kTRUE, TH2 **ematInv=0)
Retrieve global correlation coefficients including input (statistical) and background uncertainties.
const TUnfoldBinning * GetInputBinning(const char *distributionName=0) const
Locate a binning node for the input (measured) quantities.
virtual Double_t GetScanVariable(Int_t mode, const char *distribution, const char *projectionMode)
Calculate the function for ScanTau().
EDensityMode
choice of regularisation scale factors to cinstruct the matrix L
@ kDensityModeUser
scale factors from user function in TUnfoldBinning
@ kDensityModeBinWidthAndUser
scale factors from multidimensional bin width and user function
@ kDensityModeBinWidth
scale factors from multidimensional bin width
An algorithm to unfold distributions from detector to truth level, with background subtraction and pr...
void GetBackground(TH1 *bgr, const char *bgrSource=0, const Int_t *binMap=0, Int_t includeError=3, Bool_t clearHist=kTRUE) const
Get background into a histogram.
Bool_t GetDeltaSysSource(TH1 *hist_delta, const char *source, const Int_t *binMap=0)
Correlated one-sigma shifts correspinding to a given systematic uncertainty.
void GetEmatrixInput(TH2 *ematrix, const Int_t *binMap=0, Bool_t clearEmat=kTRUE)
Covariance matrix contribution from input measurement uncertainties.
Bool_t GetDeltaSysBackgroundScale(TH1 *delta, const char *source, const Int_t *binMap=0)
Correlated one-sigma shifts from background normalisation uncertainty.
Bool_t GetDeltaSysTau(TH1 *delta, const Int_t *binMap=0)
Correlated one-sigma shifts from shifting tau.
void GetRhoItotal(TH1 *rhoi, const Int_t *binMap=0, TH2 *invEmat=0)
Get global correlatiocn coefficients, summing up all contributions.
void GetEmatrixSysUncorr(TH2 *ematrix, const Int_t *binMap=0, Bool_t clearEmat=kTRUE)
Covariance contribution from uncorrelated uncertainties of the response matrix.
void GetEmatrixTotal(TH2 *ematrix, const Int_t *binMap=0)
Get total error matrix, summing up all contributions.
void GetEmatrixSysBackgroundUncorr(TH2 *ematrix, const char *source, const Int_t *binMap=0, Bool_t clearEmat=kTRUE)
Covariance contribution from background uncorrelated uncertainty.
TArrayI fHistToX
mapping of histogram bins to matrix indices
void GetBias(TH1 *bias, const Int_t *binMap=0) const
Get bias vector including bias scale.
virtual Double_t GetLcurveY(void) const
Get value on y-axis of L-curve determined in recent unfolding.
TMatrixDSparse * MultiplyMSparseM(const TMatrixDSparse *a, const TMatrixD *b) const
Multiply sparse matrix and a non-sparse matrix.
virtual Double_t DoUnfold(void)
Core unfolding algorithm.
TMatrixD * fX0
bias vector x0
void GetProbabilityMatrix(TH2 *A, EHistMap histmap) const
Get matrix of probabilities.
virtual TString GetOutputBinName(Int_t iBinX) const
Get bin name of an output bin.
Double_t fBiasScale
scale factor for the bias
Bool_t AddRegularisationCondition(Int_t i0, Double_t f0, Int_t i1=-1, Double_t f1=0., Int_t i2=-1, Double_t f2=0.)
Add a row of regularisation conditions to the matrix L.
void GetL(TH2 *l) const
Get matrix of regularisation conditions.
const TMatrixD * GetX(void) const
vector of the unfolding result
EConstraint
type of extra constraint
virtual Double_t GetLcurveX(void) const
Get value on x-axis of L-curve determined in recent unfolding.
ERegMode
choice of regularisation scheme
@ kRegModeNone
no regularisation, or defined later by RegularizeXXX() methods
@ kRegModeDerivative
regularize the 1st derivative of the output distribution
@ kRegModeSize
regularise the amplitude of the output distribution
@ kRegModeCurvature
regularize the 2nd derivative of the output distribution
void GetInput(TH1 *inputData, const Int_t *binMap=0) const
Input vector of measurements.
Double_t GetRhoI(TH1 *rhoi, const Int_t *binMap=0, TH2 *invEmat=0) const
Get global correlation coefficients, possibly cumulated over several bins.
void GetOutput(TH1 *output, const Int_t *binMap=0) const
Get output distribution, possibly cumulated over several bins.
EHistMap
arrangement of axes for the response matrix (TH2 histogram)
@ kHistMapOutputHoriz
truth level on x-axis of the response matrix
Double_t GetChi2A(void) const
get χ2A contribution determined in recent unfolding
void GetFoldedOutput(TH1 *folded, const Int_t *binMap=0) const
Get unfolding result on detector level.
TMatrixDSparse * fL
regularisation conditions L
Int_t GetNdf(void) const
get number of degrees of freedom determined in recent unfolding
Int_t Finite(Double_t x)
Check if it is finite with a mask in order to be consistent in presence of fast math.
Double_t Sqrt(Double_t x)
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Double_t Log10(Double_t x)
static uint64_t sum(uint64_t i)