created -9.7 11.9683 3
created -9.1 15.9577 4
created -8.5 35.9048 9
created -7.9 11.9683 3
created -7.3 31.9154 8
created -6.7 7.97885 2
created -6.1 7.97885 2
created -5.5 35.9048 9
created -4.9 35.9048 9
created -4.3 19.9471 5
created -3.7 23.9365 6
created -3.1 19.9471 5
created -2.5 35.9048 9
created -1.9 23.9365 6
created -1.3 27.926 7
created -0.7 3.98942 1
created -0.1 15.9577 4
created 0.5 7.97885 2
created 1.1 31.9154 8
created 1.7 35.9048 9
created 2.3 19.9471 5
created 2.9 35.9048 9
created 3.5 3.98942 1
created 4.1 27.926 7
created 4.7 19.9471 5
created 5.3 3.98942 1
created 5.9 23.9365 6
created 6.5 31.9154 8
created 7.1 27.926 7
created 7.7 39.8942 10
created 8.3 27.926 7
created 8.9 31.9154 8
created 9.5 3.98942 1
the total number of created peaks = 33 with sigma = 0.1
the total number of found peaks = 33 with sigma = 0.100002 (+-1.65749e-05)
fit chi^2 = 8.0551e-07
found 7.7 (+-0.000124665) 39.8942 (+-0.0489945) 10.0002 (+-0.000402073)
found -8.5 (+-0.00013091) 35.9045 (+-0.046459) 9.00009 (+-0.000381266)
found -5.5 (+-0.000131149) 35.9047 (+-0.0464701) 9.00014 (+-0.000381356)
found -4.9 (+-0.000131483) 35.9048 (+-0.0464838) 9.00018 (+-0.000381469)
found -2.5 (+-0.000131282) 35.9047 (+-0.0464748) 9.00014 (+-0.000381395)
found 1.7 (+-0.000131421) 35.9048 (+-0.046481) 9.00017 (+-0.000381446)
found 2.9 (+-0.000130687) 35.9044 (+-0.0464506) 9.00008 (+-0.000381197)
found -7.3 (+-0.000138681) 31.915 (+-0.0437958) 8.00006 (+-0.00035941)
found 1.1 (+-0.00013921) 31.9153 (+-0.0438165) 8.00014 (+-0.00035958)
found 6.5 (+-0.00013953) 31.9154 (+-0.0438279) 8.00017 (+-0.000359674)
found 8.9 (+-0.000138866) 31.9152 (+-0.0438038) 8.0001 (+-0.000359476)
found 8.3 (+-0.000149723) 27.9263 (+-0.041017) 7.00023 (+-0.000336606)
found -1.3 (+-0.00014848) 27.9258 (+-0.0409754) 7.00009 (+-0.000336264)
found 4.1 (+-0.00014838) 27.9257 (+-0.0409719) 7.00008 (+-0.000336236)
found 7.1 (+-0.000149723) 27.9263 (+-0.041017) 7.00023 (+-0.000336606)
found -1.9 (+-0.000161771) 23.9369 (+-0.037976) 6.00021 (+-0.00031165)
found -3.7 (+-0.000161149) 23.9366 (+-0.0379571) 6.00013 (+-0.000311495)
found 5.9 (+-0.000160718) 23.9365 (+-0.0379461) 6.00012 (+-0.000311405)
found -4.3 (+-0.000177389) 19.9475 (+-0.0346718) 5.00019 (+-0.000284534)
found 2.3 (+-0.000177726) 19.9477 (+-0.0346806) 5.00023 (+-0.000284606)
found -3.1 (+-0.000177389) 19.9475 (+-0.0346718) 5.00019 (+-0.000284534)
found 4.7 (+-0.000176166) 19.9471 (+-0.0346424) 5.0001 (+-0.000284292)
found -9.1 (+-0.000198181) 15.958 (+-0.0310089) 4.00016 (+-0.000254475)
found -0.0999995 (+-0.000196292) 15.9575 (+-0.0309714) 4.00004 (+-0.000254167)
found -7.9 (+-0.00023057) 11.9689 (+-0.0268817) 3.00022 (+-0.000220605)
found -9.7 (+-0.000227967) 11.9682 (+-0.0268388) 3.00005 (+-0.000220253)
found -6.70001 (+-0.000281538) 7.97921 (+-0.0219404) 2.00013 (+-0.000180054)
found 0.500004 (+-0.00028245) 7.97931 (+-0.0219498) 2.00016 (+-0.000180131)
found -6.09999 (+-0.000281756) 7.97927 (+-0.021943) 2.00014 (+-0.000180075)
found 3.5 (+-0.00040513) 3.99018 (+-0.0155536) 1.00021 (+-0.00012764)
found -0.700007 (+-0.00040268) 3.98992 (+-0.0155392) 1.00014 (+-0.000127522)
found 9.49999 (+-0.000396142) 3.98982 (+-0.01551) 1.00012 (+-0.000127283)
found 5.3 (+-0.000402821) 3.98992 (+-0.0155398) 1.00014 (+-0.000127528)
#include <iostream>
TH1F *FitAwmi_Create_Spectrum(
void) {
npeaks++;
std::cout << "created "
<< area << std::endl;
}
std::cout << "the total number of created peaks = " << npeaks
<<
" with sigma = " <<
sigma << std::endl;
}
void FitAwmi(void) {
TH1F *
h = FitAwmi_Create_Spectrum();
if (!cFit) cFit =
new TCanvas(
"cFit",
"cFit", 10, 10, 1000, 700);
for (i = 0; i < nbins; i++) source[i] =
h->GetBinContent(i + 1);
for(i = 0; i < nfound; i++) FixAmp[i] = FixPos[i] =
kFALSE;
for (i = 0; i < nfound; i++) {
bin = 1 +
Int_t(Pos[i] + 0.5);
Amp[i] =
h->GetBinContent(bin);
}
delete gROOT->FindObject(
"d");
TH1F *
d =
new TH1F(*
h);
d->SetNameTitle(
"d",
"");
d->Reset(
"M");
for (i = 0; i < nbins; i++)
d->SetBinContent(i + 1, source[i]);
sigma *= dx; sigmaErr *= dx;
std::cout << "the total number of found peaks = " << nfound
<<
" with sigma = " <<
sigma <<
" (+-" << sigmaErr <<
")"
<< std::endl;
std::cout <<
"fit chi^2 = " << pfit->
GetChi() << std::endl;
for (i = 0; i < nfound; i++) {
bin = 1 +
Int_t(Positions[i] + 0.5);
Pos[i] =
d->GetBinCenter(bin);
Amp[i] =
d->GetBinContent(bin);
Positions[i] =
x1 + Positions[i] * dx;
PositionsErrors[i] *= dx;
Areas[i] *= dx;
AreasErrors[i] *= dx;
std::cout << "found "
<< Positions[i] << " (+-" << PositionsErrors[i] << ") "
<< Amplitudes[i] << " (+-" << AmplitudesErrors[i] << ") "
<< Areas[i] << " (+-" << AreasErrors[i] << ")"
<< std::endl;
}
d->SetLineColor(
kRed);
d->SetLineWidth(1);
if (pm) {
h->GetListOfFunctions()->Remove(pm);
delete pm;
}
h->GetListOfFunctions()->Add(pm);
delete pfit;
delete [] Amp;
delete [] FixAmp;
delete [] FixPos;
delete s;
delete [] source;
return;
}
Option_t Option_t TPoint TPoint const char x1
R__EXTERN TRandom * gRandom
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
virtual void SetMarkerSize(Size_t msize=1)
Set the marker size.
void Clear(Option_t *option="") override
Remove all primitives from the canvas.
1-D histogram with a float per channel (see TH1 documentation)}
TObject * FindObject(const char *name) const override
Search object named name in the list of functions.
A PolyMarker is defined by an array on N points in a 2-D space.
virtual void SetSeed(ULong_t seed=0)
Set the random generator seed.
virtual Double_t Uniform(Double_t x1=1)
Returns a uniform deviate on the interval (0, x1).
Advanced 1-dimensional spectra fitting functions.
void SetPeakParameters(Double_t sigma, Bool_t fixSigma, const Double_t *positionInit, const Bool_t *fixPosition, const Double_t *ampInit, const Bool_t *fixAmp)
This function sets the following fitting parameters of peaks:
Double_t * GetAmplitudesErrors() const
void FitAwmi(Double_t *source)
This function fits the source spectrum.
Double_t * GetAreasErrors() const
void GetSigma(Double_t &sigma, Double_t &sigmaErr)
This function gets the sigma parameter and its error.
Double_t * GetAreas() const
Double_t * GetAmplitudes() const
void SetFitParameters(Int_t xmin, Int_t xmax, Int_t numberIterations, Double_t alpha, Int_t statisticType, Int_t alphaOptim, Int_t power, Int_t fitTaylor)
This function sets the following fitting parameters:
Double_t * GetPositionsErrors() const
Double_t * GetPositions() const
Advanced Spectra Processing.
Int_t SearchHighRes(Double_t *source, Double_t *destVector, Int_t ssize, Double_t sigma, Double_t threshold, bool backgroundRemove, Int_t deconIterations, bool markov, Int_t averWindow)
One-dimensional high-resolution peak search function.
Double_t * GetPositionX() const
constexpr Double_t Sqrt2()
Double_t Sqrt(Double_t x)
Returns the square root of x.
constexpr Double_t TwoPi()
#define dest(otri, vertexptr)