12#ifndef ROOT_TMultiLayerPerceptron
13#define ROOT_TMultiLayerPerceptron
35 const char* training =
"Entry$%2==0",
36 const char* test =
"",
38 const char* extF =
"",
const char* extD =
"");
40 const char* weight,
TTree*
data =
nullptr,
41 const char* training =
"Entry$%2==0",
42 const char* test =
"",
44 const char* extF =
"",
const char* extD =
"");
49 const char* extF =
"",
const char* extD =
"");
55 const char* extF =
"",
const char* extD =
"");
#define ClassDefOverride(name, id)
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
<div class="legacybox"><h2>Legacy Code</h2> TEventList is a legacy interface: there will be no bug fi...
This utility class contains a set of tests useful when developing a neural network.
This class describes a neural network.
TTreeFormula * fEventWeight
! formula representing the event weight
void BuildOneHiddenLayer(const TString &sNumNodes, Int_t &layer, Int_t &prevStart, Int_t &prevStop, Bool_t lastLayer)
Builds a hidden layer, updates the number of layers.
void SteepestDir(Double_t *)
Sets the search direction to steepest descent.
void BuildNetwork()
Instantiates the network from the description.
TObjArray fNetwork
Collection of all the neurons in the network.
Double_t Evaluate(Int_t index, Double_t *params) const
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons.
TEventList * fTest
! EventList defining the events in the test dataset
bool GetBFGSH(TMatrixD &, TMatrixD &, TMatrixD &)
Computes the hessian matrix using the BFGS update algorithm.
Double_t GetDelta() const
void BuildHiddenLayers(TString &)
Builds hidden layers.
void BuildFirstLayer(TString &)
Instantiates the neurons in input Inputs are normalised and the type is set to kOff (simple forward o...
void SetTau(Double_t tau)
Sets Tau - used in line search (look at the constructor for the complete description of learning meth...
TMultiLayerPerceptron()
Default constructor.
Double_t GetSumSquareError() const
Error on the output for a given event.
void ConjugateGradientsDir(Double_t *, Double_t)
Sets the search direction to conjugate gradient direction beta should be:
Double_t fTau
! Tau - used in line search - Default=3.
TTree * fData
! pointer to the tree used as datasource
Double_t Result(Int_t event, Int_t index=0) const
Computes the output for a given event.
void SetGammaDelta(TMatrixD &, TMatrixD &, Double_t *)
Sets the gamma and delta vectors Gamma is computed here, so ComputeDEDw cannot have been called bef...
TString GetStructure() const
TEventList * fTraining
! EventList defining the events in the training dataset
TString fStructure
String containing the network structure.
Int_t fReset
! number of epochs between two resets of the search direction to the steepest descent - Default=50
Bool_t LoadWeights(Option_t *filename="")
Loads the weights from a text file conforming to the format defined by DumpWeights.
void MLP_Batch(Double_t *)
One step for the batch (stochastic) method.
TNeuron::ENeuronType fOutType
Type of output neurons.
Double_t fCurrentTreeWeight
! weight of the current tree in a chain
ELearningMethod fLearningMethod
! The Learning Method
Double_t fLastAlpha
! internal parameter used in line search
Int_t fCurrentTree
! index of the current tree in a chain
Double_t GetEtaDecay() const
void Export(Option_t *filename="NNfunction", Option_t *language="C++") const
Exports the NN as a function for any non-ROOT-dependant code Supported languages are: only C++ ,...
Double_t GetEpsilon() const
Double_t fEpsilon
! Epsilon - used in stochastic minimisation - Default=0.
void Train(Int_t nEpoch, Option_t *option="text", Double_t minE=0)
Train the network.
TNeuron::ENeuronType GetType() const
void BFGSDir(TMatrixD &, Double_t *)
Computes the direction for the BFGS algorithm as the product between the Hessian estimate (bfgsh) and...
void SetTestDataSet(TEventList *test)
Sets the Test dataset.
Bool_t fTrainingOwner
! internal flag whether one has to delete fTraining or not
void SetLearningMethod(TMultiLayerPerceptron::ELearningMethod method)
Sets the learning method.
void SetTrainingDataSet(TEventList *train)
Sets the Training dataset.
TMultiLayerPerceptron & operator=(const TMultiLayerPerceptron &)
void BuildLastLayer(TString &, Int_t)
Builds the output layer Neurons are linear combinations of input, by default.
Double_t fDelta
! Delta - used in stochastic minimisation - Default=0.
TTreeFormulaManager * fManager
! TTreeFormulaManager for the weight and neurons
void Randomize() const
Randomize the weights.
Bool_t LineSearch(Double_t *, Double_t *)
Search along the line defined by direction.
void ExpandStructure()
Expand the structure of the first layer.
Double_t fEta
! Eta - used in stochastic minimisation - Default=0.1
Double_t GetError(Int_t event) const
Error on the output for a given event.
TMultiLayerPerceptron::ELearningMethod GetLearningMethod() const
Double_t fEtaDecay
! EtaDecay - Eta *= EtaDecay at each epoch - Default=1.
void SetEtaDecay(Double_t ed)
Sets EtaDecay - Eta *= EtaDecay at each epoch (look at the constructor for the complete description o...
void AttachData()
Connects the TTree to Neurons in input and output layers.
TMultiLayerPerceptron(const TMultiLayerPerceptron &)
void SetData(TTree *)
Set the data source.
void SetEventWeight(const char *)
Set the event weight.
Bool_t DumpWeights(Option_t *filename="-") const
Dumps the weights to a text file.
TString fWeight
String containing the event weight.
void SetDelta(Double_t delta)
Sets Delta - used in stochastic minimisation (look at the constructor for the complete description of...
~TMultiLayerPerceptron() override
Destructor.
Double_t GetCrossEntropy() const
Cross entropy error for a softmax output neuron, for a given event.
void SetReset(Int_t reset)
Sets number of epochs between two resets of the search direction to the steepest descent.
Bool_t fTestOwner
! internal flag whether one has to delete fTest or not
void Shuffle(Int_t *, Int_t) const
Shuffle the Int_t index[n] in input.
Double_t DerivDir(Double_t *)
scalar product between gradient and direction = derivative along direction
void MLP_Stochastic(Double_t *)
One step for the stochastic method buffer should contain the previous dw vector and will be updated.
TObjArray fSynapses
Collection of all the synapses in the network.
void MLP_Line(Double_t *, Double_t *, Double_t)
Sets the weights to a point along a line Weights are set to [origin + (dist * dir)].
TNeuron::ENeuronType fType
Type of hidden neurons.
TObjArray fLastLayer
Collection of the output neurons; subset of fNetwork.
TString fextD
String containing the derivative name.
void ComputeDEDw() const
Compute the DEDw = sum on all training events of dedw for each weight normalized by the number of eve...
Double_t GetCrossEntropyBinary() const
Cross entropy error for sigmoid output neurons, for a given event.
void DrawResult(Int_t index=0, Option_t *option="test") const
Draws the neural net output It produces an histogram with the output for the two datasets.
void SetEta(Double_t eta)
Sets Eta - used in stochastic minimisation (look at the constructor for the complete description of l...
TObjArray fFirstLayer
Collection of the input neurons; subset of fNetwork.
void GetEntry(Int_t) const
Load an entry into the network.
void SetEpsilon(Double_t eps)
Sets Epsilon - used in stochastic minimisation (look at the constructor for the complete description ...
TString fextF
String containing the function name.
Mother of all ROOT objects.
A TTree represents a columnar dataset.