Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
hf001_example.C File Reference

Detailed Description

A ROOT script demonstrating an example of writing and fitting a HistFactory model using C++ only.

#include <TFile.h>
#include <TROOT.h>
{
std::string InputFile = "./data/example.root";
// in case the file is not found
bool bfile = gSystem->AccessPathName(InputFile.c_str());
if (bfile) {
std::cout << "Input file is not found - run prepareHistFactory script " << std::endl;
gROOT->ProcessLine(".! prepareHistFactory .");
bfile = gSystem->AccessPathName(InputFile.c_str());
if (bfile) {
std::cout << "Still no " << InputFile << ", giving up.\n";
exit(1);
}
}
// Create the measurement
RooStats::HistFactory::Measurement meas("meas", "meas");
meas.SetOutputFilePrefix("./results/example_UsingC");
meas.SetPOI("SigXsecOverSM");
meas.AddConstantParam("alpha_syst1");
meas.AddConstantParam("Lumi");
meas.SetLumi(1.0);
meas.SetLumiRelErr(0.10);
meas.SetBinHigh(2);
// Create a channel
chan.SetData("data", InputFile);
chan.SetStatErrorConfig(0.05, "Poisson");
// Now, create some samples
// Create the signal sample
RooStats::HistFactory::Sample signal("signal", "signal", InputFile);
signal.AddOverallSys("syst1", 0.95, 1.05);
signal.AddNormFactor("SigXsecOverSM", 1, 0, 3);
chan.AddSample(signal);
// Background 1
RooStats::HistFactory::Sample background1("background1", "background1", InputFile);
background1.ActivateStatError("background1_statUncert", InputFile);
background1.AddOverallSys("syst2", 0.95, 1.05);
chan.AddSample(background1);
// Background 1
RooStats::HistFactory::Sample background2("background2", "background2", InputFile);
background2.ActivateStatError();
background2.AddOverallSys("syst3", 0.95, 1.05);
chan.AddSample(background2);
// Done with this channel
// Add it to the measurement:
meas.AddChannel(chan);
// Collect the histograms from their files,
// print some output,
meas.CollectHistograms();
meas.PrintTree();
// One can print XML code to an output directory:
// meas.PrintXML( "xmlFromCCode", meas.GetOutputFilePrefix() );
// Now, do the measurement
std::unique_ptr<RooWorkspace> ws{MakeModelAndMeasurementFast(meas)};
RooStats::ModelConfig *modelConfig = static_cast<RooStats::ModelConfig *>(ws->obj("ModelConfig"));
// Get probability density function and parameters list from model
RooAbsPdf *pdf = modelConfig->GetPdf();
RooArgSet globalObservables{*modelConfig->GetGlobalObservables()};
// Perform the fit using Minos to get the correct asymmetric uncertainties
using namespace RooFit;
std::unique_ptr<RooFitResult> result{
pdf->fitTo(*ws->data("obsData"), Save(), PrintLevel(-1), GlobalObservables(globalObservables), Minos(true))};
// Getting list of Parameters of Interest and getting first from them
RooRealVar *poi = static_cast<RooRealVar *>(modelConfig->GetParametersOfInterest()->first());
std::unique_ptr<RooAbsReal> nll{pdf->createNLL(*ws->data("obsData"))};
std::unique_ptr<RooAbsReal> profile{nll->createProfile(*poi)};
// frame for future plot
RooPlot *frame = poi->frame();
frame->SetTitle("");
frame->GetYaxis()->SetTitle("-log likelihood");
frame->GetXaxis()->SetTitle(poi->GetTitle());
TCanvas *profileLikelihoodCanvas = new TCanvas{"combined", "", 800, 600};
double xmin = poi->getMin();
double xmax = poi->getMax();
TLine *line = new TLine(xmin, .5, xmax, .5);
TLine *line90 = new TLine(xmin, 2.71 / 2., xmax, 2.71 / 2.);
line90->SetLineColor(kGreen);
TLine *line95 = new TLine(xmin, 3.84 / 2., xmax, 3.84 / 2.);
line95->SetLineColor(kGreen);
frame->addObject(line);
frame->addObject(line90);
frame->addObject(line95);
nll->plotOn(frame, ShiftToZero(), LineColor(kRed), LineStyle(kDashed));
profile->plotOn(frame);
frame->SetMinimum(0);
frame->SetMaximum(2.);
frame->Draw();
// Print fit results to console in verbose mode to see asymmetric uncertainties
result->Print("v");
}
@ kRed
Definition Rtypes.h:66
@ kGreen
Definition Rtypes.h:66
@ kDashed
Definition TAttLine.h:48
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
float xmin
float xmax
#define gROOT
Definition TROOT.h:406
R__EXTERN TSystem * gSystem
Definition TSystem.h:561
RooAbsArg * first() const
Abstract interface for all probability density functions.
Definition RooAbsPdf.h:40
RooFit::OwningPtr< RooAbsReal > createNLL(RooAbsData &data, CmdArgs_t const &... cmdArgs)
Construct representation of -log(L) of PDF with given dataset.
Definition RooAbsPdf.h:163
RooFit::OwningPtr< RooFitResult > fitTo(RooAbsData &data, CmdArgs_t const &... cmdArgs)
Fit PDF to given dataset.
Definition RooAbsPdf.h:157
virtual double getMax(const char *name=nullptr) const
Get maximum of currently defined range.
virtual double getMin(const char *name=nullptr) const
Get minimum of currently defined range.
RooPlot * frame(const RooCmdArg &arg1, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={}) const
Create a new RooPlot on the heap with a drawing frame initialized for this object,...
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:24
Plot frame and a container for graphics objects within that frame.
Definition RooPlot.h:45
void SetTitle(const char *name) override
Set the title of the RooPlot to 'title'.
Definition RooPlot.cxx:1243
void addObject(TObject *obj, Option_t *drawOptions="", bool invisible=false)
Add a generic object to this plot.
Definition RooPlot.cxx:366
TAxis * GetYaxis() const
Definition RooPlot.cxx:1264
void Draw(Option_t *options=nullptr) override
Draw this plot and all of the elements it contains.
Definition RooPlot.cxx:637
TAxis * GetXaxis() const
Definition RooPlot.cxx:1262
SetMaximum(ymax)
SetMinimum(ymin)
Variable that can be changed from the outside.
Definition RooRealVar.h:37
This class encapsulates all information for the statistical interpretation of one experiment.
Definition Channel.h:30
The RooStats::HistFactory::Measurement class can be used to construct a model by combining multiple R...
Definition Measurement.h:33
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
Definition ModelConfig.h:35
const RooArgSet * GetGlobalObservables() const
get RooArgSet for global observables (return nullptr if not existing)
const RooArgSet * GetParametersOfInterest() const
get RooArgSet containing the parameter of interest (return nullptr if not existing)
RooAbsPdf * GetPdf() const
get model PDF (return nullptr if pdf has not been specified or does not exist)
virtual void SetLineColor(Color_t lcolor)
Set the line color.
Definition TAttLine.h:40
The Canvas class.
Definition TCanvas.h:23
Use the TLine constructor to create a simple line.
Definition TLine.h:22
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition TNamed.cxx:164
const char * GetTitle() const override
Returns title of object.
Definition TNamed.h:48
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
Definition TSystem.cxx:1296
TLine * line
RooCmdArg Save(bool flag=true)
RooCmdArg GlobalObservables(Args_t &&... argsOrArgSet)
RooCmdArg Minos(bool flag=true)
RooCmdArg PrintLevel(Int_t code)
RooCmdArg ShiftToZero()
RooCmdArg LineColor(Color_t color)
RooCmdArg LineStyle(Style_t style)
double nll(double pdf, double weight, int binnedL, int doBinOffset)
Definition MathFuncs.h:358
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Definition JSONIO.h:26
RooFit::OwningPtr< RooWorkspace > MakeModelAndMeasurementFast(RooStats::HistFactory::Measurement &measurement, HistoToWorkspaceFactoryFast::Configuration const &cfg={})
[#2] PROGRESS:HistFactory -- Getting histogram ./data/example.root:/data
[#2] INFO:HistFactory -- Opened input file: ./data/example.root:
[#2] PROGRESS:HistFactory -- Getting histogram ./data/example.root:/signal
[#2] PROGRESS:HistFactory -- Getting histogram ./data/example.root:/background1
[#2] PROGRESS:HistFactory -- Getting histogram ./data/example.root:/background1_statUncert
[#2] PROGRESS:HistFactory -- Getting histogram ./data/example.root:/background2
Measurement Name: meas OutputFilePrefix: ./results/example_UsingC POI: SigXsecOverSM Lumi: 1 LumiRelErr: 0.1 BinLow: 0 BinHigh: 2 ExportOnly: 1
Constant Params: alpha_syst1 Lumi
Channels:
Channel Name: channel1 InputFile:
Data:
InputFile: ./data/example.root HistoName: data HistoPath: HistoAddress: 0x55d9c6b772c0
statErrorConfig:
RelErrorThreshold: 0.05 ConstraintType: Poisson
Samples:
Name: signal Channel: channel1 NormalizeByTheory: True StatErrorActivate: False
InputFile: ./data/example.root HistName: signal HistoPath: HistoAddress: 0x55d9c5046f60
Name: background1 Channel: channel1 NormalizeByTheory: True StatErrorActivate: False
InputFile: ./data/example.root HistName: background1 HistoPath: HistoAddress: 0x55d9c6adcaf0
StatError Activate: 1 InputFile: ./data/example.root HistName: background1_statUncert HistoPath: HistoAddress: 0x55d9c867f060
Name: background2 Channel: channel1 NormalizeByTheory: True StatErrorActivate: False
InputFile: ./data/example.root HistName: background2 HistoPath: HistoAddress: 0x55d9c6b78b40
StatError Activate: 1 InputFile: ./data/example.root HistName: HistoPath: HistoAddress: 0
End of Channel channel1
[#2] INFO:HistFactory -- End Measurement: meas
[#2] INFO:HistFactory -- Making Model and Measurements (Fast) for measurement: meas
[#2] INFO:HistFactory -- using lumi = 1 and lumiError = 0.1 including bins between 0 and 2
[#2] INFO:HistFactory -- fixing the following parameters:
alpha_syst1
Lumi
[#2] INFO:HistFactory -- Creating the output file: ./results/example_UsingC_meas.root
[#2] INFO:HistFactory -- Creating the HistoToWorkspaceFactoryFast factory
[#2] INFO:HistFactory -- Setting preprocess functions
[#2] PROGRESS:HistFactory -- Starting to process channel: channel1
[#2] PROGRESS:HistFactory --
-----------------------------------------
Starting to process 'channel1' channel with 1 observables
-----------------------------------------
[#2] INFO:HistFactory -- making normFactor: SigXsecOverSM
[#2] INFO:HistFactory -- processing hist signal
[#2] INFO:HistFactory -- signal_channel1 has no variation histograms
[#2] INFO:HistFactory -- processing hist background1
[#2] INFO:HistFactory -- background1_channel1 has no variation histograms
[#2] INFO:HistFactory -- Sample: background1 to be included in Stat Error for channel channel1
[#2] INFO:HistFactory -- Using external histogram for Stat Errors for Channel: channel1 Sample: background1 Error Histogram: background1_statUncert
[#2] INFO:HistFactory -- processing hist background2
[#2] INFO:HistFactory -- background2_channel1 has no variation histograms
[#2] INFO:HistFactory -- Sample: background2 to be included in Stat Error for channel channel1
[#2] INFO:HistFactory -- Making Statistical Uncertainty Hist for Channel: channel1 Sample: background2
[#2] INFO:HistFactory -- Making Total Uncertainty for bin 1 Error = 5 CentralVal = 100 RelativeError = 0.05
[#2] INFO:HistFactory -- Making Total Uncertainty for bin 2 Error = 10 CentralVal = 100 RelativeError = 0.1
[#2] INFO:HistFactory -- About to create Constraint Terms from: mc_stat_channel1 params: (gamma_stat_channel1_bin_0,gamma_stat_channel1_bin_1)
[#2] INFO:HistFactory -- Using Poisson StatErrors in channel: channel1
[#2] INFO:HistFactory -- Creating constraint for: gamma_stat_channel1_bin_0. Type of constraint: 1
[#2] INFO:HistFactory -- Creating constraint for: gamma_stat_channel1_bin_1. Type of constraint: 1
[#2] PROGRESS:HistFactory --
-----------------------------------------
import model into workspace
-----------------------------------------
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
RooDataSet::AsimovData[obs_x_channel1,weight:binWeightAsimov] = 2 entries (230 weighted)
RooWorkspace(channel1) channel1 workspace contents
variables
---------
(Lumi,SigXsecOverSM,alpha_syst1,alpha_syst2,alpha_syst3,gamma_stat_channel1_bin_0,gamma_stat_channel1_bin_1,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1,nominalLumi,obs_x_channel1)
p.d.f.s
-------
RooGaussian::alpha_syst1Constraint[ x=alpha_syst1 mean=nom_alpha_syst1 sigma=1 ] = 1
RooGaussian::alpha_syst2Constraint[ x=alpha_syst2 mean=nom_alpha_syst2 sigma=1 ] = 1
RooGaussian::alpha_syst3Constraint[ x=alpha_syst3 mean=nom_alpha_syst3 sigma=1 ] = 1
RooRealSumPdf::channel1_model[ signal_channel1_scaleFactors * signal_channel1_shapes + background1_channel1_scaleFactors * background1_channel1_shapes + background2_channel1_scaleFactors * background2_channel1_shapes ] = 220/230
RooPoisson::gamma_stat_channel1_bin_0_constraint[ x=nom_gamma_stat_channel1_bin_0 mean=gamma_stat_channel1_bin_0_poisMean ] = 0.019943
RooPoisson::gamma_stat_channel1_bin_1_constraint[ x=nom_gamma_stat_channel1_bin_1 mean=gamma_stat_channel1_bin_1_poisMean ] = 0.039861
RooGaussian::lumiConstraint[ x=Lumi mean=nominalLumi sigma=0.1 ] = 1
RooProdPdf::model_channel1[ lumiConstraint * alpha_syst1Constraint * alpha_syst2Constraint * alpha_syst3Constraint * gamma_stat_channel1_bin_0_constraint * gamma_stat_channel1_bin_1_constraint * channel1_model(obs_x_channel1) ] = 0.174888
functions
--------
RooHistFunc::background1_channel1_Hist_alphanominal[ depList=(obs_x_channel1) ] = 0
RooStats::HistFactory::FlexibleInterpVar::background1_channel1_epsilon[ paramList=(alpha_syst2) ] = 1
RooProduct::background1_channel1_scaleFactors[ background1_channel1_epsilon * Lumi ] = 1
RooProduct::background1_channel1_shapes[ background1_channel1_Hist_alphanominal * mc_stat_channel1 * channel1_model_binWidth ] = 0
RooHistFunc::background2_channel1_Hist_alphanominal[ depList=(obs_x_channel1) ] = 100
RooStats::HistFactory::FlexibleInterpVar::background2_channel1_epsilon[ paramList=(alpha_syst3) ] = 1
RooProduct::background2_channel1_scaleFactors[ background2_channel1_epsilon * Lumi ] = 1
RooProduct::background2_channel1_shapes[ background2_channel1_Hist_alphanominal * mc_stat_channel1 * channel1_model_binWidth ] = 200
RooBinWidthFunction::channel1_model_binWidth[ HistFuncForBinWidth=signal_channel1_Hist_alphanominal ] = 2
RooProduct::gamma_stat_channel1_bin_0_poisMean[ gamma_stat_channel1_bin_0 * gamma_stat_channel1_bin_0_tau ] = 400
RooProduct::gamma_stat_channel1_bin_1_poisMean[ gamma_stat_channel1_bin_1 * gamma_stat_channel1_bin_1_tau ] = 100
ParamHistFunc::mc_stat_channel1[ ] = 1
RooHistFunc::signal_channel1_Hist_alphanominal[ depList=(obs_x_channel1) ] = 10
RooStats::HistFactory::FlexibleInterpVar::signal_channel1_epsilon[ paramList=(alpha_syst1) ] = 1
RooProduct::signal_channel1_scaleFactors[ signal_channel1_epsilon * SigXsecOverSM * Lumi ] = 1
RooProduct::signal_channel1_shapes[ signal_channel1_Hist_alphanominal * channel1_model_binWidth ] = 20
datasets
--------
RooDataSet::asimovData(obs_x_channel1)
RooDataSet::obsData(obs_x_channel1)
embedded datasets (in pdfs and functions)
-----------------------------------------
RooDataHist::signal_channel1_Hist_alphanominalDHist(obs_x_channel1)
RooDataHist::background1_channel1_Hist_alphanominalDHist(obs_x_channel1)
RooDataHist::background2_channel1_Hist_alphanominalDHist(obs_x_channel1)
named sets
----------
ModelConfig_GlobalObservables:(nominalLumi,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
ModelConfig_Observables:(obs_x_channel1)
constraintTerms:(lumiConstraint,alpha_syst1Constraint,alpha_syst2Constraint,alpha_syst3Constraint,gamma_stat_channel1_bin_0_constraint,gamma_stat_channel1_bin_1_constraint)
globalObservables:(nominalLumi,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
likelihoodTerms:(channel1_model)
observables:(obs_x_channel1)
observablesSet:(obs_x_channel1)
generic objects
---------------
RooStats::ModelConfig::ModelConfig
[#2] INFO:HistFactory -- Setting Parameter(s) of Interest as: SigXsecOverSM
=== Using the following for ModelConfig ===
Observables: RooArgSet:: = (obs_x_channel1)
Parameters of Interest: RooArgSet:: = (SigXsecOverSM)
Nuisance Parameters: RooArgSet:: = (alpha_syst2,alpha_syst3,gamma_stat_channel1_bin_0,gamma_stat_channel1_bin_1)
Global Observables: RooArgSet:: = (nominalLumi,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
PDF: RooProdPdf::model_channel1[ lumiConstraint * alpha_syst1Constraint * alpha_syst2Constraint * alpha_syst3Constraint * gamma_stat_channel1_bin_0_constraint * gamma_stat_channel1_bin_1_constraint * channel1_model(obs_x_channel1) ] = 0.174888
[#2] INFO:HistFactory -- Opening File to hold channel: ./results/example_UsingC_channel1_meas_model.root
[#2] INFO:HistFactory -- About to write channel measurement to file
[#2] PROGRESS:HistFactory -- Writing sample: signal
[#2] PROGRESS:HistFactory -- Writing sample: background1
[#2] PROGRESS:HistFactory -- Writing sample: background2
[#2] PROGRESS:HistFactory -- Saved all histograms
[#2] PROGRESS:HistFactory -- Saved Measurement
[#2] PROGRESS:HistFactory -- Successfully wrote channel to file
[#2] INFO:HistFactory -- full list of observables:
(obs_x_channel1)
[#2] PROGRESS:HistFactory --
-----------------------------------------
Entering combination
-----------------------------------------
RooWorkspace(combined) combined contents
variables
---------
(channelCat,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1,nominalLumi,obs_x_channel1)
datasets
--------
RooDataSet::obsData(obs_x_channel1,channelCat)
named sets
----------
ModelConfig_GlobalObservables:(nominalLumi,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
ModelConfig_Observables:(obs_x_channel1,channelCat)
globalObservables:(nominalLumi,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
observables:(obs_x_channel1,channelCat)
[#2] PROGRESS:HistFactory --
-----------------------------------------
Importing combined model
-----------------------------------------
[#2] INFO:HistFactory -- setting alpha_syst1 constant
[#2] INFO:HistFactory -- setting Lumi constant
[#2] PROGRESS:HistFactory --
-----------------------------------------
create toy data
-----------------------------------------
[#1] INFO:NumericIntegration -- RooRealIntegral::init(channel1_model_Int[obs_x_channel1]) using numeric integrator RooBinIntegrator to calculate Int(obs_x_channel1)
RooDataSet::AsimovData0[obs_x_channel1,channelCat,weight:binWeightAsimov] = 2 entries (230 weighted)
[#2] INFO:HistFactory -- Setting Parameter(s) of Interest as: SigXsecOverSM
=== Using the following for ModelConfig ===
Observables: RooArgSet:: = (obs_x_channel1,channelCat)
Parameters of Interest: RooArgSet:: = (SigXsecOverSM)
Nuisance Parameters: RooArgSet:: = (alpha_syst2,alpha_syst3,gamma_stat_channel1_bin_0,gamma_stat_channel1_bin_1)
Global Observables: RooArgSet:: = (nominalLumi,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
PDF: RooSimultaneous::simPdf[ indexCat=channelCat channel1=model_channel1 ] = 0.190787
[#2] PROGRESS:HistFactory -- Writing combined workspace to file: ./results/example_UsingC_combined_meas_model.root
[#2] PROGRESS:HistFactory -- Writing combined measurement to file: ./results/example_UsingC_combined_meas_model.root
[#2] PROGRESS:HistFactory -- Writing sample: signal
[#2] PROGRESS:HistFactory -- Writing sample: background1
[#2] PROGRESS:HistFactory -- Writing sample: background2
[#2] PROGRESS:HistFactory -- Saved all histograms
[#2] PROGRESS:HistFactory -- Saved Measurement
[#1] INFO:Minimization -- p.d.f. provides expected number of events, including extended term in likelihood.
[#1] INFO:Minimization -- Including the following constraint terms in minimization: (lumiConstraint,alpha_syst1Constraint,alpha_syst2Constraint,alpha_syst3Constraint,gamma_stat_channel1_bin_0_constraint,gamma_stat_channel1_bin_1_constraint)
[#1] INFO:Minimization -- The following global observables have been defined and their values are taken from the model: (nominalLumi,nom_alpha_syst1,nom_alpha_syst2,nom_alpha_syst3,nom_gamma_stat_channel1_bin_0,nom_gamma_stat_channel1_bin_1)
[#1] INFO:Fitting -- RooAbsPdf::fitTo(simPdf) fixing normalization set for coefficient determination to observables in data
[#1] INFO:Fitting -- using CPU computation library compiled with -mavx2
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_simPdf_obsData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: activating const optimization
[#1] INFO:Minimization -- RooAbsMinimizerFcn::setOptimizeConst: deactivating const optimization
[#1] INFO:Minimization -- p.d.f. provides expected number of events, including extended term in likelihood.
[#1] INFO:Minimization -- Including the following constraint terms in minimization: (lumiConstraint,alpha_syst1Constraint,alpha_syst2Constraint,alpha_syst3Constraint,gamma_stat_channel1_bin_0_constraint,gamma_stat_channel1_bin_1_constraint)
[#1] INFO:Minimization -- The global observables are not defined , normalize constraints with respect to the parameters (Lumi,SigXsecOverSM,alpha_syst1,alpha_syst2,alpha_syst3,gamma_stat_channel1_bin_0,gamma_stat_channel1_bin_1)
[#1] INFO:Fitting -- RooAbsPdf::fitTo(simPdf) fixing normalization set for coefficient determination to observables in data
[#1] INFO:NumericIntegration -- RooRealIntegral::init(gamma_stat_channel1_bin_1_constraint_Int[gamma_stat_channel1_bin_1]) using numeric integrator RooIntegrator1D to calculate Int(gamma_stat_channel1_bin_1)
[#1] INFO:NumericIntegration -- RooRealIntegral::init(gamma_stat_channel1_bin_0_constraint_Int[gamma_stat_channel1_bin_0]) using numeric integrator RooIntegrator1D to calculate Int(gamma_stat_channel1_bin_0)
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[SigXsecOverSM]) Creating instance of MINUIT
[#1] INFO:Fitting -- RooAddition::defaultErrorLevel(nll_simPdf_obsData) Summation contains a RooNLLVar, using its error level
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[SigXsecOverSM]) determining minimum likelihood for current configurations w.r.t all observable
[#1] INFO:Minimization -- RooProfileLL::evaluate(RooEvaluatorWrapper_Profile[SigXsecOverSM]) minimum found at (SigXsecOverSM=1.11284)
..........................................................................................................................................................................................................
RooFitResult: minimized FCN value: 15.1129, estimated distance to minimum: 0.000182975
covariance matrix quality: Full, accurate covariance matrix
Status : MINIMIZE=0 HESSE=0 MINOS=0
Constant Parameter Value
-------------------- ------------
Lumi 1.0000e+00
alpha_syst1 0.0000e+00
nom_alpha_syst1 0.0000e+00
nom_alpha_syst2 0.0000e+00
nom_alpha_syst3 0.0000e+00
nom_gamma_stat_channel1_bin_0 4.0000e+02
nom_gamma_stat_channel1_bin_1 1.0000e+02
nominalLumi 1.0000e+00
Floating Parameter InitialValue FinalValue (+HiError,-LoError) GblCorr.
-------------------- ------------ ---------------------------------- --------
SigXsecOverSM 1.0000e+00 1.1109e+00 (+6.16e-01,-5.93e-01) <none>
alpha_syst2 0.0000e+00 -1.0039e-02 (+9.90e-01,-9.88e-01) <none>
alpha_syst3 0.0000e+00 1.5339e-02 (+9.58e-01,-9.50e-01) <none>
gamma_stat_channel1_bin_0 1.0000e+00 9.9953e-01 (+5.03e-02,-4.86e-02) <none>
gamma_stat_channel1_bin_1 1.0000e+00 1.0050e+00 (+8.08e-02,-7.98e-02) <none>
Author
George Lewis

Definition in file hf001_example.C.