This macro shows the use of an ANN for regression analysis: given a set {i} of input vectors i and a set {o} of output vectors o, one looks for the unknown function f(i)=o.
The ANN can approximate this function; TMLPAnalyzer::DrawTruthDeviation methods can be used to evaluate the quality of the approximation.
For simplicity, we use a known function to create test and training data. In reality this function is usually not known, and the data comes e.g. from measurements.
Network with structure: x,y:10:8:f
inputs with low values in the differences plot may not be needed
x -> 0.083311 +/- 0.043301
y -> 0.081387 +/- 0.0399728
return sin((1.7+
x)*(
x-0.3)-2.3*(
y+0.7));
}
for (
Int_t i=0; i<1000; i++) {
}
"Entry$%2","(Entry$%2)==0");
mlp->
Train(150,
"graph update=10");
mlpa->GatherInformations();
mlpa->DrawTruthDeviations();
mlpa->DrawTruthDeviationInsOut();
mlpa->GetIOTree()->Draw(
"Out.Out0-True.True0:True.True0>>hDelta",
"",
"goff");
hDelta->SetTitle(
"Difference between ANN output and truth vs. truth");
for (
Int_t ix=0; ix<15; ix++) {
for (
Int_t iy=0; iy<15; iy++) {
}
}
"ANN extrapolation, ANN output - truth",
}
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
Graphics object made of three arrays X, Y and Z with the same number of points each.
2-D histogram with a float per channel (see TH1 documentation)
This utility class contains a set of tests useful when developing a neural network.
This class describes a neural network.
Double_t Evaluate(Int_t index, Double_t *params) const
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons.
void Train(Int_t nEpoch, Option_t *option="text", Double_t minE=0)
Train the network.
A simple TTree restricted to a list of float variables only.
Int_t Fill() override
Fill a Ntuple with current values in fArgs.
This is the base class for the ROOT Random number generators.
- Author
- Axel Naumann, 2005-02-02
Definition in file mlpRegression.C.