Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
mlpRegression.C File Reference

Detailed Description

This macro shows the use of an ANN for regression analysis: given a set {i} of input vectors i and a set {o} of output vectors o, one looks for the unknown function f(i)=o.

The ANN can approximate this function; TMLPAnalyzer::DrawTruthDeviation methods can be used to evaluate the quality of the approximation.

For simplicity, we use a known function to create test and training data. In reality this function is usually not known, and the data comes e.g. from measurements.

Network with structure: x,y:10:8:f
inputs with low values in the differences plot may not be needed
x -> 0.083311 +/- 0.043301
y -> 0.081387 +/- 0.0399728
return sin((1.7+x)*(x-0.3)-2.3*(y+0.7));
}
void mlpRegression() {
// create a tree with train and test data.
// we have two input parameters x and y,
// and one output value f(x,y)
TNtuple* t=new TNtuple("tree","tree","x:y:f");
for (Int_t i=0; i<1000; i++) {
Float_t x=r.Rndm();
Float_t y=r.Rndm();
// fill it with x, y, and f(x,y) - usually this function
// is not known, and the value of f given an x and a y comes
// e.g. from measurements
}
// create ANN
"Entry$%2","(Entry$%2)==0");
mlp->Train(150,"graph update=10");
// analyze it
mlpa->GatherInformations();
mlpa->CheckNetwork();
mlpa->DrawDInputs();
// draw statistics shows the quality of the ANN's approximation
TCanvas* cIO=new TCanvas("TruthDeviation", "TruthDeviation");
cIO->Divide(2,2);
cIO->cd(1);
// draw the difference between the ANN's output for (x,y) and
// the true value f(x,y), vs. f(x,y), as TProfiles
mlpa->DrawTruthDeviations();
cIO->cd(2);
// draw the difference between the ANN's output for (x,y) and
// the true value f(x,y), vs. x, and vs. y, as TProfiles
mlpa->DrawTruthDeviationInsOut();
cIO->cd(3);
// draw a box plot of the ANN's output for (x,y) vs f(x,y)
mlpa->GetIOTree()->Draw("Out.Out0-True.True0:True.True0>>hDelta","","goff");
TH2F* hDelta=(TH2F*)gDirectory->Get("hDelta");
hDelta->SetTitle("Difference between ANN output and truth vs. truth");
hDelta->Draw("BOX");
cIO->cd(4);
// draw difference of ANN's output for (x,y) vs f(x,y) assuming
// the ANN can extrapolate
Double_t vx[225];
Double_t vy[225];
Double_t delta[225];
Double_t v[2];
for (Int_t ix=0; ix<15; ix++) {
v[0]=ix/5.-1.;
for (Int_t iy=0; iy<15; iy++) {
v[1]=iy/5.-1.;
Int_t idx=ix*15+iy;
vx[idx]=v[0];
vy[idx]=v[1];
delta[idx]=mlp->Evaluate(0, v)-theUnknownFunction(v[0],v[1]);
}
}
TGraph2D* g2Extrapolate=new TGraph2D("ANN extrapolation",
"ANN extrapolation, ANN output - truth",
225, vx, vy, delta);
g2Extrapolate->Draw("TRI2");
}
int Int_t
Definition RtypesCore.h:45
float Float_t
Definition RtypesCore.h:57
double Double_t
Definition RtypesCore.h:59
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
#define gDirectory
Definition TDirectory.h:384
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
The Canvas class.
Definition TCanvas.h:23
Graphics object made of three arrays X, Y and Z with the same number of points each.
Definition TGraph2D.h:41
2-D histogram with a float per channel (see TH1 documentation)
Definition TH2.h:307
This utility class contains a set of tests useful when developing a neural network.
This class describes a neural network.
Double_t Evaluate(Int_t index, Double_t *params) const
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons.
void Train(Int_t nEpoch, Option_t *option="text", Double_t minE=0)
Train the network.
A simple TTree restricted to a list of float variables only.
Definition TNtuple.h:28
Int_t Fill() override
Fill a Ntuple with current values in fArgs.
Definition TNtuple.cxx:169
This is the base class for the ROOT Random number generators.
Definition TRandom.h:27
Double_t y[n]
Definition legend1.C:17
Double_t x[n]
Definition legend1.C:17
Author
Axel Naumann, 2005-02-02

Definition in file mlpRegression.C.