Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches

Detailed Description

View in nbviewer Open in SWAN
Example of a Multi Layer Perceptron For a LEP search for invisible Higgs boson, a neural network was used to separate the signal from the background passing some selection cuts.

Here is a simplified version of this network, taking into account only WW events.

Training the Neural Network
Epoch: 0 learn=0.126586 test=0.125717
Epoch: 10 learn=0.096508 test=0.09081
Epoch: 20 learn=0.0942463 test=0.0894825
Epoch: 30 learn=0.0918007 test=0.0886344
Epoch: 40 learn=0.0912275 test=0.0880863
Epoch: 50 learn=0.0906789 test=0.0877281
Epoch: 60 learn=0.0902789 test=0.0861621
Epoch: 70 learn=0.0898927 test=0.0864676
Epoch: 80 learn=0.0892915 test=0.0859278
Epoch: 90 learn=0.0887783 test=0.0859694
Epoch: 99 learn=0.0882007 test=0.0857669
Training done.
test.py created.
Network with structure: @msumf,@ptsumf,@acolin:5:3:type
inputs with low values in the differences plot may not be needed
@msumf -> 0.020202 +/- 0.0239898
@ptsumf -> 0.0228399 +/- 0.0419397
@acolin -> 0.0272548 +/- 0.0474201
void mlpHiggs(Int_t ntrain=100) {
const char *fname = "mlpHiggs.root";
TFile *input = 0;
} else if (!gSystem->AccessPathName(Form("%s/legacy/mlp/%s", TROOT::GetTutorialDir().Data(), fname))) {
input = TFile::Open(Form("%s/legacy/mlp/%s", TROOT::GetTutorialDir().Data(), fname));
} else {
printf("accessing %s file from http://root.cern/files\n",fname);
input = TFile::Open(Form("http://root.cern/files/%s",fname));
}
if (!input) return;
TTree *sig_filtered = (TTree *) input->Get("sig_filtered");
TTree *bg_filtered = (TTree *) input->Get("bg_filtered");
TTree *simu = new TTree("MonteCarlo", "Filtered Monte Carlo Events");
sig_filtered->SetBranchAddress("ptsumf", &ptsumf);
sig_filtered->SetBranchAddress("qelep", &qelep);
sig_filtered->SetBranchAddress("nch", &nch);
sig_filtered->SetBranchAddress("msumf", &msumf);
sig_filtered->SetBranchAddress("minvis", &minvis);
sig_filtered->SetBranchAddress("acopl", &acopl);
sig_filtered->SetBranchAddress("acolin", &acolin);
bg_filtered->SetBranchAddress("ptsumf", &ptsumf);
bg_filtered->SetBranchAddress("qelep", &qelep);
bg_filtered->SetBranchAddress("nch", &nch);
bg_filtered->SetBranchAddress("msumf", &msumf);
bg_filtered->SetBranchAddress("minvis", &minvis);
bg_filtered->SetBranchAddress("acopl", &acopl);
bg_filtered->SetBranchAddress("acolin", &acolin);
simu->Branch("ptsumf", &ptsumf, "ptsumf/F");
simu->Branch("qelep", &qelep, "qelep/F");
simu->Branch("nch", &nch, "nch/F");
simu->Branch("msumf", &msumf, "msumf/F");
simu->Branch("minvis", &minvis, "minvis/F");
simu->Branch("acopl", &acopl, "acopl/F");
simu->Branch("acolin", &acolin, "acolin/F");
simu->Branch("type", &type, "type/I");
type = 1;
Int_t i;
for (i = 0; i < sig_filtered->GetEntries(); i++) {
sig_filtered->GetEntry(i);
simu->Fill();
}
type = 0;
for (i = 0; i < bg_filtered->GetEntries(); i++) {
bg_filtered->GetEntry(i);
simu->Fill();
}
// Build and train the NN ptsumf is used as a weight since we are primarily
// interested by high pt events.
// The datasets used here are the same as the default ones.
new TMultiLayerPerceptron("@msumf,@ptsumf,@acolin:5:3:type",
"ptsumf",simu,"Entry$%2","(Entry$+1)%2");
mlp->Train(ntrain, "text,graph,update=10");
mlp->Export("test","python");
// Use TMLPAnalyzer to see what it looks for
TCanvas* mlpa_canvas = new TCanvas("mlpa_canvas","Network analysis");
mlpa_canvas->Divide(2,2);
// Initialisation
ana.GatherInformations();
// output to the console
ana.CheckNetwork();
mlpa_canvas->cd(1);
// shows how each variable influences the network
ana.DrawDInputs();
mlpa_canvas->cd(2);
// shows the network structure
mlp->Draw();
mlpa_canvas->cd(3);
// draws the resulting network
ana.DrawNetwork(0,"type==1","type==0");
mlpa_canvas->cd(4);
// Use the NN to plot the results for each sample
// This will give approx. the same result as DrawNetwork.
// All entries are used, while DrawNetwork focuses on
// the test sample. Also the xaxis range is manually set.
TH1F *bg = new TH1F("bgh", "NN output", 50, -.5, 1.5);
TH1F *sig = new TH1F("sigh", "NN output", 50, -.5, 1.5);
bg->SetDirectory(0);
sig->SetDirectory(0);
Double_t params[3];
for (i = 0; i < bg_filtered->GetEntries(); i++) {
bg_filtered->GetEntry(i);
params[0] = msumf;
params[1] = ptsumf;
params[2] = acolin;
bg->Fill(mlp->Evaluate(0, params));
}
for (i = 0; i < sig_filtered->GetEntries(); i++) {
sig_filtered->GetEntry(i);
params[0] = msumf;
params[1] = ptsumf;
params[2] = acolin;
sig->Fill(mlp->Evaluate(0,params));
}
bg->SetLineColor(kBlue);
bg->SetFillStyle(3008); bg->SetFillColor(kBlue);
sig->SetFillStyle(3003); sig->SetFillColor(kRed);
bg->SetStats(0);
sig->SetStats(0);
bg->Draw();
sig->Draw("same");
TLegend *legend = new TLegend(.75, .80, .95, .95);
legend->AddEntry(bg, "Background (WW)");
legend->AddEntry(sig, "Signal (Higgs)");
legend->Draw();
mlpa_canvas->cd(0);
delete input;
}
int Int_t
Definition RtypesCore.h:45
float Float_t
Definition RtypesCore.h:57
double Double_t
Definition RtypesCore.h:59
@ kRed
Definition Rtypes.h:66
@ kBlue
Definition Rtypes.h:66
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
Definition TString.cxx:2489
R__EXTERN TSystem * gSystem
Definition TSystem.h:572
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
Definition TAttFill.h:37
virtual void SetFillStyle(Style_t fstyle)
Set the fill area style.
Definition TAttFill.h:39
virtual void SetLineColor(Color_t lcolor)
Set the line color.
Definition TAttLine.h:40
The Canvas class.
Definition TCanvas.h:23
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
Definition TFile.h:53
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
Definition TFile.cxx:4094
1-D histogram with a float per channel (see TH1 documentation)
Definition TH1.h:622
virtual void SetDirectory(TDirectory *dir)
By default, when a histogram is created, it is added to the list of histogram objects in the current ...
Definition TH1.cxx:8958
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition TH1.cxx:3344
void Draw(Option_t *option="") override
Draw this histogram with options.
Definition TH1.cxx:3066
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
Definition TH1.cxx:9011
This class displays a legend box (TPaveText) containing several legend entries.
Definition TLegend.h:23
This utility class contains a set of tests useful when developing a neural network.
This class describes a neural network.
Double_t Evaluate(Int_t index, Double_t *params) const
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons.
void Export(Option_t *filename="NNfunction", Option_t *language="C++") const
Exports the NN as a function for any non-ROOT-dependant code Supported languages are: only C++ ,...
void Train(Int_t nEpoch, Option_t *option="text", Double_t minE=0)
Train the network.
void Draw(Option_t *option="") override
Draws the network structure.
static const TString & GetTutorialDir()
Get the tutorials directory in the installation. Static utility function.
Definition TROOT.cxx:3118
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
Definition TSystem.cxx:1296
A TTree represents a columnar dataset.
Definition TTree.h:79
Author
Christophe Delaere

Definition in file mlpHiggs.C.