Here is a simplified version of this network, taking into account only WW events.
Training the Neural Network
Epoch: 0 learn=0.126878 test=0.125951
Epoch: 10 learn=0.100229 test=0.094581
Epoch: 20 learn=0.0964251 test=0.0912503
Epoch: 30 learn=0.0931167 test=0.0893433
Epoch: 40 learn=0.0916468 test=0.0887411
Epoch: 50 learn=0.0907025 test=0.0881635
Epoch: 60 learn=0.0904692 test=0.0876701
Epoch: 70 learn=0.0902206 test=0.0875971
Epoch: 80 learn=0.0898482 test=0.0875175
Epoch: 90 learn=0.0894816 test=0.0871091
Epoch: 99 learn=0.0893936 test=0.086728
Training done.
test.py created.
Network with structure: @msumf,@ptsumf,@acolin:5:3:type
inputs with low values in the differences plot may not be needed
@msumf -> 0.0159402 +/- 0.0126245
@ptsumf -> 0.0256497 +/- 0.035798
@acolin -> 0.0250446 +/- 0.0292189
void mlpHiggs(
Int_t ntrain=100) {
const char *fname = "mlpHiggs.root";
} else {
printf("accessing %s file from http://root.cern.ch/files\n",fname);
}
TTree *simu =
new TTree(
"MonteCarlo",
"Filtered Monte Carlo Events");
Float_t ptsumf, qelep, nch, msumf, minvis, acopl, acolin;
simu->
Branch(
"ptsumf", &ptsumf,
"ptsumf/F");
simu->
Branch(
"qelep", &qelep,
"qelep/F");
simu->
Branch(
"nch", &nch,
"nch/F");
simu->
Branch(
"msumf", &msumf,
"msumf/F");
simu->
Branch(
"minvis", &minvis,
"minvis/F");
simu->
Branch(
"acopl", &acopl,
"acopl/F");
simu->
Branch(
"acolin", &acolin,
"acolin/F");
for (i = 0; i < sig_filtered->
GetEntries(); i++) {
}
}
"ptsumf",simu,"Entry$%2","(Entry$+1)%2");
mlp->
Train(ntrain,
"text,graph,update=10");
ana.GatherInformations();
ana.CheckNetwork();
ana.DrawDInputs();
ana.DrawNetwork(0,"type==1","type==0");
TH1F *bg =
new TH1F(
"bgh",
"NN output", 50, -.5, 1.5);
TH1F *sig =
new TH1F(
"sigh",
"NN output", 50, -.5, 1.5);
params[0] = msumf;
params[1] = ptsumf;
params[2] = acolin;
}
for (i = 0; i < sig_filtered->
GetEntries(); i++) {
params[0] = msumf;
params[1] = ptsumf;
params[2] = acolin;
}
legend->
AddEntry(bg,
"Background (WW)");
legend->
AddEntry(sig,
"Signal (Higgs)");
}
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
R__EXTERN TSystem * gSystem
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
virtual void SetFillStyle(Style_t fstyle)
Set the fill area style.
virtual void SetLineColor(Color_t lcolor)
Set the line color.
TVirtualPad * cd(Int_t subpadnumber=0) override
Set current canvas & pad.
A ROOT file is composed of a header, followed by consecutive data records (TKey instances) with a wel...
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
1-D histogram with a float per channel (see TH1 documentation)}
virtual void SetDirectory(TDirectory *dir)
By default, when a histogram is created, it is added to the list of histogram objects in the current ...
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
void Draw(Option_t *option="") override
Draw this histogram with options.
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
This class displays a legend box (TPaveText) containing several legend entries.
TLegendEntry * AddEntry(const TObject *obj, const char *label="", Option_t *option="lpf")
Add a new entry to this legend.
void Draw(Option_t *option="") override
Draw this legend with its current attributes.
This utility class contains a set of tests useful when developing a neural network.
This class describes a neural network.
Double_t Evaluate(Int_t index, Double_t *params) const
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons.
void Export(Option_t *filename="NNfunction", Option_t *language="C++") const
Exports the NN as a function for any non-ROOT-dependant code Supported languages are: only C++ ,...
void Train(Int_t nEpoch, Option_t *option="text", Double_t minE=0)
Train the network.
void Draw(Option_t *option="") override
Draws the network structure.
void Divide(Int_t nx=1, Int_t ny=1, Float_t xmargin=0.01, Float_t ymargin=0.01, Int_t color=0) override
Automatic pad generation by division.
static const TString & GetTutorialDir()
Get the tutorials directory in the installation. Static utility function.
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
A TTree represents a columnar dataset.
virtual Int_t Fill()
Fill all branches.
virtual Int_t GetEntry(Long64_t entry, Int_t getall=0)
Read all branches of entry and return total number of bytes read.
virtual Int_t SetBranchAddress(const char *bname, void *add, TBranch **ptr=nullptr)
Change branch address, dealing with clone trees properly.
virtual Long64_t GetEntries() const
TBranch * Branch(const char *name, T *obj, Int_t bufsize=32000, Int_t splitlevel=99)
Add a new branch, and infer the data type from the type of obj being passed.