Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 200 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 0.723 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.00696 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 15.5768
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.87962 0.841993 0.107391 0.011301 12488.3 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.700835 0.833372 0.105068 0.0105584 12697.1 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.589111 0.707051 0.106509 0.0111154 12579.5 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.533864 0.678275 0.106168 0.0108127 12584.5 0
: 5 | 0.46949 0.678379 0.107633 0.0105234 12357.1 1
: 6 | 0.431075 0.694283 0.106275 0.0101893 12488.9 2
: 7 | 0.389767 0.690039 0.105889 0.0104156 12568.9 3
: 8 Minimum Test error found - save the configuration
: 8 | 0.34039 0.670031 0.110239 0.011337 12133.2 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.308967 0.644792 0.106393 0.0107119 12541.7 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.280746 0.636482 0.112829 0.0133229 12059.6 0
:
: Elapsed time for training with 1600 events: 1.1 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0571 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 57.7066
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 1.86941 1.10478 0.813418 0.0721372 1618.82 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.767898 0.751849 0.791512 0.0683737 1659.43 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.715629 0.710242 0.768666 0.0703315 1718.37 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.688665 0.703747 0.782488 0.0706333 1685.74 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.674243 0.694442 0.763192 0.072413 1737.17 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.663298 0.687967 0.777824 0.0711781 1698.16 0
: 7 | 0.650563 0.690155 0.837876 0.0805427 1584.51 1
: 8 Minimum Test error found - save the configuration
: 8 | 0.640197 0.673676 0.814783 0.0678289 1606.52 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.630753 0.663096 0.858184 0.0807848 1543.61 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.617521 0.661737 0.765738 0.0659666 1714.85 0
:
: Elapsed time for training with 1600 events: 8.05 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.353 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.156e-02
: 2 : vars : 1.060e-02
: 3 : vars : 1.029e-02
: 4 : vars : 1.026e-02
: 5 : vars : 1.012e-02
: 6 : vars : 9.746e-03
: 7 : vars : 9.458e-03
: 8 : vars : 9.375e-03
: 9 : vars : 9.332e-03
: 10 : vars : 8.850e-03
: 11 : vars : 8.623e-03
: 12 : vars : 8.500e-03
: 13 : vars : 8.295e-03
: 14 : vars : 8.295e-03
: 15 : vars : 7.835e-03
: 16 : vars : 7.749e-03
: 17 : vars : 7.712e-03
: 18 : vars : 7.669e-03
: 19 : vars : 7.628e-03
: 20 : vars : 7.463e-03
: 21 : vars : 7.453e-03
: 22 : vars : 7.442e-03
: 23 : vars : 7.436e-03
: 24 : vars : 7.352e-03
: 25 : vars : 7.343e-03
: 26 : vars : 7.288e-03
: 27 : vars : 7.219e-03
: 28 : vars : 7.137e-03
: 29 : vars : 7.124e-03
: 30 : vars : 7.105e-03
: 31 : vars : 7.059e-03
: 32 : vars : 6.815e-03
: 33 : vars : 6.778e-03
: 34 : vars : 6.767e-03
: 35 : vars : 6.720e-03
: 36 : vars : 6.668e-03
: 37 : vars : 6.660e-03
: 38 : vars : 6.648e-03
: 39 : vars : 6.645e-03
: 40 : vars : 6.634e-03
: 41 : vars : 6.601e-03
: 42 : vars : 6.520e-03
: 43 : vars : 6.464e-03
: 44 : vars : 6.448e-03
: 45 : vars : 6.427e-03
: 46 : vars : 6.383e-03
: 47 : vars : 6.377e-03
: 48 : vars : 6.294e-03
: 49 : vars : 6.263e-03
: 50 : vars : 6.244e-03
: 51 : vars : 6.231e-03
: 52 : vars : 6.230e-03
: 53 : vars : 6.201e-03
: 54 : vars : 6.195e-03
: 55 : vars : 6.103e-03
: 56 : vars : 6.028e-03
: 57 : vars : 6.004e-03
: 58 : vars : 6.001e-03
: 59 : vars : 5.959e-03
: 60 : vars : 5.918e-03
: 61 : vars : 5.889e-03
: 62 : vars : 5.868e-03
: 63 : vars : 5.857e-03
: 64 : vars : 5.814e-03
: 65 : vars : 5.813e-03
: 66 : vars : 5.740e-03
: 67 : vars : 5.738e-03
: 68 : vars : 5.717e-03
: 69 : vars : 5.672e-03
: 70 : vars : 5.655e-03
: 71 : vars : 5.648e-03
: 72 : vars : 5.626e-03
: 73 : vars : 5.612e-03
: 74 : vars : 5.587e-03
: 75 : vars : 5.560e-03
: 76 : vars : 5.551e-03
: 77 : vars : 5.550e-03
: 78 : vars : 5.488e-03
: 79 : vars : 5.474e-03
: 80 : vars : 5.447e-03
: 81 : vars : 5.394e-03
: 82 : vars : 5.358e-03
: 83 : vars : 5.313e-03
: 84 : vars : 5.301e-03
: 85 : vars : 5.301e-03
: 86 : vars : 5.291e-03
: 87 : vars : 5.269e-03
: 88 : vars : 5.194e-03
: 89 : vars : 5.174e-03
: 90 : vars : 5.146e-03
: 91 : vars : 5.123e-03
: 92 : vars : 5.073e-03
: 93 : vars : 5.066e-03
: 94 : vars : 5.065e-03
: 95 : vars : 5.027e-03
: 96 : vars : 4.989e-03
: 97 : vars : 4.942e-03
: 98 : vars : 4.935e-03
: 99 : vars : 4.865e-03
: 100 : vars : 4.849e-03
: 101 : vars : 4.782e-03
: 102 : vars : 4.778e-03
: 103 : vars : 4.762e-03
: 104 : vars : 4.737e-03
: 105 : vars : 4.686e-03
: 106 : vars : 4.681e-03
: 107 : vars : 4.677e-03
: 108 : vars : 4.660e-03
: 109 : vars : 4.646e-03
: 110 : vars : 4.641e-03
: 111 : vars : 4.581e-03
: 112 : vars : 4.541e-03
: 113 : vars : 4.523e-03
: 114 : vars : 4.489e-03
: 115 : vars : 4.468e-03
: 116 : vars : 4.447e-03
: 117 : vars : 4.431e-03
: 118 : vars : 4.400e-03
: 119 : vars : 4.370e-03
: 120 : vars : 4.334e-03
: 121 : vars : 4.330e-03
: 122 : vars : 4.295e-03
: 123 : vars : 4.227e-03
: 124 : vars : 4.180e-03
: 125 : vars : 4.169e-03
: 126 : vars : 4.168e-03
: 127 : vars : 4.142e-03
: 128 : vars : 4.127e-03
: 129 : vars : 4.074e-03
: 130 : vars : 4.071e-03
: 131 : vars : 4.040e-03
: 132 : vars : 4.034e-03
: 133 : vars : 4.015e-03
: 134 : vars : 3.973e-03
: 135 : vars : 3.970e-03
: 136 : vars : 3.917e-03
: 137 : vars : 3.867e-03
: 138 : vars : 3.787e-03
: 139 : vars : 3.783e-03
: 140 : vars : 3.722e-03
: 141 : vars : 3.713e-03
: 142 : vars : 3.710e-03
: 143 : vars : 3.693e-03
: 144 : vars : 3.692e-03
: 145 : vars : 3.685e-03
: 146 : vars : 3.681e-03
: 147 : vars : 3.678e-03
: 148 : vars : 3.600e-03
: 149 : vars : 3.595e-03
: 150 : vars : 3.571e-03
: 151 : vars : 3.562e-03
: 152 : vars : 3.554e-03
: 153 : vars : 3.553e-03
: 154 : vars : 3.532e-03
: 155 : vars : 3.500e-03
: 156 : vars : 3.495e-03
: 157 : vars : 3.484e-03
: 158 : vars : 3.451e-03
: 159 : vars : 3.419e-03
: 160 : vars : 3.406e-03
: 161 : vars : 3.404e-03
: 162 : vars : 3.337e-03
: 163 : vars : 3.330e-03
: 164 : vars : 3.250e-03
: 165 : vars : 3.167e-03
: 166 : vars : 3.159e-03
: 167 : vars : 3.157e-03
: 168 : vars : 3.114e-03
: 169 : vars : 3.056e-03
: 170 : vars : 3.031e-03
: 171 : vars : 2.971e-03
: 172 : vars : 2.924e-03
: 173 : vars : 2.839e-03
: 174 : vars : 2.822e-03
: 175 : vars : 2.746e-03
: 176 : vars : 2.730e-03
: 177 : vars : 2.710e-03
: 178 : vars : 2.646e-03
: 179 : vars : 2.644e-03
: 180 : vars : 2.608e-03
: 181 : vars : 2.429e-03
: 182 : vars : 2.404e-03
: 183 : vars : 2.374e-03
: 184 : vars : 2.331e-03
: 185 : vars : 2.298e-03
: 186 : vars : 2.206e-03
: 187 : vars : 2.152e-03
: 188 : vars : 2.132e-03
: 189 : vars : 2.107e-03
: 190 : vars : 2.086e-03
: 191 : vars : 1.976e-03
: 192 : vars : 1.757e-03
: 193 : vars : 1.738e-03
: 194 : vars : 1.735e-03
: 195 : vars : 1.588e-03
: 196 : vars : 1.053e-03
: 197 : vars : 9.562e-04
: 198 : vars : 9.309e-04
: 199 : vars : 8.582e-04
: 200 : vars : 6.144e-04
: 201 : vars : 0.000e+00
: 202 : vars : 0.000e+00
: 203 : vars : 0.000e+00
: 204 : vars : 0.000e+00
: 205 : vars : 0.000e+00
: 206 : vars : 0.000e+00
: 207 : vars : 0.000e+00
: 208 : vars : 0.000e+00
: 209 : vars : 0.000e+00
: 210 : vars : 0.000e+00
: 211 : vars : 0.000e+00
: 212 : vars : 0.000e+00
: 213 : vars : 0.000e+00
: 214 : vars : 0.000e+00
: 215 : vars : 0.000e+00
: 216 : vars : 0.000e+00
: 217 : vars : 0.000e+00
: 218 : vars : 0.000e+00
: 219 : vars : 0.000e+00
: 220 : vars : 0.000e+00
: 221 : vars : 0.000e+00
: 222 : vars : 0.000e+00
: 223 : vars : 0.000e+00
: 224 : vars : 0.000e+00
: 225 : vars : 0.000e+00
: 226 : vars : 0.000e+00
: 227 : vars : 0.000e+00
: 228 : vars : 0.000e+00
: 229 : vars : 0.000e+00
: 230 : vars : 0.000e+00
: 231 : vars : 0.000e+00
: 232 : vars : 0.000e+00
: 233 : vars : 0.000e+00
: 234 : vars : 0.000e+00
: 235 : vars : 0.000e+00
: 236 : vars : 0.000e+00
: 237 : vars : 0.000e+00
: 238 : vars : 0.000e+00
: 239 : vars : 0.000e+00
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.92387
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.0747
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 7.91818
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.34169
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00204 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0139 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0924 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset TMVA_CNN_CPU : 0.717
: dataset BDT : 0.696
: dataset TMVA_DNN_CPU : 0.696
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset TMVA_CNN_CPU : 0.090 (0.060) 0.300 (0.253) 0.605 (0.610)
: dataset BDT : 0.105 (0.215) 0.240 (0.576) 0.615 (0.768)
: dataset TMVA_DNN_CPU : 0.015 (0.220) 0.265 (0.579) 0.531 (0.815)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m