Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 200 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 0.593 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.00673 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 80.5436
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.833391 0.984286 0.121541 0.011215 10876.9 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.730617 0.934694 0.109809 0.0111238 12159.9 0
: 3 | 0.60282 0.961146 0.119562 0.00965288 10918.1 1
: 4 Minimum Test error found - save the configuration
: 4 | 0.567286 0.882212 0.108705 0.0109462 12275.1 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.490154 0.838542 0.106343 0.010771 12556 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.438935 0.827223 0.105632 0.0107015 12640.8 0
: 7 | 0.404708 0.838588 0.107653 0.0121069 12559.3 1
: 8 | 0.341629 0.865468 0.107309 0.0107049 12421.9 2
: 9 | 0.31181 0.85138 0.103259 0.00965805 12820.4 3
: 10 | 0.278745 0.87335 0.132023 0.0126085 10049 4
:
: Elapsed time for training with 1600 events: 1.15 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0679 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 25.0268
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 3.82071 2.08074 0.832839 0.0756398 1584.79 0
: 2 Minimum Test error found - save the configuration
: 2 | 1.20141 0.848013 0.787107 0.0728823 1680.14 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.751847 0.75701 0.823569 0.072313 1597.32 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.734727 0.690561 0.83555 0.0721587 1571.93 0
: 5 | 0.703434 0.690652 0.840153 0.0706584 1559.46 1
: 6 Minimum Test error found - save the configuration
: 6 | 0.731122 0.683913 0.833125 0.0841339 1602.16 0
: 7 | 0.803774 0.825075 0.804298 0.0712305 1636.96 1
: 8 | 0.719945 0.791626 0.806834 0.0746632 1638.96 2
: 9 Minimum Test error found - save the configuration
: 9 | 0.678894 0.635332 0.830504 0.072484 1583.07 0
: 10 | 0.619808 0.637467 0.789192 0.0710022 1670.87 1
:
: Elapsed time for training with 1600 events: 8.3 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.375 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.019e-02
: 2 : vars : 9.957e-03
: 3 : vars : 9.545e-03
: 4 : vars : 9.403e-03
: 5 : vars : 9.141e-03
: 6 : vars : 9.090e-03
: 7 : vars : 8.913e-03
: 8 : vars : 8.651e-03
: 9 : vars : 8.533e-03
: 10 : vars : 8.523e-03
: 11 : vars : 8.444e-03
: 12 : vars : 8.394e-03
: 13 : vars : 8.276e-03
: 14 : vars : 8.203e-03
: 15 : vars : 8.093e-03
: 16 : vars : 7.909e-03
: 17 : vars : 7.758e-03
: 18 : vars : 7.731e-03
: 19 : vars : 7.706e-03
: 20 : vars : 7.458e-03
: 21 : vars : 7.404e-03
: 22 : vars : 7.375e-03
: 23 : vars : 7.363e-03
: 24 : vars : 7.248e-03
: 25 : vars : 7.103e-03
: 26 : vars : 7.074e-03
: 27 : vars : 7.072e-03
: 28 : vars : 6.873e-03
: 29 : vars : 6.845e-03
: 30 : vars : 6.837e-03
: 31 : vars : 6.823e-03
: 32 : vars : 6.750e-03
: 33 : vars : 6.691e-03
: 34 : vars : 6.656e-03
: 35 : vars : 6.652e-03
: 36 : vars : 6.637e-03
: 37 : vars : 6.588e-03
: 38 : vars : 6.586e-03
: 39 : vars : 6.555e-03
: 40 : vars : 6.537e-03
: 41 : vars : 6.527e-03
: 42 : vars : 6.421e-03
: 43 : vars : 6.382e-03
: 44 : vars : 6.370e-03
: 45 : vars : 6.354e-03
: 46 : vars : 6.313e-03
: 47 : vars : 6.300e-03
: 48 : vars : 6.291e-03
: 49 : vars : 6.239e-03
: 50 : vars : 6.236e-03
: 51 : vars : 6.222e-03
: 52 : vars : 6.170e-03
: 53 : vars : 6.169e-03
: 54 : vars : 6.086e-03
: 55 : vars : 6.043e-03
: 56 : vars : 6.020e-03
: 57 : vars : 6.008e-03
: 58 : vars : 5.990e-03
: 59 : vars : 5.978e-03
: 60 : vars : 5.977e-03
: 61 : vars : 5.947e-03
: 62 : vars : 5.884e-03
: 63 : vars : 5.791e-03
: 64 : vars : 5.790e-03
: 65 : vars : 5.754e-03
: 66 : vars : 5.670e-03
: 67 : vars : 5.626e-03
: 68 : vars : 5.572e-03
: 69 : vars : 5.527e-03
: 70 : vars : 5.480e-03
: 71 : vars : 5.476e-03
: 72 : vars : 5.463e-03
: 73 : vars : 5.421e-03
: 74 : vars : 5.368e-03
: 75 : vars : 5.336e-03
: 76 : vars : 5.330e-03
: 77 : vars : 5.281e-03
: 78 : vars : 5.246e-03
: 79 : vars : 5.236e-03
: 80 : vars : 5.218e-03
: 81 : vars : 5.191e-03
: 82 : vars : 5.177e-03
: 83 : vars : 5.175e-03
: 84 : vars : 5.167e-03
: 85 : vars : 5.138e-03
: 86 : vars : 5.134e-03
: 87 : vars : 5.095e-03
: 88 : vars : 5.080e-03
: 89 : vars : 5.040e-03
: 90 : vars : 5.015e-03
: 91 : vars : 4.992e-03
: 92 : vars : 4.982e-03
: 93 : vars : 4.970e-03
: 94 : vars : 4.966e-03
: 95 : vars : 4.943e-03
: 96 : vars : 4.940e-03
: 97 : vars : 4.904e-03
: 98 : vars : 4.875e-03
: 99 : vars : 4.809e-03
: 100 : vars : 4.800e-03
: 101 : vars : 4.800e-03
: 102 : vars : 4.752e-03
: 103 : vars : 4.744e-03
: 104 : vars : 4.743e-03
: 105 : vars : 4.741e-03
: 106 : vars : 4.726e-03
: 107 : vars : 4.633e-03
: 108 : vars : 4.631e-03
: 109 : vars : 4.625e-03
: 110 : vars : 4.585e-03
: 111 : vars : 4.581e-03
: 112 : vars : 4.514e-03
: 113 : vars : 4.465e-03
: 114 : vars : 4.464e-03
: 115 : vars : 4.457e-03
: 116 : vars : 4.443e-03
: 117 : vars : 4.371e-03
: 118 : vars : 4.356e-03
: 119 : vars : 4.336e-03
: 120 : vars : 4.287e-03
: 121 : vars : 4.245e-03
: 122 : vars : 4.220e-03
: 123 : vars : 4.142e-03
: 124 : vars : 4.125e-03
: 125 : vars : 4.113e-03
: 126 : vars : 4.107e-03
: 127 : vars : 4.066e-03
: 128 : vars : 4.061e-03
: 129 : vars : 4.033e-03
: 130 : vars : 4.023e-03
: 131 : vars : 4.020e-03
: 132 : vars : 3.990e-03
: 133 : vars : 3.981e-03
: 134 : vars : 3.969e-03
: 135 : vars : 3.955e-03
: 136 : vars : 3.934e-03
: 137 : vars : 3.928e-03
: 138 : vars : 3.907e-03
: 139 : vars : 3.862e-03
: 140 : vars : 3.857e-03
: 141 : vars : 3.805e-03
: 142 : vars : 3.780e-03
: 143 : vars : 3.779e-03
: 144 : vars : 3.713e-03
: 145 : vars : 3.699e-03
: 146 : vars : 3.691e-03
: 147 : vars : 3.678e-03
: 148 : vars : 3.590e-03
: 149 : vars : 3.545e-03
: 150 : vars : 3.506e-03
: 151 : vars : 3.506e-03
: 152 : vars : 3.504e-03
: 153 : vars : 3.504e-03
: 154 : vars : 3.429e-03
: 155 : vars : 3.391e-03
: 156 : vars : 3.366e-03
: 157 : vars : 3.323e-03
: 158 : vars : 3.309e-03
: 159 : vars : 3.278e-03
: 160 : vars : 3.261e-03
: 161 : vars : 3.173e-03
: 162 : vars : 3.162e-03
: 163 : vars : 3.154e-03
: 164 : vars : 3.146e-03
: 165 : vars : 3.143e-03
: 166 : vars : 3.111e-03
: 167 : vars : 3.068e-03
: 168 : vars : 3.045e-03
: 169 : vars : 2.992e-03
: 170 : vars : 2.983e-03
: 171 : vars : 2.938e-03
: 172 : vars : 2.864e-03
: 173 : vars : 2.863e-03
: 174 : vars : 2.851e-03
: 175 : vars : 2.827e-03
: 176 : vars : 2.802e-03
: 177 : vars : 2.798e-03
: 178 : vars : 2.746e-03
: 179 : vars : 2.742e-03
: 180 : vars : 2.680e-03
: 181 : vars : 2.651e-03
: 182 : vars : 2.641e-03
: 183 : vars : 2.612e-03
: 184 : vars : 2.598e-03
: 185 : vars : 2.598e-03
: 186 : vars : 2.591e-03
: 187 : vars : 2.586e-03
: 188 : vars : 2.563e-03
: 189 : vars : 2.433e-03
: 190 : vars : 2.364e-03
: 191 : vars : 2.328e-03
: 192 : vars : 2.304e-03
: 193 : vars : 2.304e-03
: 194 : vars : 1.968e-03
: 195 : vars : 1.887e-03
: 196 : vars : 1.868e-03
: 197 : vars : 1.818e-03
: 198 : vars : 1.735e-03
: 199 : vars : 1.676e-03
: 200 : vars : 1.502e-03
: 201 : vars : 1.411e-03
: 202 : vars : 1.403e-03
: 203 : vars : 1.397e-03
: 204 : vars : 1.266e-03
: 205 : vars : 1.244e-03
: 206 : vars : 1.168e-03
: 207 : vars : 1.056e-03
: 208 : vars : 0.000e+00
: 209 : vars : 0.000e+00
: 210 : vars : 0.000e+00
: 211 : vars : 0.000e+00
: 212 : vars : 0.000e+00
: 213 : vars : 0.000e+00
: 214 : vars : 0.000e+00
: 215 : vars : 0.000e+00
: 216 : vars : 0.000e+00
: 217 : vars : 0.000e+00
: 218 : vars : 0.000e+00
: 219 : vars : 0.000e+00
: 220 : vars : 0.000e+00
: 221 : vars : 0.000e+00
: 222 : vars : 0.000e+00
: 223 : vars : 0.000e+00
: 224 : vars : 0.000e+00
: 225 : vars : 0.000e+00
: 226 : vars : 0.000e+00
: 227 : vars : 0.000e+00
: 228 : vars : 0.000e+00
: 229 : vars : 0.000e+00
: 230 : vars : 0.000e+00
: 231 : vars : 0.000e+00
: 232 : vars : 0.000e+00
: 233 : vars : 0.000e+00
: 234 : vars : 0.000e+00
: 235 : vars : 0.000e+00
: 236 : vars : 0.000e+00
: 237 : vars : 0.000e+00
: 238 : vars : 0.000e+00
: 239 : vars : 0.000e+00
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 5.0001
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 8.85689
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 10.7657
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 8.64038
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00194 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0131 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0942 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.690
: dataset TMVA_DNN_CPU : 0.680
: dataset TMVA_CNN_CPU : 0.660
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.055 (0.210) 0.305 (0.583) 0.555 (0.824)
: dataset TMVA_DNN_CPU : 0.045 (0.102) 0.182 (0.470) 0.535 (0.752)
: dataset TMVA_CNN_CPU : 0.005 (0.055) 0.195 (0.288) 0.576 (0.605)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m