Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0." [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,MaxEpochs=10,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 200 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 0.547 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.00677 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 80.3472
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.973598 0.913487 0.125828 0.0106444 10418.2 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.67299 0.743118 0.105663 0.0104942 12609.2 0
: 3 | 0.594502 0.809783 0.105558 0.00988183 12542.3 1
: 4 | 0.524981 0.810593 0.10582 0.010239 12554.8 2
: 5 | 0.48256 0.802464 0.105097 0.00994213 12611.1 3
: 6 | 0.433703 0.806482 0.103474 0.00997083 12833.8 4
: 7 | 0.38426 0.807388 0.104498 0.0103723 12748.9 5
: 8 | 0.342775 1.09688 0.105253 0.0102722 12634.1 6
:
: Elapsed time for training with 1600 events: 0.882 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0523 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 40.2187
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.81031 1.17962 0.822463 0.0694186 1593.53 0
: 2 Minimum Test error found - save the configuration
: 2 | 1.20731 1.03212 0.801168 0.0709483 1643.34 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.875002 0.95875 0.88586 0.0828913 1494.45 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.798552 0.794787 0.868568 0.0742209 1510.68 0
: 5 | 0.759081 0.802743 0.824336 0.0690978 1588.9 1
: 6 Minimum Test error found - save the configuration
: 6 | 0.718541 0.708294 1.00437 0.109977 1341.7 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.628389 0.66892 1.00806 0.0677222 1276.14 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.568111 0.664309 0.819932 0.0720119 1604.45 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.547252 0.661943 0.788802 0.0700966 1669.67 0
: 10 | 0.580385 0.745039 0.785767 0.0663617 1668.04 1
:
: Elapsed time for training with 1600 events: 8.68 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.355 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.257e-02
: 2 : vars : 1.021e-02
: 3 : vars : 9.868e-03
: 4 : vars : 9.574e-03
: 5 : vars : 9.516e-03
: 6 : vars : 9.491e-03
: 7 : vars : 9.424e-03
: 8 : vars : 9.291e-03
: 9 : vars : 9.234e-03
: 10 : vars : 9.093e-03
: 11 : vars : 9.049e-03
: 12 : vars : 8.636e-03
: 13 : vars : 8.535e-03
: 14 : vars : 8.483e-03
: 15 : vars : 8.343e-03
: 16 : vars : 8.204e-03
: 17 : vars : 8.108e-03
: 18 : vars : 7.965e-03
: 19 : vars : 7.927e-03
: 20 : vars : 7.865e-03
: 21 : vars : 7.838e-03
: 22 : vars : 7.794e-03
: 23 : vars : 7.632e-03
: 24 : vars : 7.608e-03
: 25 : vars : 7.601e-03
: 26 : vars : 7.558e-03
: 27 : vars : 7.499e-03
: 28 : vars : 7.490e-03
: 29 : vars : 7.371e-03
: 30 : vars : 7.362e-03
: 31 : vars : 7.312e-03
: 32 : vars : 7.247e-03
: 33 : vars : 7.133e-03
: 34 : vars : 7.090e-03
: 35 : vars : 7.089e-03
: 36 : vars : 7.033e-03
: 37 : vars : 6.994e-03
: 38 : vars : 6.923e-03
: 39 : vars : 6.905e-03
: 40 : vars : 6.901e-03
: 41 : vars : 6.890e-03
: 42 : vars : 6.831e-03
: 43 : vars : 6.782e-03
: 44 : vars : 6.749e-03
: 45 : vars : 6.712e-03
: 46 : vars : 6.663e-03
: 47 : vars : 6.658e-03
: 48 : vars : 6.623e-03
: 49 : vars : 6.586e-03
: 50 : vars : 6.570e-03
: 51 : vars : 6.548e-03
: 52 : vars : 6.448e-03
: 53 : vars : 6.402e-03
: 54 : vars : 6.387e-03
: 55 : vars : 6.343e-03
: 56 : vars : 6.324e-03
: 57 : vars : 6.308e-03
: 58 : vars : 6.227e-03
: 59 : vars : 6.100e-03
: 60 : vars : 6.057e-03
: 61 : vars : 6.054e-03
: 62 : vars : 6.007e-03
: 63 : vars : 5.978e-03
: 64 : vars : 5.900e-03
: 65 : vars : 5.804e-03
: 66 : vars : 5.797e-03
: 67 : vars : 5.772e-03
: 68 : vars : 5.763e-03
: 69 : vars : 5.725e-03
: 70 : vars : 5.713e-03
: 71 : vars : 5.657e-03
: 72 : vars : 5.651e-03
: 73 : vars : 5.623e-03
: 74 : vars : 5.621e-03
: 75 : vars : 5.618e-03
: 76 : vars : 5.603e-03
: 77 : vars : 5.579e-03
: 78 : vars : 5.542e-03
: 79 : vars : 5.540e-03
: 80 : vars : 5.509e-03
: 81 : vars : 5.488e-03
: 82 : vars : 5.474e-03
: 83 : vars : 5.433e-03
: 84 : vars : 5.415e-03
: 85 : vars : 5.396e-03
: 86 : vars : 5.378e-03
: 87 : vars : 5.345e-03
: 88 : vars : 5.345e-03
: 89 : vars : 5.341e-03
: 90 : vars : 5.318e-03
: 91 : vars : 5.230e-03
: 92 : vars : 5.226e-03
: 93 : vars : 5.221e-03
: 94 : vars : 5.159e-03
: 95 : vars : 5.131e-03
: 96 : vars : 5.058e-03
: 97 : vars : 5.025e-03
: 98 : vars : 5.021e-03
: 99 : vars : 5.013e-03
: 100 : vars : 4.857e-03
: 101 : vars : 4.840e-03
: 102 : vars : 4.756e-03
: 103 : vars : 4.741e-03
: 104 : vars : 4.720e-03
: 105 : vars : 4.715e-03
: 106 : vars : 4.623e-03
: 107 : vars : 4.599e-03
: 108 : vars : 4.587e-03
: 109 : vars : 4.552e-03
: 110 : vars : 4.541e-03
: 111 : vars : 4.487e-03
: 112 : vars : 4.454e-03
: 113 : vars : 4.447e-03
: 114 : vars : 4.409e-03
: 115 : vars : 4.336e-03
: 116 : vars : 4.335e-03
: 117 : vars : 4.306e-03
: 118 : vars : 4.305e-03
: 119 : vars : 4.291e-03
: 120 : vars : 4.289e-03
: 121 : vars : 4.233e-03
: 122 : vars : 4.176e-03
: 123 : vars : 4.109e-03
: 124 : vars : 4.073e-03
: 125 : vars : 4.058e-03
: 126 : vars : 3.970e-03
: 127 : vars : 3.946e-03
: 128 : vars : 3.941e-03
: 129 : vars : 3.934e-03
: 130 : vars : 3.916e-03
: 131 : vars : 3.912e-03
: 132 : vars : 3.841e-03
: 133 : vars : 3.839e-03
: 134 : vars : 3.810e-03
: 135 : vars : 3.807e-03
: 136 : vars : 3.791e-03
: 137 : vars : 3.750e-03
: 138 : vars : 3.705e-03
: 139 : vars : 3.671e-03
: 140 : vars : 3.612e-03
: 141 : vars : 3.604e-03
: 142 : vars : 3.558e-03
: 143 : vars : 3.553e-03
: 144 : vars : 3.404e-03
: 145 : vars : 3.396e-03
: 146 : vars : 3.366e-03
: 147 : vars : 3.363e-03
: 148 : vars : 3.346e-03
: 149 : vars : 3.343e-03
: 150 : vars : 3.323e-03
: 151 : vars : 3.310e-03
: 152 : vars : 3.294e-03
: 153 : vars : 3.288e-03
: 154 : vars : 3.276e-03
: 155 : vars : 3.222e-03
: 156 : vars : 3.207e-03
: 157 : vars : 3.195e-03
: 158 : vars : 3.190e-03
: 159 : vars : 3.173e-03
: 160 : vars : 3.130e-03
: 161 : vars : 3.109e-03
: 162 : vars : 3.086e-03
: 163 : vars : 3.063e-03
: 164 : vars : 3.018e-03
: 165 : vars : 2.980e-03
: 166 : vars : 2.950e-03
: 167 : vars : 2.950e-03
: 168 : vars : 2.941e-03
: 169 : vars : 2.927e-03
: 170 : vars : 2.906e-03
: 171 : vars : 2.802e-03
: 172 : vars : 2.798e-03
: 173 : vars : 2.791e-03
: 174 : vars : 2.759e-03
: 175 : vars : 2.729e-03
: 176 : vars : 2.716e-03
: 177 : vars : 2.706e-03
: 178 : vars : 2.685e-03
: 179 : vars : 2.541e-03
: 180 : vars : 2.529e-03
: 181 : vars : 2.510e-03
: 182 : vars : 2.509e-03
: 183 : vars : 2.480e-03
: 184 : vars : 2.466e-03
: 185 : vars : 2.431e-03
: 186 : vars : 2.383e-03
: 187 : vars : 2.370e-03
: 188 : vars : 2.276e-03
: 189 : vars : 2.238e-03
: 190 : vars : 2.113e-03
: 191 : vars : 2.065e-03
: 192 : vars : 1.688e-03
: 193 : vars : 1.444e-03
: 194 : vars : 9.908e-04
: 195 : vars : 7.874e-04
: 196 : vars : 0.000e+00
: 197 : vars : 0.000e+00
: 198 : vars : 0.000e+00
: 199 : vars : 0.000e+00
: 200 : vars : 0.000e+00
: 201 : vars : 0.000e+00
: 202 : vars : 0.000e+00
: 203 : vars : 0.000e+00
: 204 : vars : 0.000e+00
: 205 : vars : 0.000e+00
: 206 : vars : 0.000e+00
: 207 : vars : 0.000e+00
: 208 : vars : 0.000e+00
: 209 : vars : 0.000e+00
: 210 : vars : 0.000e+00
: 211 : vars : 0.000e+00
: 212 : vars : 0.000e+00
: 213 : vars : 0.000e+00
: 214 : vars : 0.000e+00
: 215 : vars : 0.000e+00
: 216 : vars : 0.000e+00
: 217 : vars : 0.000e+00
: 218 : vars : 0.000e+00
: 219 : vars : 0.000e+00
: 220 : vars : 0.000e+00
: 221 : vars : 0.000e+00
: 222 : vars : 0.000e+00
: 223 : vars : 0.000e+00
: 224 : vars : 0.000e+00
: 225 : vars : 0.000e+00
: 226 : vars : 0.000e+00
: 227 : vars : 0.000e+00
: 228 : vars : 0.000e+00
: 229 : vars : 0.000e+00
: 230 : vars : 0.000e+00
: 231 : vars : 0.000e+00
: 232 : vars : 0.000e+00
: 233 : vars : 0.000e+00
: 234 : vars : 0.000e+00
: 235 : vars : 0.000e+00
: 236 : vars : 0.000e+00
: 237 : vars : 0.000e+00
: 238 : vars : 0.000e+00
: 239 : vars : 0.000e+00
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.40937
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 6.7902
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 9.49293
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 8.21652
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00184 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0127 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0904 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.772
: dataset TMVA_CNN_CPU : 0.653
: dataset TMVA_DNN_CPU : 0.584
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.145 (0.235) 0.490 (0.598) 0.630 (0.808)
: dataset TMVA_CNN_CPU : 0.035 (0.135) 0.258 (0.329) 0.475 (0.584)
: dataset TMVA_DNN_CPU : 0.010 (0.045) 0.175 (0.258) 0.410 (0.489)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m