Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.54 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0173 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 82.4576
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.909026 0.82023 0.148655 0.0144197 8939.51 0
: 2 | 0.676597 0.847467 0.145458 0.0170467 9345 1
: 3 Minimum Test error found - save the configuration
: 3 | 0.602272 0.786385 0.137995 0.0134779 9637.19 0
: 4 | 0.51356 0.787493 0.142277 0.0128484 9271.5 1
: 5 Minimum Test error found - save the configuration
: 5 | 0.468501 0.728411 0.13817 0.0128726 9577.24 0
: 6 | 0.407423 0.737731 0.134 0.012448 9872.35 1
: 7 Minimum Test error found - save the configuration
: 7 | 0.367465 0.703231 0.136119 0.012648 9718.85 0
: 8 | 0.301068 0.741125 0.13961 0.0130981 9485.27 1
: 9 | 0.271361 0.720678 0.140143 0.0118299 9352.15 2
: 10 Minimum Test error found - save the configuration
: 10 | 0.22382 0.695497 0.131956 0.0126706 10059.9 0
:
: Elapsed time for training with 1600 events: 1.42 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0699 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 304.417
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.04871 0.811654 1.06754 0.102989 1244.1 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.862472 0.807211 1.11426 0.0964041 1178.95 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.740501 0.700992 1.0721 0.0880515 1219.46 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.692867 0.68664 1.12329 0.0813781 1151.73 0
: 5 | 0.676327 0.690172 1.07802 0.0820251 1204.83 1
: 6 Minimum Test error found - save the configuration
: 6 | 0.665297 0.664068 1.13762 0.0803795 1135.03 0
: 7 | 0.651022 0.681995 1.09446 0.0902918 1195.02 1
: 8 Minimum Test error found - save the configuration
: 8 | 0.637384 0.658801 1.09257 0.0843404 1190.21 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.628703 0.627149 1.07319 0.0835621 1212.58 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.586469 0.601949 1.09179 0.0873669 1194.71 0
:
: Elapsed time for training with 1600 events: 11 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.461 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 9.182e-03
: 2 : vars : 7.906e-03
: 3 : vars : 7.903e-03
: 4 : vars : 7.757e-03
: 5 : vars : 7.625e-03
: 6 : vars : 7.512e-03
: 7 : vars : 7.335e-03
: 8 : vars : 7.320e-03
: 9 : vars : 7.273e-03
: 10 : vars : 7.261e-03
: 11 : vars : 7.187e-03
: 12 : vars : 7.180e-03
: 13 : vars : 7.073e-03
: 14 : vars : 7.022e-03
: 15 : vars : 6.978e-03
: 16 : vars : 6.904e-03
: 17 : vars : 6.874e-03
: 18 : vars : 6.553e-03
: 19 : vars : 6.529e-03
: 20 : vars : 6.505e-03
: 21 : vars : 6.480e-03
: 22 : vars : 6.347e-03
: 23 : vars : 6.306e-03
: 24 : vars : 6.197e-03
: 25 : vars : 6.191e-03
: 26 : vars : 6.175e-03
: 27 : vars : 6.157e-03
: 28 : vars : 6.109e-03
: 29 : vars : 6.082e-03
: 30 : vars : 6.042e-03
: 31 : vars : 5.884e-03
: 32 : vars : 5.851e-03
: 33 : vars : 5.812e-03
: 34 : vars : 5.792e-03
: 35 : vars : 5.791e-03
: 36 : vars : 5.765e-03
: 37 : vars : 5.735e-03
: 38 : vars : 5.712e-03
: 39 : vars : 5.697e-03
: 40 : vars : 5.690e-03
: 41 : vars : 5.681e-03
: 42 : vars : 5.674e-03
: 43 : vars : 5.594e-03
: 44 : vars : 5.571e-03
: 45 : vars : 5.560e-03
: 46 : vars : 5.545e-03
: 47 : vars : 5.507e-03
: 48 : vars : 5.494e-03
: 49 : vars : 5.492e-03
: 50 : vars : 5.394e-03
: 51 : vars : 5.388e-03
: 52 : vars : 5.383e-03
: 53 : vars : 5.339e-03
: 54 : vars : 5.332e-03
: 55 : vars : 5.327e-03
: 56 : vars : 5.311e-03
: 57 : vars : 5.276e-03
: 58 : vars : 5.270e-03
: 59 : vars : 5.261e-03
: 60 : vars : 5.246e-03
: 61 : vars : 5.209e-03
: 62 : vars : 5.195e-03
: 63 : vars : 5.183e-03
: 64 : vars : 5.148e-03
: 65 : vars : 5.125e-03
: 66 : vars : 5.123e-03
: 67 : vars : 5.122e-03
: 68 : vars : 5.101e-03
: 69 : vars : 5.081e-03
: 70 : vars : 5.034e-03
: 71 : vars : 4.990e-03
: 72 : vars : 4.986e-03
: 73 : vars : 4.979e-03
: 74 : vars : 4.974e-03
: 75 : vars : 4.971e-03
: 76 : vars : 4.929e-03
: 77 : vars : 4.904e-03
: 78 : vars : 4.879e-03
: 79 : vars : 4.846e-03
: 80 : vars : 4.846e-03
: 81 : vars : 4.837e-03
: 82 : vars : 4.781e-03
: 83 : vars : 4.767e-03
: 84 : vars : 4.737e-03
: 85 : vars : 4.724e-03
: 86 : vars : 4.712e-03
: 87 : vars : 4.704e-03
: 88 : vars : 4.667e-03
: 89 : vars : 4.663e-03
: 90 : vars : 4.644e-03
: 91 : vars : 4.630e-03
: 92 : vars : 4.620e-03
: 93 : vars : 4.601e-03
: 94 : vars : 4.593e-03
: 95 : vars : 4.564e-03
: 96 : vars : 4.563e-03
: 97 : vars : 4.535e-03
: 98 : vars : 4.420e-03
: 99 : vars : 4.411e-03
: 100 : vars : 4.365e-03
: 101 : vars : 4.329e-03
: 102 : vars : 4.308e-03
: 103 : vars : 4.299e-03
: 104 : vars : 4.266e-03
: 105 : vars : 4.251e-03
: 106 : vars : 4.249e-03
: 107 : vars : 4.242e-03
: 108 : vars : 4.232e-03
: 109 : vars : 4.182e-03
: 110 : vars : 4.154e-03
: 111 : vars : 4.134e-03
: 112 : vars : 4.131e-03
: 113 : vars : 4.126e-03
: 114 : vars : 4.120e-03
: 115 : vars : 4.117e-03
: 116 : vars : 4.116e-03
: 117 : vars : 4.059e-03
: 118 : vars : 4.037e-03
: 119 : vars : 4.026e-03
: 120 : vars : 4.021e-03
: 121 : vars : 4.002e-03
: 122 : vars : 3.988e-03
: 123 : vars : 3.969e-03
: 124 : vars : 3.965e-03
: 125 : vars : 3.963e-03
: 126 : vars : 3.918e-03
: 127 : vars : 3.908e-03
: 128 : vars : 3.904e-03
: 129 : vars : 3.884e-03
: 130 : vars : 3.840e-03
: 131 : vars : 3.839e-03
: 132 : vars : 3.835e-03
: 133 : vars : 3.833e-03
: 134 : vars : 3.796e-03
: 135 : vars : 3.784e-03
: 136 : vars : 3.763e-03
: 137 : vars : 3.758e-03
: 138 : vars : 3.722e-03
: 139 : vars : 3.710e-03
: 140 : vars : 3.682e-03
: 141 : vars : 3.675e-03
: 142 : vars : 3.637e-03
: 143 : vars : 3.622e-03
: 144 : vars : 3.559e-03
: 145 : vars : 3.518e-03
: 146 : vars : 3.494e-03
: 147 : vars : 3.471e-03
: 148 : vars : 3.469e-03
: 149 : vars : 3.459e-03
: 150 : vars : 3.415e-03
: 151 : vars : 3.407e-03
: 152 : vars : 3.405e-03
: 153 : vars : 3.401e-03
: 154 : vars : 3.352e-03
: 155 : vars : 3.331e-03
: 156 : vars : 3.316e-03
: 157 : vars : 3.289e-03
: 158 : vars : 3.288e-03
: 159 : vars : 3.265e-03
: 160 : vars : 3.252e-03
: 161 : vars : 3.241e-03
: 162 : vars : 3.237e-03
: 163 : vars : 3.220e-03
: 164 : vars : 3.212e-03
: 165 : vars : 3.206e-03
: 166 : vars : 3.201e-03
: 167 : vars : 3.198e-03
: 168 : vars : 3.178e-03
: 169 : vars : 3.177e-03
: 170 : vars : 3.151e-03
: 171 : vars : 3.149e-03
: 172 : vars : 3.127e-03
: 173 : vars : 3.123e-03
: 174 : vars : 3.099e-03
: 175 : vars : 3.098e-03
: 176 : vars : 3.090e-03
: 177 : vars : 3.081e-03
: 178 : vars : 3.071e-03
: 179 : vars : 3.068e-03
: 180 : vars : 3.067e-03
: 181 : vars : 3.060e-03
: 182 : vars : 3.029e-03
: 183 : vars : 3.027e-03
: 184 : vars : 2.998e-03
: 185 : vars : 2.993e-03
: 186 : vars : 2.979e-03
: 187 : vars : 2.977e-03
: 188 : vars : 2.927e-03
: 189 : vars : 2.905e-03
: 190 : vars : 2.904e-03
: 191 : vars : 2.834e-03
: 192 : vars : 2.833e-03
: 193 : vars : 2.820e-03
: 194 : vars : 2.800e-03
: 195 : vars : 2.778e-03
: 196 : vars : 2.748e-03
: 197 : vars : 2.721e-03
: 198 : vars : 2.705e-03
: 199 : vars : 2.702e-03
: 200 : vars : 2.698e-03
: 201 : vars : 2.644e-03
: 202 : vars : 2.639e-03
: 203 : vars : 2.613e-03
: 204 : vars : 2.603e-03
: 205 : vars : 2.578e-03
: 206 : vars : 2.573e-03
: 207 : vars : 2.544e-03
: 208 : vars : 2.513e-03
: 209 : vars : 2.505e-03
: 210 : vars : 2.488e-03
: 211 : vars : 2.440e-03
: 212 : vars : 2.364e-03
: 213 : vars : 2.298e-03
: 214 : vars : 2.272e-03
: 215 : vars : 2.257e-03
: 216 : vars : 2.233e-03
: 217 : vars : 2.210e-03
: 218 : vars : 2.207e-03
: 219 : vars : 2.198e-03
: 220 : vars : 2.063e-03
: 221 : vars : 2.019e-03
: 222 : vars : 2.015e-03
: 223 : vars : 2.002e-03
: 224 : vars : 1.968e-03
: 225 : vars : 1.936e-03
: 226 : vars : 1.906e-03
: 227 : vars : 1.897e-03
: 228 : vars : 1.893e-03
: 229 : vars : 1.827e-03
: 230 : vars : 1.804e-03
: 231 : vars : 1.783e-03
: 232 : vars : 1.476e-03
: 233 : vars : 1.443e-03
: 234 : vars : 1.294e-03
: 235 : vars : 1.273e-03
: 236 : vars : 1.247e-03
: 237 : vars : 1.213e-03
: 238 : vars : 1.209e-03
: 239 : vars : 1.196e-03
: 240 : vars : 1.023e-03
: 241 : vars : 9.603e-04
: 242 : vars : 7.017e-04
: 243 : vars : 6.445e-04
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.74109
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.56825
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 8.18975
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 6.93063
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00466 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0158 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.118 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.751
: dataset TMVA_DNN_CPU : 0.737
: dataset TMVA_CNN_CPU : 0.711
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.025 (0.285) 0.420 (0.670) 0.671 (0.869)
: dataset TMVA_DNN_CPU : 0.015 (0.155) 0.305 (0.674) 0.663 (0.858)
: dataset TMVA_CNN_CPU : 0.065 (0.089) 0.250 (0.366) 0.578 (0.675)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m