Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.46 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0145 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 118.519
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.907374 0.835137 0.123088 0.0112421 10729 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.669097 0.756699 0.110408 0.0114533 12126.7 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.581824 0.737363 0.133281 0.0177556 10387.3 0
: 4 | 0.510612 0.741286 0.121324 0.0100761 10786.8 1
: 5 Minimum Test error found - save the configuration
: 5 | 0.453079 0.728202 0.157947 0.0184269 8600.92 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.391056 0.708215 0.123951 0.011643 10684.9 0
: 7 | 0.358409 0.748329 0.108649 0.010104 12177.2 1
: 8 | 0.311963 0.709291 0.112024 0.0137766 12214 2
: 9 Minimum Test error found - save the configuration
: 9 | 0.253518 0.680321 0.132362 0.0147879 10206.3 0
: 10 | 0.227914 0.693855 0.113073 0.0113619 11798.1 1
:
: Elapsed time for training with 1600 events: 1.26 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0582 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 49.6223
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.19475 1.22807 0.840863 0.0728347 1562.44 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.892342 0.807776 0.850427 0.0771156 1551.77 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.722615 0.71699 0.774143 0.0671705 1697.38 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.690111 0.706411 0.84265 0.0730674 1559.29 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.67711 0.695185 0.779431 0.0735932 1700.11 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.666588 0.692564 0.785925 0.0664738 1667.94 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.661335 0.688036 0.828282 0.0737463 1590.38 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.650909 0.682525 0.905996 0.108063 1503.89 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.640299 0.67885 0.821819 0.0753711 1607.61 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.627583 0.672546 0.795459 0.0712268 1656.93 0
:
: Elapsed time for training with 1600 events: 8.3 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.402 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 8.538e-03
: 2 : vars : 8.293e-03
: 3 : vars : 8.253e-03
: 4 : vars : 7.929e-03
: 5 : vars : 7.852e-03
: 6 : vars : 7.772e-03
: 7 : vars : 7.721e-03
: 8 : vars : 7.720e-03
: 9 : vars : 7.677e-03
: 10 : vars : 7.672e-03
: 11 : vars : 7.562e-03
: 12 : vars : 7.497e-03
: 13 : vars : 7.492e-03
: 14 : vars : 7.390e-03
: 15 : vars : 7.370e-03
: 16 : vars : 7.145e-03
: 17 : vars : 7.141e-03
: 18 : vars : 7.084e-03
: 19 : vars : 6.874e-03
: 20 : vars : 6.792e-03
: 21 : vars : 6.755e-03
: 22 : vars : 6.669e-03
: 23 : vars : 6.574e-03
: 24 : vars : 6.546e-03
: 25 : vars : 6.524e-03
: 26 : vars : 6.392e-03
: 27 : vars : 6.358e-03
: 28 : vars : 6.353e-03
: 29 : vars : 6.298e-03
: 30 : vars : 6.265e-03
: 31 : vars : 6.253e-03
: 32 : vars : 6.211e-03
: 33 : vars : 6.174e-03
: 34 : vars : 6.123e-03
: 35 : vars : 6.045e-03
: 36 : vars : 6.015e-03
: 37 : vars : 5.958e-03
: 38 : vars : 5.940e-03
: 39 : vars : 5.926e-03
: 40 : vars : 5.805e-03
: 41 : vars : 5.774e-03
: 42 : vars : 5.770e-03
: 43 : vars : 5.757e-03
: 44 : vars : 5.719e-03
: 45 : vars : 5.605e-03
: 46 : vars : 5.574e-03
: 47 : vars : 5.508e-03
: 48 : vars : 5.461e-03
: 49 : vars : 5.450e-03
: 50 : vars : 5.448e-03
: 51 : vars : 5.434e-03
: 52 : vars : 5.432e-03
: 53 : vars : 5.421e-03
: 54 : vars : 5.375e-03
: 55 : vars : 5.332e-03
: 56 : vars : 5.269e-03
: 57 : vars : 5.170e-03
: 58 : vars : 5.166e-03
: 59 : vars : 5.158e-03
: 60 : vars : 5.149e-03
: 61 : vars : 5.142e-03
: 62 : vars : 5.079e-03
: 63 : vars : 5.064e-03
: 64 : vars : 5.059e-03
: 65 : vars : 5.051e-03
: 66 : vars : 5.018e-03
: 67 : vars : 4.979e-03
: 68 : vars : 4.967e-03
: 69 : vars : 4.956e-03
: 70 : vars : 4.955e-03
: 71 : vars : 4.911e-03
: 72 : vars : 4.901e-03
: 73 : vars : 4.890e-03
: 74 : vars : 4.884e-03
: 75 : vars : 4.870e-03
: 76 : vars : 4.857e-03
: 77 : vars : 4.847e-03
: 78 : vars : 4.810e-03
: 79 : vars : 4.798e-03
: 80 : vars : 4.794e-03
: 81 : vars : 4.754e-03
: 82 : vars : 4.741e-03
: 83 : vars : 4.724e-03
: 84 : vars : 4.710e-03
: 85 : vars : 4.709e-03
: 86 : vars : 4.697e-03
: 87 : vars : 4.666e-03
: 88 : vars : 4.660e-03
: 89 : vars : 4.620e-03
: 90 : vars : 4.617e-03
: 91 : vars : 4.614e-03
: 92 : vars : 4.610e-03
: 93 : vars : 4.600e-03
: 94 : vars : 4.592e-03
: 95 : vars : 4.579e-03
: 96 : vars : 4.571e-03
: 97 : vars : 4.553e-03
: 98 : vars : 4.542e-03
: 99 : vars : 4.510e-03
: 100 : vars : 4.471e-03
: 101 : vars : 4.469e-03
: 102 : vars : 4.402e-03
: 103 : vars : 4.394e-03
: 104 : vars : 4.371e-03
: 105 : vars : 4.346e-03
: 106 : vars : 4.258e-03
: 107 : vars : 4.226e-03
: 108 : vars : 4.217e-03
: 109 : vars : 4.214e-03
: 110 : vars : 4.160e-03
: 111 : vars : 4.140e-03
: 112 : vars : 4.129e-03
: 113 : vars : 4.125e-03
: 114 : vars : 4.080e-03
: 115 : vars : 4.078e-03
: 116 : vars : 3.964e-03
: 117 : vars : 3.963e-03
: 118 : vars : 3.959e-03
: 119 : vars : 3.913e-03
: 120 : vars : 3.892e-03
: 121 : vars : 3.886e-03
: 122 : vars : 3.857e-03
: 123 : vars : 3.795e-03
: 124 : vars : 3.788e-03
: 125 : vars : 3.787e-03
: 126 : vars : 3.782e-03
: 127 : vars : 3.712e-03
: 128 : vars : 3.708e-03
: 129 : vars : 3.703e-03
: 130 : vars : 3.689e-03
: 131 : vars : 3.678e-03
: 132 : vars : 3.653e-03
: 133 : vars : 3.645e-03
: 134 : vars : 3.635e-03
: 135 : vars : 3.633e-03
: 136 : vars : 3.628e-03
: 137 : vars : 3.597e-03
: 138 : vars : 3.568e-03
: 139 : vars : 3.527e-03
: 140 : vars : 3.523e-03
: 141 : vars : 3.505e-03
: 142 : vars : 3.493e-03
: 143 : vars : 3.434e-03
: 144 : vars : 3.403e-03
: 145 : vars : 3.393e-03
: 146 : vars : 3.362e-03
: 147 : vars : 3.330e-03
: 148 : vars : 3.322e-03
: 149 : vars : 3.313e-03
: 150 : vars : 3.305e-03
: 151 : vars : 3.293e-03
: 152 : vars : 3.219e-03
: 153 : vars : 3.193e-03
: 154 : vars : 3.170e-03
: 155 : vars : 3.154e-03
: 156 : vars : 3.138e-03
: 157 : vars : 3.129e-03
: 158 : vars : 3.103e-03
: 159 : vars : 3.096e-03
: 160 : vars : 3.090e-03
: 161 : vars : 3.082e-03
: 162 : vars : 3.078e-03
: 163 : vars : 3.063e-03
: 164 : vars : 3.054e-03
: 165 : vars : 3.040e-03
: 166 : vars : 3.038e-03
: 167 : vars : 3.024e-03
: 168 : vars : 2.976e-03
: 169 : vars : 2.968e-03
: 170 : vars : 2.951e-03
: 171 : vars : 2.932e-03
: 172 : vars : 2.923e-03
: 173 : vars : 2.914e-03
: 174 : vars : 2.893e-03
: 175 : vars : 2.890e-03
: 176 : vars : 2.888e-03
: 177 : vars : 2.887e-03
: 178 : vars : 2.862e-03
: 179 : vars : 2.858e-03
: 180 : vars : 2.855e-03
: 181 : vars : 2.854e-03
: 182 : vars : 2.838e-03
: 183 : vars : 2.822e-03
: 184 : vars : 2.822e-03
: 185 : vars : 2.815e-03
: 186 : vars : 2.760e-03
: 187 : vars : 2.723e-03
: 188 : vars : 2.718e-03
: 189 : vars : 2.680e-03
: 190 : vars : 2.658e-03
: 191 : vars : 2.639e-03
: 192 : vars : 2.580e-03
: 193 : vars : 2.575e-03
: 194 : vars : 2.548e-03
: 195 : vars : 2.475e-03
: 196 : vars : 2.473e-03
: 197 : vars : 2.457e-03
: 198 : vars : 2.455e-03
: 199 : vars : 2.449e-03
: 200 : vars : 2.449e-03
: 201 : vars : 2.384e-03
: 202 : vars : 2.359e-03
: 203 : vars : 2.345e-03
: 204 : vars : 2.321e-03
: 205 : vars : 2.285e-03
: 206 : vars : 2.282e-03
: 207 : vars : 2.227e-03
: 208 : vars : 2.219e-03
: 209 : vars : 2.200e-03
: 210 : vars : 2.199e-03
: 211 : vars : 2.158e-03
: 212 : vars : 2.152e-03
: 213 : vars : 2.150e-03
: 214 : vars : 2.139e-03
: 215 : vars : 2.137e-03
: 216 : vars : 2.127e-03
: 217 : vars : 2.109e-03
: 218 : vars : 2.039e-03
: 219 : vars : 1.996e-03
: 220 : vars : 1.990e-03
: 221 : vars : 1.982e-03
: 222 : vars : 1.972e-03
: 223 : vars : 1.908e-03
: 224 : vars : 1.896e-03
: 225 : vars : 1.887e-03
: 226 : vars : 1.874e-03
: 227 : vars : 1.792e-03
: 228 : vars : 1.782e-03
: 229 : vars : 1.781e-03
: 230 : vars : 1.774e-03
: 231 : vars : 1.734e-03
: 232 : vars : 1.715e-03
: 233 : vars : 1.668e-03
: 234 : vars : 1.667e-03
: 235 : vars : 1.654e-03
: 236 : vars : 1.573e-03
: 237 : vars : 1.509e-03
: 238 : vars : 1.469e-03
: 239 : vars : 1.461e-03
: 240 : vars : 1.428e-03
: 241 : vars : 1.402e-03
: 242 : vars : 1.324e-03
: 243 : vars : 1.278e-03
: 244 : vars : 1.226e-03
: 245 : vars : 1.161e-03
: 246 : vars : 1.083e-03
: 247 : vars : 1.016e-03
: 248 : vars : 8.038e-04
: 249 : vars : 5.547e-04
: 250 : vars : 2.028e-06
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.66485
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.3387
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 8.42364
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.56895
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00485 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0151 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.107 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.741
: dataset TMVA_DNN_CPU : 0.705
: dataset TMVA_CNN_CPU : 0.580
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.105 (0.245) 0.255 (0.652) 0.689 (0.863)
: dataset TMVA_DNN_CPU : 0.030 (0.232) 0.275 (0.556) 0.545 (0.802)
: dataset TMVA_CNN_CPU : 0.040 (0.043) 0.140 (0.221) 0.365 (0.432)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m