Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.29 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0158 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 36.2425
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.887048 1.07669 0.105726 0.0106386 12620 0
: 2 | 0.665364 1.25709 0.106216 0.0103756 12520.8 1
: 3 | 0.575651 1.11212 0.104319 0.00985484 12703.2 2
: 4 | 0.519806 1.21034 0.105262 0.0100699 12606.1 3
: 5 | 0.441736 1.26895 0.103249 0.00980779 12842.3 4
: 6 Minimum Test error found - save the configuration
: 6 | 0.390484 1.06834 0.105347 0.0110475 12725.3 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.346605 0.935587 0.105658 0.0103204 12586.8 0
: 8 | 0.305338 1.00233 0.104884 0.0100834 12658.1 1
: 9 | 0.274955 0.980259 0.10519 0.0100358 12611.1 2
: 10 | 0.2383 1.05312 0.104617 0.00979844 12655.7 3
:
: Elapsed time for training with 1600 events: 1.07 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0528 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 51.2986
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 3.15742 1.77515 0.770888 0.067812 1706.79 0
: 2 Minimum Test error found - save the configuration
: 2 | 1.00786 0.689354 0.754024 0.0654579 1742.75 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.723 0.659521 0.739135 0.0649012 1779.8 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.664006 0.65266 0.765248 0.0695905 1724.99 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.652211 0.652593 0.784761 0.0644901 1666.04 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.639872 0.640457 0.751614 0.0658055 1749.76 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.630091 0.630446 0.758841 0.0691904 1740.01 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.610406 0.615344 0.761713 0.06629 1725.57 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.598753 0.599292 0.754068 0.0666809 1745.74 0
: 10 | 0.584586 0.618273 0.765924 0.0650576 1712.17 1
:
: Elapsed time for training with 1600 events: 7.68 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.357 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 9.572e-03
: 2 : vars : 9.188e-03
: 3 : vars : 9.057e-03
: 4 : vars : 8.908e-03
: 5 : vars : 8.343e-03
: 6 : vars : 7.980e-03
: 7 : vars : 7.833e-03
: 8 : vars : 7.759e-03
: 9 : vars : 7.443e-03
: 10 : vars : 7.321e-03
: 11 : vars : 7.230e-03
: 12 : vars : 7.124e-03
: 13 : vars : 7.057e-03
: 14 : vars : 7.056e-03
: 15 : vars : 6.926e-03
: 16 : vars : 6.808e-03
: 17 : vars : 6.754e-03
: 18 : vars : 6.649e-03
: 19 : vars : 6.625e-03
: 20 : vars : 6.604e-03
: 21 : vars : 6.554e-03
: 22 : vars : 6.425e-03
: 23 : vars : 6.386e-03
: 24 : vars : 6.329e-03
: 25 : vars : 6.225e-03
: 26 : vars : 6.058e-03
: 27 : vars : 6.053e-03
: 28 : vars : 6.051e-03
: 29 : vars : 5.963e-03
: 30 : vars : 5.885e-03
: 31 : vars : 5.831e-03
: 32 : vars : 5.797e-03
: 33 : vars : 5.696e-03
: 34 : vars : 5.676e-03
: 35 : vars : 5.658e-03
: 36 : vars : 5.533e-03
: 37 : vars : 5.506e-03
: 38 : vars : 5.506e-03
: 39 : vars : 5.480e-03
: 40 : vars : 5.448e-03
: 41 : vars : 5.445e-03
: 42 : vars : 5.444e-03
: 43 : vars : 5.416e-03
: 44 : vars : 5.399e-03
: 45 : vars : 5.371e-03
: 46 : vars : 5.344e-03
: 47 : vars : 5.330e-03
: 48 : vars : 5.308e-03
: 49 : vars : 5.254e-03
: 50 : vars : 5.237e-03
: 51 : vars : 5.233e-03
: 52 : vars : 5.189e-03
: 53 : vars : 5.131e-03
: 54 : vars : 5.107e-03
: 55 : vars : 5.099e-03
: 56 : vars : 5.064e-03
: 57 : vars : 5.060e-03
: 58 : vars : 5.050e-03
: 59 : vars : 5.041e-03
: 60 : vars : 5.024e-03
: 61 : vars : 5.008e-03
: 62 : vars : 5.002e-03
: 63 : vars : 4.900e-03
: 64 : vars : 4.868e-03
: 65 : vars : 4.844e-03
: 66 : vars : 4.842e-03
: 67 : vars : 4.827e-03
: 68 : vars : 4.816e-03
: 69 : vars : 4.804e-03
: 70 : vars : 4.802e-03
: 71 : vars : 4.799e-03
: 72 : vars : 4.746e-03
: 73 : vars : 4.722e-03
: 74 : vars : 4.714e-03
: 75 : vars : 4.653e-03
: 76 : vars : 4.645e-03
: 77 : vars : 4.638e-03
: 78 : vars : 4.626e-03
: 79 : vars : 4.621e-03
: 80 : vars : 4.617e-03
: 81 : vars : 4.612e-03
: 82 : vars : 4.545e-03
: 83 : vars : 4.540e-03
: 84 : vars : 4.536e-03
: 85 : vars : 4.522e-03
: 86 : vars : 4.520e-03
: 87 : vars : 4.511e-03
: 88 : vars : 4.504e-03
: 89 : vars : 4.475e-03
: 90 : vars : 4.474e-03
: 91 : vars : 4.472e-03
: 92 : vars : 4.459e-03
: 93 : vars : 4.449e-03
: 94 : vars : 4.438e-03
: 95 : vars : 4.428e-03
: 96 : vars : 4.422e-03
: 97 : vars : 4.386e-03
: 98 : vars : 4.377e-03
: 99 : vars : 4.360e-03
: 100 : vars : 4.353e-03
: 101 : vars : 4.339e-03
: 102 : vars : 4.319e-03
: 103 : vars : 4.301e-03
: 104 : vars : 4.291e-03
: 105 : vars : 4.286e-03
: 106 : vars : 4.269e-03
: 107 : vars : 4.266e-03
: 108 : vars : 4.253e-03
: 109 : vars : 4.234e-03
: 110 : vars : 4.168e-03
: 111 : vars : 4.161e-03
: 112 : vars : 4.156e-03
: 113 : vars : 4.151e-03
: 114 : vars : 4.146e-03
: 115 : vars : 4.125e-03
: 116 : vars : 4.116e-03
: 117 : vars : 4.088e-03
: 118 : vars : 4.088e-03
: 119 : vars : 4.051e-03
: 120 : vars : 4.038e-03
: 121 : vars : 4.026e-03
: 122 : vars : 4.022e-03
: 123 : vars : 3.976e-03
: 124 : vars : 3.975e-03
: 125 : vars : 3.970e-03
: 126 : vars : 3.964e-03
: 127 : vars : 3.963e-03
: 128 : vars : 3.927e-03
: 129 : vars : 3.910e-03
: 130 : vars : 3.906e-03
: 131 : vars : 3.876e-03
: 132 : vars : 3.839e-03
: 133 : vars : 3.798e-03
: 134 : vars : 3.788e-03
: 135 : vars : 3.776e-03
: 136 : vars : 3.770e-03
: 137 : vars : 3.767e-03
: 138 : vars : 3.748e-03
: 139 : vars : 3.747e-03
: 140 : vars : 3.735e-03
: 141 : vars : 3.720e-03
: 142 : vars : 3.719e-03
: 143 : vars : 3.688e-03
: 144 : vars : 3.653e-03
: 145 : vars : 3.652e-03
: 146 : vars : 3.652e-03
: 147 : vars : 3.644e-03
: 148 : vars : 3.631e-03
: 149 : vars : 3.620e-03
: 150 : vars : 3.612e-03
: 151 : vars : 3.578e-03
: 152 : vars : 3.564e-03
: 153 : vars : 3.562e-03
: 154 : vars : 3.550e-03
: 155 : vars : 3.548e-03
: 156 : vars : 3.527e-03
: 157 : vars : 3.508e-03
: 158 : vars : 3.481e-03
: 159 : vars : 3.460e-03
: 160 : vars : 3.458e-03
: 161 : vars : 3.412e-03
: 162 : vars : 3.390e-03
: 163 : vars : 3.373e-03
: 164 : vars : 3.365e-03
: 165 : vars : 3.342e-03
: 166 : vars : 3.336e-03
: 167 : vars : 3.313e-03
: 168 : vars : 3.259e-03
: 169 : vars : 3.210e-03
: 170 : vars : 3.208e-03
: 171 : vars : 3.208e-03
: 172 : vars : 3.196e-03
: 173 : vars : 3.190e-03
: 174 : vars : 3.160e-03
: 175 : vars : 3.155e-03
: 176 : vars : 3.113e-03
: 177 : vars : 3.108e-03
: 178 : vars : 3.073e-03
: 179 : vars : 3.051e-03
: 180 : vars : 3.035e-03
: 181 : vars : 2.992e-03
: 182 : vars : 2.989e-03
: 183 : vars : 2.976e-03
: 184 : vars : 2.922e-03
: 185 : vars : 2.884e-03
: 186 : vars : 2.866e-03
: 187 : vars : 2.852e-03
: 188 : vars : 2.840e-03
: 189 : vars : 2.834e-03
: 190 : vars : 2.832e-03
: 191 : vars : 2.824e-03
: 192 : vars : 2.785e-03
: 193 : vars : 2.774e-03
: 194 : vars : 2.771e-03
: 195 : vars : 2.753e-03
: 196 : vars : 2.733e-03
: 197 : vars : 2.720e-03
: 198 : vars : 2.679e-03
: 199 : vars : 2.677e-03
: 200 : vars : 2.667e-03
: 201 : vars : 2.634e-03
: 202 : vars : 2.602e-03
: 203 : vars : 2.582e-03
: 204 : vars : 2.540e-03
: 205 : vars : 2.496e-03
: 206 : vars : 2.492e-03
: 207 : vars : 2.448e-03
: 208 : vars : 2.447e-03
: 209 : vars : 2.393e-03
: 210 : vars : 2.370e-03
: 211 : vars : 2.367e-03
: 212 : vars : 2.363e-03
: 213 : vars : 2.309e-03
: 214 : vars : 2.300e-03
: 215 : vars : 2.298e-03
: 216 : vars : 2.287e-03
: 217 : vars : 2.285e-03
: 218 : vars : 2.279e-03
: 219 : vars : 2.258e-03
: 220 : vars : 2.232e-03
: 221 : vars : 2.227e-03
: 222 : vars : 2.151e-03
: 223 : vars : 2.098e-03
: 224 : vars : 2.065e-03
: 225 : vars : 2.065e-03
: 226 : vars : 2.064e-03
: 227 : vars : 2.059e-03
: 228 : vars : 2.030e-03
: 229 : vars : 2.015e-03
: 230 : vars : 1.987e-03
: 231 : vars : 1.974e-03
: 232 : vars : 1.836e-03
: 233 : vars : 1.719e-03
: 234 : vars : 1.715e-03
: 235 : vars : 1.655e-03
: 236 : vars : 1.606e-03
: 237 : vars : 1.597e-03
: 238 : vars : 1.585e-03
: 239 : vars : 1.268e-03
: 240 : vars : 1.227e-03
: 241 : vars : 6.650e-04
: 242 : vars : 4.522e-04
: 243 : vars : 2.207e-04
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.64529
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 10.9648
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 9.2682
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.53309
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00429 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0197 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0866 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset TMVA_CNN_CPU : 0.752
: dataset BDT : 0.712
: dataset TMVA_DNN_CPU : 0.660
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset TMVA_CNN_CPU : 0.058 (0.095) 0.415 (0.470) 0.654 (0.715)
: dataset BDT : 0.085 (0.297) 0.298 (0.596) 0.590 (0.826)
: dataset TMVA_DNN_CPU : 0.045 (0.135) 0.305 (0.560) 0.528 (0.787)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m