library: libRooFit #include "RooAbsPdf.h" |
RooAbsPdf
class description - header file - source file - inheritance tree (.pdf)
This is an abstract class, constructors will not be documented.
Look at the header to check for available constructors.
protected:
virtual RooAbsGenContext* genContext(const RooArgSet& vars, const RooDataSet* prototype = 0, const RooArgSet* auxProto = 0, Bool_t verbose = kFALSE) const
static void globalSelectComp(Bool_t flag)
virtual void operModeHook()
virtual RooPlot* paramOn(RooPlot* frame, const RooArgSet& params, Bool_t showConstants = kFALSE, const char* label = "", Int_t sigDigits = 2, Option_t* options = "NELU", Double_t xmin = 0.65, Double_t xmax = 0.99, Double_t ymax = 0.95, const RooCmdArg* formatCmd = 0)
virtual RooPlot* plotCompOnEngine(RooPlot* frame, RooArgSet* selNodes, Option_t* drawOptions = "L", Double_t scaleFactor = 1.0, RooAbsReal::ScaleType stype = Relative, const RooAbsData* projData = 0, const RooArgSet* projSet = 0) const
virtual RooPlot* plotOn(RooPlot* frame, RooLinkedList& cmdList) const
virtual RooPlot* plotOn(RooPlot* frame, RooAbsReal::PlotOpt o) const
void plotOnCompSelect(RooArgSet* selNodes) const
static void raiseEvalError()
Int_t* randomizeProtoOrder(Int_t nProto, Int_t nGen, Bool_t resample = kFALSE) const
virtual Bool_t redirectServersHook(const RooAbsCollection& newServerList, Bool_t mustReplaceAll, Bool_t nameChange, Bool_t isRecursive)
void selectComp(Bool_t flag)
virtual Bool_t syncNormalization(const RooArgSet* dset, Bool_t adjustProxies = kTRUE) const
virtual void syncNormalizationPostHook(RooAbsReal* norm, const RooArgSet* dset) const
virtual Bool_t syncNormalizationPreHook(RooAbsReal* norm, const RooArgSet* dset) const
public:
virtual ~RooAbsPdf()
virtual Double_t analyticalIntegralWN(Int_t code, const RooArgSet* normSet, const char* rangeName = "0") const
Bool_t canBeExtended() const
static TClass* Class()
static void clearEvalError()
static Bool_t evalError()
virtual Double_t expectedEvents(const RooArgSet* nset) const
virtual Double_t expectedEvents(const RooArgSet& nset) const
virtual Double_t extendedTerm(UInt_t observedEvents, const RooArgSet* nset = 0) const
virtual RooAbsPdf::ExtendMode extendMode() const
virtual RooFitResult* fitTo(RooAbsData& data, RooCmdArg arg1, RooCmdArg arg2 = RooCmdArg::none, RooCmdArg arg3 = RooCmdArg::none, RooCmdArg arg4 = RooCmdArg::none, RooCmdArg arg5 = RooCmdArg::none, RooCmdArg arg6 = RooCmdArg::none, RooCmdArg arg7 = RooCmdArg::none, RooCmdArg arg8 = RooCmdArg::none)
virtual RooFitResult* fitTo(RooAbsData& data, const RooLinkedList& cmdList)
virtual RooFitResult* fitTo(RooAbsData& data, const RooArgSet& projDeps, Option_t* fitOpt = "", Option_t* optOpt = "c", const char* fitRange = "0")
virtual RooFitResult* fitTo(RooAbsData& data, Option_t* fitOpt = "", Option_t* optOpt = "c", const char* fitRange = "0")
virtual void fixAddCoefNormalization(const RooArgSet& addNormSet = RooArgSet())
virtual void fixAddCoefRange(const char* rangeName = "0")
RooDataSet* generate(const RooArgSet& whatVars, Int_t nEvents, const RooCmdArg& arg1, const RooCmdArg& arg2 = RooCmdArg::none, const RooCmdArg& arg3 = RooCmdArg::none, const RooCmdArg& arg4 = RooCmdArg::none, const RooCmdArg& arg5 = RooCmdArg::none)
RooDataSet* generate(const RooArgSet& whatVars, const RooCmdArg& arg1 = RooCmdArg::none, const RooCmdArg& arg2 = RooCmdArg::none, const RooCmdArg& arg3 = RooCmdArg::none, const RooCmdArg& arg4 = RooCmdArg::none, const RooCmdArg& arg5 = RooCmdArg::none, const RooCmdArg& arg6 = RooCmdArg::none)
RooDataSet* generate(const RooArgSet& whatVars, Int_t nEvents = 0, Bool_t verbose = kFALSE) const
RooDataSet* generate(const RooArgSet& whatVars, const RooDataSet& prototype, Int_t nEvents = 0, Bool_t verbose = kFALSE, Bool_t randProtoOrder = kFALSE, Bool_t resampleProto = kFALSE) const
virtual void generateEvent(Int_t code)
virtual Int_t getGenerator(const RooArgSet& directVars, RooArgSet& generateVars, Bool_t staticInitOK = kTRUE) const
Double_t getLogVal(const RooArgSet* set = 0) const
Double_t getNorm(const RooArgSet& nset) const
virtual Double_t getNorm(const RooArgSet* set = 0) const
virtual const RooAbsReal* getNormObj(const RooArgSet* set, const RooArgSet* iset, const TNamed* rangeName = 0) const
virtual Double_t getVal(const RooArgSet* set = 0) const
virtual void initGenerator(Int_t code)
virtual TClass* IsA() const
virtual Bool_t isDirectGenSafe(const RooAbsArg& arg) const
Bool_t isSelectedComp() const
Bool_t mustBeExtended() const
virtual RooPlot* paramOn(RooPlot* frame, const RooCmdArg& arg1 = RooCmdArg::none, const RooCmdArg& arg2 = RooCmdArg::none, const RooCmdArg& arg3 = RooCmdArg::none, const RooCmdArg& arg4 = RooCmdArg::none, const RooCmdArg& arg5 = RooCmdArg::none, const RooCmdArg& arg6 = RooCmdArg::none, const RooCmdArg& arg7 = RooCmdArg::none, const RooCmdArg& arg8 = RooCmdArg::none)
virtual RooPlot* paramOn(RooPlot* frame, const RooAbsData* data, const char* label = "", Int_t sigDigits = 2, Option_t* options = "NELU", Double_t xmin = 0.65, Double_t xmax = 0.99, Double_t ymax = 0.95)
virtual RooPlot* plotCompOn(RooPlot* frame, const char* compNameList, Option_t* drawOptions = "L", Double_t scaleFactor = 1.0, RooAbsReal::ScaleType stype = Relative, const RooAbsData* projData = 0, const RooArgSet* projSet = 0) const
virtual RooPlot* plotCompOn(RooPlot* frame, const RooArgSet& compSet, Option_t* drawOptions = "L", Double_t scaleFactor = 1.0, RooAbsReal::ScaleType stype = Relative, const RooAbsData* projData = 0, const RooArgSet* projSet = 0) const
virtual RooPlot* plotCompSliceOn(RooPlot* frame, const char* compNameList, const RooArgSet& sliceSet, Option_t* drawOptions = "L", Double_t scaleFactor = 1.0, RooAbsReal::ScaleType stype = Relative, const RooAbsData* projData = 0) const
virtual RooPlot* plotCompSliceOn(RooPlot* frame, const RooArgSet& compSet, const RooArgSet& sliceSet, Option_t* drawOptions = "L", Double_t scaleFactor = 1.0, RooAbsReal::ScaleType stype = Relative, const RooAbsData* projData = 0) const
RooPlot* plotNLLOn(RooPlot* frame, RooDataSet* data, Option_t* drawOptions = "L", Double_t prec = 1e-2, Bool_t fixMinToZero = kTRUE)
virtual RooPlot* plotNLLOn(RooPlot* frame, RooDataSet* data, Bool_t extended, Option_t* drawOptions = "L", Double_t prec = 1e-2, Bool_t fixMinToZero = kTRUE)
virtual RooPlot* plotNLLOn(RooPlot* frame, RooDataSet* data, Bool_t extended, const RooArgSet& projDeps, Option_t* drawOptions = "L", Double_t prec = 1e-2, Bool_t fixMinToZero = kTRUE)
virtual RooPlot* plotOn(RooPlot* frame, const RooCmdArg& arg1 = RooCmdArg::none, const RooCmdArg& arg2 = RooCmdArg::none, const RooCmdArg& arg3 = RooCmdArg::none, const RooCmdArg& arg4 = RooCmdArg::none, const RooCmdArg& arg5 = RooCmdArg::none, const RooCmdArg& arg6 = RooCmdArg::none, const RooCmdArg& arg7 = RooCmdArg::none, const RooCmdArg& arg8 = RooCmdArg::none, const RooCmdArg& arg9 = RooCmdArg::none, const RooCmdArg& arg10 = RooCmdArg::none) const
virtual void printToStream(ostream& stream, RooPrintable::PrintOption opt = Standard, TString indent = ) const
virtual void resetErrorCounters(Int_t resetValue = 10)
virtual Bool_t selfNormalized() const
void setTraceCounter(Int_t value, Bool_t allNodes = kFALSE)
virtual void ShowMembers(TMemberInspector& insp, char* parent)
virtual void Streamer(TBuffer& b)
void StreamerNVirtual(TBuffer& b)
virtual Bool_t traceEvalHook(Double_t value) const
Bool_t traceEvalPdf(Double_t value) const
static void verboseEval(Int_t stat)
protected:
static Int_t _verboseEval
Double_t _rawValue
RooAbsReal* _norm Normalization integral (owned by _normMgr)
RooArgSet* _normSet Normalization set with for above integral
RooNormManager _normMgr Normalization manager
Int_t _errorCount Number of errors remaining to print
Int_t _traceCount Number of traces remaining to print
Int_t _negCount Number of negative probablities remaining to print
Bool_t _selectComp Component selection flag for RooAbsPdf::plotCompOn
static Bool_t _globalSelectComp Global activation switch for component selection
static Bool_t _evalError
public:
static const RooAbsPdf::ExtendMode CanNotBeExtended
static const RooAbsPdf::ExtendMode CanBeExtended
static const RooAbsPdf::ExtendMode MustBeExtended
Double_t getVal(const RooArgSet* nset)
Return current value, normalizated by integrating over
the dependents in 'nset'. If 'nset' is 0, the unnormalized value.
is returned. All elements of 'nset' must be lvalues
Bool_t traceEvalPdf(Double_t value)
Check that passed value is positive and not 'not-a-number'.
If not, print an error, until the error counter reaches
its set maximum.
Bool_t syncNormalization(const RooArgSet* nset, Bool_t adjustProxies)
Verify that the normalization integral cached with this PDF
is valid for given set of normalization dependents
If not, the cached normalization integral (if any) is deleted
and a new integral is constructed for use with 'nset'
Elements in 'nset' can be discrete and real, but must be lvalues
By default, only actual dependents of the PDF listed in 'nset'
are integration. This behaviour can be modified in subclasses
by overloading the syncNormalizationPreHook() function.
For functions that declare to be self-normalized by overloading the
selfNormalized() function, a unit normalization is always constructed
void resetErrorCounters(Int_t resetValue)
Reset error counter to given value, limiting the number
of future error messages for this pdf to 'resetValue'
void setTraceCounter(Int_t value, Bool_t allNodes)
Reset trace counter to given value, limiting the
number of future trace messages for this pdf to 'value'
Double_t getLogVal(const RooArgSet* nset)
Return the log of the current value with given normalization
An error message is printed if the argument of the log is negative.
Double_t extendedTerm(UInt_t observed, const RooArgSet* nset)
Returned the extended likelihood term (Nexpect - Nobserved*log(NExpected)
of this PDF for the given number of observed events
For successfull operation the PDF implementation must indicate
it is extendable by overloading canBeExtended() and must
implemented the expectedEvents() function.
RooFitResult* fitTo(RooAbsData& data, RooCmdArg arg1, RooCmdArg arg2, RooCmdArg arg3, RooCmdArg arg4, RooCmdArg arg5, RooCmdArg arg6, RooCmdArg arg7, RooCmdArg arg8)
Fit PDF to given dataset. If dataset is unbinned, an unbinned maximum likelihood is performed. If the dataset
is binned, a binned maximum likelihood is performed. By default the fit is executed through the MINUIT
commands MIGRAD, HESSE and MINOS in succession.
The following named arguments are supported
Options to control construction of -log(L)
------------------------------------------
ConditionalObservables(const RooArgSet& set) -- Do not normalize PDF over listed observables
Extended(Bool_t flag) -- Add extended likelihood term, off by default
Range(const char* name) -- Fit only data inside range with given name
Range(Double_t lo, Double_t hi) -- Fit only data inside given range. A range named "fit" is created on the fly on all observables.
NumCPU(int num) -- Parallelize NLL calculation on num CPUs
Optimize(Bool_t flag) -- Activate constant term optimization (on by default)
SplitRange(Bool_t flag) -- Use separate fit ranges in a simultaneous fit. Actual range name for each
subsample is assumed to by rangeName_{indexState} where indexState
is the state of the master index category of the simultaneous fit
Options to control flow of fit procedure
----------------------------------------
InitialHesse(Bool_t flag) -- Flag controls if HESSE before MIGRAD as well, off by default
Hesse(Bool_t flag) -- Flag controls if HESSE is run after MIGRAD, on by default
Minos(Bool_t flag) -- Flag controls if MINOS is run after HESSE, on by default
Minos(const RooArgSet& set) -- Only run MINOS on given subset of arguments
Save(Bool_t flag) -- Flac controls if RooFitResult object is produced and returned, off by default
Strategy(Int_t flag) -- Set Minuit strategy (0 through 2, default is 1)
FitOptions(const char* optStr) -- Steer fit with classic options string (for backward compatibility). Use of this option
excludes use of any of the new style steering options.
Options to control informational output
---------------------------------------
Verbose(Bool_t flag) -- Flag controls if verbose output is printed (NLL, parameter changes during fit
Timer(Bool_t flag) -- Time CPU and wall clock consumption of fit steps, off by default
PrintLevel(Int_t level) -- Set Minuit print level (-1 through 3, default is 1). At -1 all RooFit informational
messages are suppressed as well
RooFitResult* fitTo(RooAbsData& data, const RooLinkedList& cmdList)
Fit PDF to given dataset. If dataset is unbinned, an unbinned maximum likelihood is performed. If the dataset
is binned, a binned maximum likelihood is performed. By default the fit is executed through the MINUIT
commands MIGRAD, HESSE and MINOS in succession.
See RooAbsPdf::fitTo(RooAbsData& data, RooCmdArg arg1, RooCmdArg arg2, RooCmdArg arg3, RooCmdArg arg4,
RooCmdArg arg5, RooCmdArg arg6, RooCmdArg arg7, RooCmdArg arg8)
for documentation of options
RooFitResult* fitTo(RooAbsData& data, const RooArgSet& projDeps, Option_t *fitOpt, Option_t *optOpt, const char* fitRange)
Fit this PDF to given data set
OLD STYLE INTERFACE, PLEASE USE NEW INTERFACE fitTo(RooAbsData& data, RooCmdArg arg1,...,RooCmdArg arg8)
The dataset can be either binned, in which case a binned maximum likelihood fit
is performed, or unbinned, in which case an unbinned maximum likelihood fit is performed
Available fit options:
"m" = MIGRAD only, i.e. no MINOS
"s" = estimate step size with HESSE before starting MIGRAD
"h" = run HESSE after MIGRAD
"e" = Perform extended MLL fit
"0" = Run MIGRAD with strategy MINUIT 0 (no correlation matrix calculation at end)
Does not apply to HESSE or MINOS, if run afterwards.
"q" = Switch off verbose mode
"l" = Save log file with parameter values at each MINUIT step
"v" = Show changed parameters at each MINUIT step
"t" = Time fit
"r" = Save fit output in RooFitResult object (return value is object RFR pointer)
Available optimizer options
"c" = Cache and precalculate components of PDF that exclusively depend on constant parameters
"2" = Do NLL calculation in multi-processor mode on 2 processors
"3" = Do NLL calculation in multi-processor mode on 3 processors
"4" = Do NLL calculation in multi-processor mode on 4 processors
The actual fit is performed to a temporary copy of both PDF and data set. Several optimization
algorithm are run to increase the efficiency of the likelihood calculation and may increase
the speed of complex fits up to an order of magnitude. All optimizations are exact, i.e the fit result
of any fit should _exactly_ the same with and without optimization. We strongly encourage
to stick to the default optimizer setting (all on). If for any reason you see a difference in the result
with and without optimizer, please file a bug report.
The function always return null unless the "r" fit option is specified. In that case a pointer to a RooFitResult
is returned. The RooFitResult object contains the full fit output, including the correlation matrix.
RooDataSet * generate(const RooArgSet& whatVars, Int_t nEvents, const RooCmdArg& arg1, const RooCmdArg& arg2, const RooCmdArg& arg3,const RooCmdArg& arg4, const RooCmdArg& arg5)
Generate a new dataset containing the specified variables with events sampled from our distribution.
Generate the specified number of events or expectedEvents() if not specified.
Any variables of this PDF that are not in whatVars will use their
current values and be treated as fixed parameters. Returns zero
in case of an error. The caller takes ownership of the returned
dataset.
The following named arguments are supported
Verbose(Bool_t flag) -- Print informational messages during event generation
Extended() -- The actual number of events generated will be sampled from a Poisson distribution
with mu=nevt. For use with extended maximum likelihood fits
ProtoData(const RooDataSet& data, -- Use specified dataset as prototype dataset. If randOrder is set to true
Bool_t randOrder) the order of the events in the dataset will be read in a random order
if the requested number of events to be generated does not match the
number of events in the prototype dataset
If ProtoData() is used, the specified existing dataset as a prototype: the new dataset will contain
the same number of events as the prototype (unless otherwise specified), and any prototype variables not in
whatVars will be copied into the new dataset for each generated event and also used to set our PDF parameters.
The user can specify a number of events to generate that will override the default. The result is a
copy of the prototype dataset with only variables in whatVars randomized. Variables in whatVars that
are not in the prototype will be added as new columns to the generated dataset.
RooDataSet * generate(const RooArgSet& whatVars, const RooCmdArg& arg1,const RooCmdArg& arg2, const RooCmdArg& arg3,const RooCmdArg& arg4, const RooCmdArg& arg5,const RooCmdArg& arg6)
Generate a new dataset containing the specified variables with events sampled from our distribution.
Generate the specified number of events or expectedEvents() if not specified.
Any variables of this PDF that are not in whatVars will use their
current values and be treated as fixed parameters. Returns zero
in case of an error. The caller takes ownership of the returned
dataset.
The following named arguments are supported
Verbose(Bool_t flag) -- Print informational messages during event generation
NumEvent(int nevt) -- Generate specified number of events
Extended() -- The actual number of events generated will be sampled from a Poisson distribution
with mu=nevt. For use with extended maximum likelihood fits
ProtoData(const RooDataSet& data, -- Use specified dataset as prototype dataset. If randOrder is set to true
Bool_t randOrder, the order of the events in the dataset will be read in a random order
Bool_t resample) if the requested number of events to be generated does not match the
number of events in the prototype dataset. If resample is also set to
true, the prototype dataset will be resampled rather than be strictly
reshuffled. In this mode events of the protodata may be used more than
once.
If ProtoData() is used, the specified existing dataset as a prototype: the new dataset will contain
the same number of events as the prototype (unless otherwise specified), and any prototype variables not in
whatVars will be copied into the new dataset for each generated event and also used to set our PDF parameters.
The user can specify a number of events to generate that will override the default. The result is a
copy of the prototype dataset with only variables in whatVars randomized. Variables in whatVars that
are not in the prototype will be added as new columns to the generated dataset.
RooDataSet * generate(const RooArgSet &whatVars, Int_t nEvents, Bool_t verbose)
Generate a new dataset containing the specified variables with
events sampled from our distribution. Generate the specified
number of events or else try to use expectedEvents() if nEvents <= 0.
Any variables of this PDF that are not in whatVars will use their
current values and be treated as fixed parameters. Returns zero
in case of an error. The caller takes ownership of the returned
dataset.
RooDataSet * generate(const RooArgSet &whatVars, const RooDataSet &prototype, Int_t nEvents, Bool_t verbose, Bool_t randProtoOrder, Bool_t resampleProto)
Generate a new dataset with values of the whatVars variables
sampled from our distribution. Use the specified existing dataset
as a prototype: the new dataset will contain the same number of
events as the prototype (by default), and any prototype variables not in
whatVars will be copied into the new dataset for each generated
event and also used to set our PDF parameters. The user can specify a
number of events to generate that will override the default. The result is a
copy of the prototype dataset with only variables in whatVars
randomized. Variables in whatVars that are not in the prototype
will be added as new columns to the generated dataset. Returns
zero in case of an error. The caller takes ownership of the
returned dataset.
Int_t* randomizeProtoOrder(Int_t nProto, Int_t, Bool_t resampleProto)
Return lookup table with randomized access order for prototype events,
given nProto prototype data events and nGen events that will actually
be accessed
RooPlot* plotOn(RooPlot* frame, RooLinkedList& cmdList)
Plot (project) PDF on specified frame. If a PDF is plotted in an empty frame, it
will show a unit normalized curve in the frame variable, taken at the present value
of other observables defined for this PDF
If a PDF is plotted in a frame in which a dataset has already been plotted, it will
show a projected curve integrated over all variables that were present in the shown
dataset except for the one on the x-axis. The normalization of the curve will also
be adjusted to the event count of the plotted dataset. An informational message
will be printed for each projection step that is performed
This function takes the following named arguments
Projection control
------------------
Slice(const RooArgSet& set) -- Override default projection behaviour by omittting observables listed
in set from the projection, resulting a 'slice' plot. Slicing is usually
only sensible in discrete observables
Project(const RooArgSet& set) -- Override default projection behaviour by projecting over observables
given in set and complete ignoring the default projection behavior. Advanced use only.
ProjWData(const RooAbsData& d) -- Override default projection _technique_ (integration). For observables present in given dataset
projection of PDF is achieved by constructing an average over all observable values in given set.
Consult RooFit plotting tutorial for further explanation of meaning & use of this technique
ProjWData(const RooArgSet& s, -- As above but only consider subset 's' of observables in dataset 'd' for projection through data averaging
const RooAbsData& d)
ProjectionRange(const char* rn) -- Override default range of projection integrals to a different range speficied by given range name.
This technique allows you to project a finite width slice in a real-valued observable
Misc content control
--------------------
Normalization(Double_t scale, -- Adjust normalization by given scale factor. Interpretation of number depends on code: Relative:
ScaleType code) relative adjustment factor, NumEvent: scale to match given number of events.
Name(const chat* name) -- Give curve specified name in frame. Useful if curve is to be referenced later
Asymmetry(const RooCategory& c) -- Show the asymmetry of the PDF in given two-state category [F(+)-F(-)] / [F(+)+F(-)] rather than
the PDF projection. Category must have two states with indices -1 and +1 or three states with
indeces -1,0 and +1.
ShiftToZero(Bool_t flag) -- Shift entire curve such that lowest visible point is at exactly zero. Mostly useful when
plotting -log(L) or chi^2 distributions
AddTo(const char* name, -- Add constructed projection to already existing curve with given name and relative weight factors
double_t wgtSelf, double_t wgtOther)
Plotting control
----------------
LineStyle(Int_t style) -- Select line style by ROOT line style code, default is solid
LineColor(Int_t color) -- Select line color by ROOT color code, default is blue
LineWidth(Int_t width) -- Select line with in pixels, default is 3
FillStyle(Int_t style) -- Select fill style, default is not filled. If a filled style is selected, also use VLines()
to add vertical downward lines at end of curve to ensure proper closure
FillColor(Int_t color) -- Select fill color by ROOT color code
Range(const char* name) -- Only draw curve in range defined by given name
Range(double lo, double hi) -- Only draw curve in specified range
VLines() -- Add vertical lines to y=0 at end points of curve
Precision(Double_t eps) -- Control precision of drawn curve w.r.t to scale of plot, default is 1e-3. Higher precision
will result in more and more densely spaced curve points
Invisble(Bool_t flag) -- Add curve to frame, but do not display. Useful in combination AddTo()
cout << " plotOn(" << GetName() << ")
RooPlot* plotOn(RooPlot *frame, PlotOpt o)
Plot oneself on 'frame'. In addition to features detailed in RooAbsReal::plotOn(),
the scale factor for a PDF can be interpreted in three different ways. The interpretation
is controlled by ScaleType
Relative - Scale factor is applied on top of PDF normalization scale factor
NumEvent - Scale factor is interpreted as a number of events. The surface area
under the PDF curve will match that of a histogram containing the specified
number of event
Raw - Scale factor is applied to the raw (projected) probability density.
Not too useful, option provided for completeness.
RooPlot* plotCompOn(RooPlot *frame, const RooArgSet& compSet, Option_t* drawOptions, Double_t scaleFactor, ScaleType stype, const RooAbsData* projData, const RooArgSet* projSet)
THIS FUNCTION IS OBSOLETE AND ONLY RETAINED FOR BACKWARD COMPATIBILITY.
PLEASE USE plotOn(frame,Componenents(...),...)
Plot only the PDF components listed in 'compSet' of this PDF on 'frame'.
See RooAbsReal::plotOn() for a description of the remaining arguments and other features
RooPlot* plotCompOn(RooPlot *frame, const char* compNameList, Option_t* drawOptions, Double_t scaleFactor, ScaleType stype, const RooAbsData* projData, const RooArgSet* projSet)
THIS FUNCTION IS OBSOLETE AND ONLY RETAINED FOR BACKWARD COMPATIBILITY.
PLEASE USE plotOn(frame,Componenents(...),...)
Plot only the PDF components listed in 'compSet' of this PDF on 'frame'.
See RooAbsReal::plotOn() for a description of the remaining arguments and other features
RooPlot* plotCompSliceOn(RooPlot *frame, const char* compNameList, const RooArgSet& sliceSet, Option_t* drawOptions, Double_t scaleFactor, ScaleType stype, const RooAbsData* projData)
THIS FUNCTION IS OBSOLETE AND ONLY RETAINED FOR BACKWARD COMPATIBILITY.
PLEASE USE plotOn(frame,Componenents(...),Slice(...),...)
Plot ourselves on given frame, as done in plotOn(), except that the variables
listed in 'sliceSet' are taken out from the default list of projected dimensions created
by plotOn().
RooPlot* plotCompSliceOn(RooPlot *frame, const RooArgSet& compSet, const RooArgSet& sliceSet, Option_t* drawOptions, Double_t scaleFactor, ScaleType stype, const RooAbsData* projData)
THIS FUNCTION IS OBSOLETE AND ONLY RETAINED FOR BACKWARD COMPATIBILITY.
PLEASE USE plotOn(frame,Componenents(...),Slice(...),...)
Plot ourselves on given frame, as done in plotOn(), except that the variables
listed in 'sliceSet' are taken out from the default list of projected dimensions created
by plotOn().
RooPlot* paramOn(RooPlot* frame, const RooCmdArg& arg1, const RooCmdArg& arg2, const RooCmdArg& arg3, const RooCmdArg& arg4, const RooCmdArg& arg5, const RooCmdArg& arg6, const RooCmdArg& arg7, const RooCmdArg& arg8)
Add a box with parameter values (and errors) to the specified frame
The following named arguments are supported
Parameters(const RooArgSet& param) -- Only the specified subset of parameters will be shown.
By default all non-contant parameters are shown
ShowConstant(Bool_t flag) -- Also display constant parameters
Format(const char* optStr) -- Classing [arameter formatting options, provided for backward compatibility
Format(const char* what,...) -- Parameter formatting options, details given below
Label(const chat* label) -- Add header label to parameter box
Layout(Double_t xmin, -- Specify relative position of left,right side of box and top of box. Position of
Double_t xmax, Double_t ymax) bottom of box is calculated automatically from number lines in box
The Format(const char* what,...) has the following structure
const char* what -- Controls what is shown. "N" adds name, "E" adds error,
"A" shows asymmetric error, "U" shows unit, "H" hides the value
FixedPrecision(int n) -- Controls precision, set fixed number of digits
AutoPrecision(int n) -- Controls precision. Number of shown digits is calculated from error
+ n specified additional digits (1 is sensible default)
Example use: pdf.paramOn(frame, Label("fit result"), Format("NEU",AutoPrecision(1)) ) ;
RooPlot* paramOn(RooPlot* frame, const RooArgSet& params, Bool_t showConstants, const char *label, Int_t sigDigits, Option_t *options, Double_t xmin, Double_t xmax ,Double_t ymax, const RooCmdArg* formatCmd)
Add a text box with the current parameter values and their errors to the frame.
Dependents of this PDF appearing in the 'data' dataset will be omitted.
Optional label will be inserted as first line of the text box. Use 'sigDigits'
to modify the default number of significant digits printed. The 'xmin,xmax,ymax'
values specify the inital relative position of the text box in the plot frame