TFitter(Int_t maxpar)
*-*-*-*-*-*-*-*-*-*-*default constructor*-*-*-*-*-*-*-*-*-*-*-*-*
*-* ===================
~TFitter()
*-*-*-*-*-*-*-*-*-*-*default destructor*-*-*-*-*-*-*-*-*-*-*-*-*-*
*-* ==================
void GetConfidenceIntervals(Int_t n, Int_t ndim, const Double_t *x, Double_t *ci, Double_t cl)
Computes point-by-point confidence intervals for the fitted function
Parameters:
n - number of points
ndim - dimensions of points
x - points, at which to compute the intervals, for ndim > 1
should be in order: (x0,y0, x1, y1, ... xn, yn)
ci - computed intervals are returned in this array
cl - confidence level, default=0.95
NOTE, that the intervals are approximate for nonlinear(in parameters) models
void GetConfidenceIntervals(TObject *obj, Double_t cl)
Computes confidence intervals at level cl. Default is 0.95
The TObject parameter can be a TGraphErrors, a TGraph2DErrors or a TH1,2,3.
For Graphs, confidence intervals are computed for each point,
the value of the graph at that point is set to the function value at that
point, and the graph y-errors (or z-errors) are set to the value of
the confidence interval at that point.
For Histograms, confidence intervals are computed for each bin center
The bin content of this bin is then set to the function value at the bin
center, and the bin error is set to the confidence interval value.
NOTE: confidence intervals are approximate for nonlinear models!
Allowed combinations:
Fitted object Passed object
TGraph TGraphErrors, TH1
TGraphErrors, AsymmErrors TGraphErrors, TH1
TH1 TGraphErrors, TH1
TGraph2D TGraph2DErrors, TH2
TGraph2DErrors TGraph2DErrors, TH2
TH2 TGraph2DErrors, TH2
TH3 TH3
Int_t GetErrors(Int_t ipar,Double_t &eplus, Double_t &eminus, Double_t &eparab, Double_t &globcc)
return current errors for a parameter
ipar : parameter number
eplus : upper error
eminus : lower error
eparab : parabolic error
globcc : global correlation coefficient
Int_t GetParameter(Int_t ipar, char *parname,Double_t &value,Double_t &verr,Double_t &vlow, Double_t &vhigh)
return current values for a parameter
ipar : parameter number
parname : parameter name
value : initial parameter value
verr : initial error for this parameter
vlow : lower value for the parameter
vhigh : upper value for the parameter
WARNING! parname must be suitably dimensionned in the calling function.
Int_t GetStats(Double_t &amin, Double_t &edm, Double_t &errdef, Int_t &nvpar, Int_t &nparx)
return global fit parameters
amin : chisquare
edm : estimated distance to minimum
errdef
nvpar : number of variable parameters
nparx : total number of parameters
void SetFCN(void *fcn)
Specify the address of the fitting algorithm (from the interpreter)
void SetFitMethod(const char *name)
ret fit method (chisquare or loglikelihood)
Int_t SetParameter(Int_t ipar,const char *parname,Double_t value,Double_t verr,Double_t vlow, Double_t vhigh)
set initial values for a parameter
ipar : parameter number
parname : parameter name
value : initial parameter value
verr : initial error for this parameter
vlow : lower value for the parameter
vhigh : upper value for the parameter
void FitChisquare(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
Minimization function for H1s using a Chisquare method
Default method (function evaluated at center of bin)
for each point the cache contains the following info
-1D : bc,e,xc (bin content, error, x of center of bin)
-2D : bc,e,xc,yc
-3D : bc,e,xc,yc,zc
void FitChisquareI(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
Minimization function for H1s using a Chisquare method
The "I"ntegral method is used
for each point the cache contains the following info
-1D : bc,e,xc,xw (bin content, error, x of center of bin, x bin width of bin)
-2D : bc,e,xc,xw,yc,yw
-3D : bc,e,xc,xw,yc,yw,zc,zw
void FitLikelihood(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
Minimization function for H1s using a Likelihood method*-*-*-*-*-*
Basically, it forms the likelihood by determining the Poisson
probability that given a number of entries in a particular bin,
the fit would predict it's value. This is then done for each bin,
and the sum of the logs is taken as the likelihood.
Default method (function evaluated at center of bin)
for each point the cache contains the following info
-1D : bc,e,xc (bin content, error, x of center of bin)
-2D : bc,e,xc,yc
-3D : bc,e,xc,yc,zc
void FitLikelihoodI(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
Minimization function for H1s using a Likelihood method*-*-*-*-*-*
Basically, it forms the likelihood by determining the Poisson
probability that given a number of entries in a particular bin,
the fit would predict it's value. This is then done for each bin,
and the sum of the logs is taken as the likelihood.
The "I"ntegral method is used
for each point the cache contains the following info
-1D : bc,e,xc,xw (bin content, error, x of center of bin, x bin width of bin)
-2D : bc,e,xc,xw,yc,yw
-3D : bc,e,xc,xw,yc,yw,zc,zw
Author: Rene Brun 31/08/99
Last update: root/minuit:$Name: $:$Id: TFitter.cxx,v 1.42 2006/05/13 21:49:17 brun Exp $
Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.