library: libMinuit
#include "TFitter.h"

TFitter


class description - header file - source file - inheritance tree (.pdf)

class TFitter : public TVirtualFitter

Inheritance Chart:
TObject
<-
TNamed
<-
TVirtualFitter
<-
TFitter

    public:
TFitter(Int_t maxpar = 25) TFitter(const TFitter&) virtual ~TFitter() virtual Double_t Chisquare(Int_t npar, Double_t* params) const static TClass* Class() virtual void Clear(Option_t* option = "") virtual Int_t ExecuteCommand(const char* command, Double_t* args, Int_t nargs) virtual void FitChisquare(Int_t& npar, Double_t* gin, Double_t& f, Double_t* u, Int_t flag) virtual void FitChisquareI(Int_t& npar, Double_t* gin, Double_t& f, Double_t* u, Int_t flag) virtual void FitLikelihood(Int_t& npar, Double_t* gin, Double_t& f, Double_t* u, Int_t flag) virtual void FitLikelihoodI(Int_t& npar, Double_t* gin, Double_t& f, Double_t* u, Int_t flag) virtual void FixParameter(Int_t ipar) virtual void GetConfidenceIntervals(Int_t n, Int_t ndim, const Double_t* x, Double_t* ci, Double_t cl = 0.95) virtual void GetConfidenceIntervals(TObject* obj, Double_t cl = 0.95) virtual Double_t* GetCovarianceMatrix() const virtual Double_t GetCovarianceMatrixElement(Int_t i, Int_t j) const virtual Int_t GetErrors(Int_t ipar, Double_t& eplus, Double_t& eminus, Double_t& eparab, Double_t& globcc) const virtual Int_t GetNumberFreeParameters() const virtual Int_t GetNumberTotalParameters() const virtual Double_t GetParameter(Int_t ipar) const virtual Int_t GetParameter(Int_t ipar, char* name, Double_t& value, Double_t& verr, Double_t& vlow, Double_t& vhigh) const virtual Double_t GetParError(Int_t ipar) const virtual const char* GetParName(Int_t ipar) const virtual Int_t GetStats(Double_t& amin, Double_t& edm, Double_t& errdef, Int_t& nvpar, Int_t& nparx) const virtual Double_t GetSumLog(Int_t i) virtual TClass* IsA() const virtual Bool_t IsFixed(Int_t ipar) const virtual void PrintResults(Int_t level, Double_t amin) const virtual void ReleaseParameter(Int_t ipar) virtual void SetFCN(void* fcn) virtual void SetFCN(void (*)(Int_t&, Double_t*, Double_t&f, Double_t*, Int_t) fcn) virtual void SetFitMethod(const char* name) virtual Int_t SetParameter(Int_t ipar, const char* parname, Double_t value, Double_t verr, Double_t vlow, Double_t vhigh) virtual void ShowMembers(TMemberInspector& insp, char* parent) virtual void Streamer(TBuffer& b) void StreamerNVirtual(TBuffer& b)

Data Members

    private:
Int_t fNlog Number of elements in fSunLog Double_t* fCovar Covariance matrix Double_t* fSumLog Sum of logs (array of fNlog elements) TMinuit* fMinuit pointer to the TMinuit object

Class Description

TFitter(Int_t maxpar)
*-*-*-*-*-*-*-*-*-*-*default constructor*-*-*-*-*-*-*-*-*-*-*-*-*
*-*                  ===================
~TFitter()
*-*-*-*-*-*-*-*-*-*-*default destructor*-*-*-*-*-*-*-*-*-*-*-*-*-*
*-*                  ==================
Double_t Chisquare(Int_t npar, Double_t *params)
 return a chisquare equivalent
void Clear(Option_t *)
 reset the fitter environment
Int_t ExecuteCommand(const char *command, Double_t *args, Int_t nargs)
 Execute a fitter command;
   command : command string
   args    : list of nargs command arguments
void FixParameter(Int_t ipar)
 Fix parameter ipar.
void GetConfidenceIntervals(Int_t n, Int_t ndim, const Double_t *x, Double_t *ci, Double_t cl)
Computes point-by-point confidence intervals for the fitted function
Parameters:
n - number of points
ndim - dimensions of points
x - points, at which to compute the intervals, for ndim > 1
    should be in order: (x0,y0, x1, y1, ... xn, yn)
ci - computed intervals are returned in this array
cl - confidence level, default=0.95
NOTE, that the intervals are approximate for nonlinear(in parameters) models
void GetConfidenceIntervals(TObject *obj, Double_t cl)
Computes confidence intervals at level cl. Default is 0.95
The TObject parameter can be a TGraphErrors, a TGraph2DErrors or a TH1,2,3.
For Graphs, confidence intervals are computed for each point,
the value of the graph at that point is set to the function value at that
point, and the graph y-errors (or z-errors) are set to the value of
the confidence interval at that point.
For Histograms, confidence intervals are computed for each bin center
The bin content of this bin is then set to the function value at the bin
center, and the bin error is set to the confidence interval value.
NOTE: confidence intervals are approximate for nonlinear models!

Allowed combinations:
Fitted object               Passed object
TGraph                      TGraphErrors, TH1
TGraphErrors, AsymmErrors   TGraphErrors, TH1
TH1                         TGraphErrors, TH1
TGraph2D                    TGraph2DErrors, TH2
TGraph2DErrors              TGraph2DErrors, TH2
TH2                         TGraph2DErrors, TH2
TH3                         TH3
Double_t * GetCovarianceMatrix()
 return a pointer to the covariance matrix
Double_t GetCovarianceMatrixElement(Int_t i, Int_t j)
 return element i,j from the covariance matrix
Int_t GetErrors(Int_t ipar,Double_t &eplus, Double_t &eminus, Double_t &eparab, Double_t &globcc)
 return current errors for a parameter
   ipar     : parameter number
   eplus    : upper error
   eminus   : lower error
   eparab   : parabolic error
   globcc   : global correlation coefficient
Int_t GetNumberTotalParameters()
 return the total number of parameters (free + fixed)
Int_t GetNumberFreeParameters()
 return the number of free parameters
Double_t GetParError(Int_t ipar)
 return error of parameter ipar
Double_t GetParameter(Int_t ipar)
 return current value of parameter ipar
Int_t GetParameter(Int_t ipar, char *parname,Double_t &value,Double_t &verr,Double_t &vlow, Double_t &vhigh)
 return current values for a parameter
   ipar     : parameter number
   parname  : parameter name
   value    : initial parameter value
   verr     : initial error for this parameter
   vlow     : lower value for the parameter
   vhigh    : upper value for the parameter
  WARNING! parname must be suitably dimensionned in the calling function.
const char * GetParName(Int_t ipar)
 return name of parameter ipar
Int_t GetStats(Double_t &amin, Double_t &edm, Double_t &errdef, Int_t &nvpar, Int_t &nparx)
 return global fit parameters
   amin     : chisquare
   edm      : estimated distance to minimum
   errdef
   nvpar    : number of variable parameters
   nparx    : total number of parameters
Double_t GetSumLog(Int_t n)
 return Sum(log(i) i=0,n
 used by log likelihood fits
Bool_t IsFixed(Int_t ipar)
return kTRUE if parameter ipar is fixed, kFALSE othersise)
void PrintResults(Int_t level, Double_t amin)
 Print fit results
void ReleaseParameter(Int_t ipar)
 Release parameter ipar.
void SetFCN(void *fcn)
 Specify the address of the fitting algorithm (from the interpreter)
void SetFCN(void (*fcn)(Int_t &, Double_t *, Double_t &f, Double_t *, Int_t))
 Specify the address of the fitting algorithm
void SetFitMethod(const char *name)
 ret fit method (chisquare or loglikelihood)
Int_t SetParameter(Int_t ipar,const char *parname,Double_t value,Double_t verr,Double_t vlow, Double_t vhigh)
 set initial values for a parameter
   ipar     : parameter number
   parname  : parameter name
   value    : initial parameter value
   verr     : initial error for this parameter
   vlow     : lower value for the parameter
   vhigh    : upper value for the parameter
void FitChisquare(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
  Minimization function for H1s using a Chisquare method
  Default method (function evaluated at center of bin)
  for each point the cache contains the following info
    -1D : bc,e,xc  (bin content, error, x of center of bin)
    -2D : bc,e,xc,yc
    -3D : bc,e,xc,yc,zc
void FitChisquareI(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
  Minimization function for H1s using a Chisquare method
  The "I"ntegral method is used
  for each point the cache contains the following info
    -1D : bc,e,xc,xw  (bin content, error, x of center of bin, x bin width of bin)
    -2D : bc,e,xc,xw,yc,yw
    -3D : bc,e,xc,xw,yc,yw,zc,zw
void FitLikelihood(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
  Minimization function for H1s using a Likelihood method*-*-*-*-*-*
     Basically, it forms the likelihood by determining the Poisson
     probability that given a number of entries in a particular bin,
     the fit would predict it's value.  This is then done for each bin,
     and the sum of the logs is taken as the likelihood.
  Default method (function evaluated at center of bin)
  for each point the cache contains the following info
    -1D : bc,e,xc  (bin content, error, x of center of bin)
    -2D : bc,e,xc,yc
    -3D : bc,e,xc,yc,zc
void FitLikelihoodI(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
  Minimization function for H1s using a Likelihood method*-*-*-*-*-*
     Basically, it forms the likelihood by determining the Poisson
     probability that given a number of entries in a particular bin,
     the fit would predict it's value.  This is then done for each bin,
     and the sum of the logs is taken as the likelihood.
  The "I"ntegral method is used
  for each point the cache contains the following info
    -1D : bc,e,xc,xw  (bin content, error, x of center of bin, x bin width of bin)
    -2D : bc,e,xc,xw,yc,yw
    -3D : bc,e,xc,xw,yc,yw,zc,zw
TFitter(Int_t maxpar = 25)

Author: Rene Brun 31/08/99
Last update: root/minuit:$Name: $:$Id: TFitter.cxx,v 1.42 2006/05/13 21:49:17 brun Exp $
Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.