library: libFumili #include "TFumili.h" |
Inheritance Chart: | |||||||||||||||||
|
public:
TFumili(Int_t maxpar = 25) TFumili(const TFumili&) virtual ~TFumili() void BuildArrays() virtual Double_t Chisquare(Int_t npar, Double_t* params) const static TClass* Class() virtual void Clear(Option_t* opt = "") void DeleteArrays() void Derivatives(Double_t*, Double_t*) Int_t Eval(Int_t& npar, Double_t* grad, Double_t& fval, Double_t* par, Int_t flag) Double_t EvalTFN(Double_t*, Double_t*) virtual Int_t ExecuteCommand(const char* command, Double_t* args, Int_t nargs) Int_t ExecuteSetCommand(Int_t) virtual void FitChisquare(Int_t& npar, Double_t* gin, Double_t& f, Double_t* u, Int_t flag) virtual void FitChisquareI(Int_t& npar, Double_t* gin, Double_t& f, Double_t* u, Int_t flag) virtual void FitLikelihood(Int_t& npar, Double_t* gin, Double_t& f, Double_t* u, Int_t flag) virtual void FitLikelihoodI(Int_t& npar, Double_t* gin, Double_t& f, Double_t* u, Int_t flag) virtual void FixParameter(Int_t ipar) virtual Double_t* GetCovarianceMatrix() const virtual Double_t GetCovarianceMatrixElement(Int_t i, Int_t j) const virtual Int_t GetErrors(Int_t ipar, Double_t& eplus, Double_t& eminus, Double_t& eparab, Double_t& globcc) const virtual Int_t GetNumberFreeParameters() const virtual Int_t GetNumberTotalParameters() const virtual Double_t GetParameter(Int_t ipar) const virtual Int_t GetParameter(Int_t ipar, char* name, Double_t& value, Double_t& verr, Double_t& vlow, Double_t& vhigh) const virtual Double_t GetParError(Int_t ipar) const virtual const char* GetParName(Int_t ipar) const Double_t* GetPL0() const virtual Int_t GetStats(Double_t& amin, Double_t& edm, Double_t& errdef, Int_t& nvpar, Int_t& nparx) const virtual Double_t GetSumLog(Int_t) Double_t* GetZ() const void InvertZ(Int_t) virtual TClass* IsA() const virtual Bool_t IsFixed(Int_t ipar) const Int_t Minimize() virtual void PrintResults(Int_t k, Double_t p) const virtual void ReleaseParameter(Int_t ipar) void SetData(Double_t*, Int_t, Int_t) virtual void SetFitMethod(const char* name) virtual Int_t SetParameter(Int_t ipar, const char* parname, Double_t value, Double_t verr, Double_t vlow, Double_t vhigh) void SetParNumber(Int_t ParNum) Int_t SGZ() virtual void ShowMembers(TMemberInspector& insp, char* parent) virtual void Streamer(TBuffer& b) void StreamerNVirtual(TBuffer& b)
private:
Int_t fMaxParam Int_t fMaxParam2 fMaxParam*fMaxParam Int_t fNlog Int_t fNfcn Number of FCN calls; Int_t fNED1 Number of experimental vectors X=(x1,x2,...xK) Int_t fNED2 K - Length of vector X plus 2 (for chi2) Int_t fNED12 fNED1+fNED2 Int_t fNpar fNpar - number of parameters Int_t fNstepDec fNstepDec - maximum number of step decreasing counter Int_t fNlimMul fNlimMul - after fNlimMul successful iterations permits four-fold increasing of fPL Int_t fNmaxIter fNmaxIter - maximum number of iterations Int_t fLastFixed Last fixed parameter number Int_t fENDFLG End flag of fit Int_t fINDFLG[5] internal flags; Bool_t fGRAD user calculated gradients Bool_t fWARN warnings Bool_t fDEBUG debug info Bool_t fLogLike LogLikelihood flag Bool_t fNumericDerivatives Double_t* fZ0 [fMaxParam2] Matrix of approximate second derivatives of objective function Double_t* fZ [fMaxParam2] Invers fZ0 matrix - covariance matrix Double_t* fGr [fMaxParam] Gradients of objective function Double_t* fParamError [fMaxParam] Parameter errors Double_t* fSumLog [fNlog] Double_t* fEXDA [fNED12] experimental data poInt_ter Double_t* fA [fMaxParam] Fit parameter array Double_t* fPL0 [fMaxParam] Step initial bounds Double_t* fPL [fMaxParam] Limits for parameters step. If <0, then parameter is fixed Double_t* fDA [fMaxParam] Parameter step Double_t* fAMX [fMaxParam] Maximum param value Double_t* fAMN [fMaxParam] Minimum param value Double_t* fR [fMaxParam] Correlation factors Double_t* fDF [fMaxParam] // First derivatives of theoretical function Double_t* fCmPar [fMaxParam] parameters of commands Double_t fS fS - objective function value (return) Double_t fEPS fEPS - required precision of parameters. If fEPS<0 then Double_t fRP Precision of fit ( machine zero on CDC 6000) quite old yeh? Double_t fAKAPPA Double_t fGT Expected function change in next iteration TString* fANames [fMaxParam] Parameter names TString fCword Command string
______________________________________________________________________________ FUMILI Based on ideas, proposed by I.N. Silin [See NIM A440, 2000 (p431)] converted from FORTRAN to C by Sergey Yaschenko <s.yaschenko@fz-juelich.de> ______________________________________________________________________________
FUMILI is used to minimize Chi-square function or to search maximum of likelihood function.
Experimentally measured values $F_i$ are fitted with theoretical functions $f_i({\vec x}_i,\vec\theta\,\,)$, where ${\vec x}_i$ are coordinates, and $\vec\theta$ -- vector of parameters.
For better convergence Chi-square function has to be the following form
$$ {\chi^2\over2}={1\over2}\sum^n_{i=1}\left(f_i(\vec x_i,\vec\theta\,\,)-F_i\over\sigma_i\right)^2 \eqno(1) $$
where $\sigma_i$ are errors of measured function.
The minimum condition is
$$ {\partial\chi^2\over\partial\theta_i}=\sum^n_{j=1}{1\over\sigma^2_j}\cdot {\partial f_j\over\partial\theta_i}\left[f_j(\vec x_j,\vec\theta\,\,)-F_j\right]=0,\qquad i=1\ldots m\eqno(2) $$
where m is the quantity of parameters.
Expanding left part of (2) over parameter increments and retaining only linear terms one gets
$$ \left(\partial\chi^2\over\theta_i\right)_{\vec\theta={\vec\theta}^0} +\sum_k\left(\partial^2\chi^2\over\partial\theta_i\partial\theta_k\right)_{ \vec\theta={\vec\theta}^0}\cdot(\theta_k-\theta_k^0) = 0\eqno(3) $$
Here ${\vec\theta}_0$ is some initial value of parameters. In general case:
$$ {\partial^2\chi^2\over\partial\theta_i\partial\theta_k}= \sum^n_{j=1}{1\over\sigma^2_j}{\partial f_j\over\theta_i} {\partial f_j\over\theta_k} + \sum^n_{j=1}{(f_j - F_j)\over\sigma^2_j}\cdot {\partial^2f_j\over\partial\theta_i\partial\theta_k}\eqno(4) $$
In FUMILI algorithm for second derivatives of Chi-square approximate expression is used when last term in (4) is discarded. It is often done, not always wittingly, and sometimes causes troubles, for example, if user wants to limit parameters with positive values by writing down $\theta_i^2$ instead of $\theta_i$. FUMILI will fail if one tries minimize $\chi^2 = g^2(\vec\theta)$ where g is arbitrary function.
Approximate value is:
$${\partial^2\chi^2\over\partial\theta_i\partial\theta_k}\approx Z_{ik}= \sum^n_{j=1}{1\over\sigma^2_j}{\partial f_j\over\theta_i} {\partial f_j\over\theta_k}\eqno(5) $$
Then the equations for parameter increments are
$$\left(\partial\chi^2\over\partial\theta_i\right)_{\vec\theta={\vec\theta}^0} +\sum_k Z_{ik}\cdot(\theta_k-\theta^0_k) = 0, \qquad i=1\ldots m\eqno(6) $$
Remarkable feature of algorithm is the technique for step restriction. For an initial value of parameter ${\vec\theta}^0$ a parallelepiped $P_0$ is built with the center at ${\vec\theta}^0$ and axes parallel to coordinate axes $\theta_i$. The lengths of parallelepiped sides along i-th axis is $2b_i$, where $b_i$ is such a value that the functions $f_j(\vec\theta)$ are quasi-linear all over the parallelepiped.
FUMILI takes into account simple linear inequalities in the form: $$ \theta_i^{\rm min}\le\theta_i\le\theta^{\rm max}_i\eqno(7) $$
They form parallelepiped $P$ ($P_0$ may be deformed by $P$). Very similar step formulae are used in FUMILI for negative logarithm of the likelihood function with the same idea - linearization of function argument.
______________________________________________________________________________
Resets all parameter names, values and errors to zero Argument opt is ignored NB: this procedure doesn't reset parameter limits
Calculates partial derivatives of theoretical function Input: fX - vector of data point Output: DF - array of derivatives ARITHM.F Converted from CERNLIB
Evaluate the minimisation function Input parameters: npar: number of currently variable parameters par: array of (constant and variable) parameters flag: Indicates what is to be calculated grad: array of gradients Output parameters: fval: The calculated function value. grad: The vector of first derivatives. The meaning of the parameters par is of course defined by the user, who uses the values of those parameters to calculate his function value. The starting values must be specified by the user. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Inside FCN user has to define Z-matrix by means TFumili::GetZ and TFumili::Derivatives, set theoretical function by means of TFumili::SetUserFunc, but first - pass number of parameters by TFumili::SetParNumber !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Later values are determined by Fumili as it searches for the minimum or performs whatever analysis is requested by the user. The default function calls the function specified in SetFCN
Execute MINUIT commands. MINImize, SIMplex, MIGrad and FUMili all will call TFumili::Minimize method. For full command list see MINUIT. Reference Manual. CERN Program Library Long Writeup D506. Improvement and errors calculation are not yet implemented as well as Monte-Carlo seeking and minimization. Contour commands are also unsupported. command : command string args : array of arguments nargs : number of arguments
Called from TFumili::ExecuteCommand in case of "SET xxx" and "SHOW xxx".
Get various ipar parameter attributs: cname: parameter name value: parameter value verr: parameter error vlow: lower limit vhigh: upper limit WARNING! parname must be suitably dimensionned in the calling function.
Return errors after MINOs not implemented
return global fit parameters amin : chisquare edm : estimated distance to minimum errdef nvpar : number of variable parameters nparx : total number of parameters
Inverts packed diagonal matrix Z by square-root method. Matrix elements corresponding to fix parameters are removed. n: number of variable parameters
-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- FUMILI Based on ideas, proposed by I.N. Silin [See NIM A440, 2000 (p431)] converted from FORTRAN to C by Sergey Yaschenko <s.yaschenko@fz-juelich.de> -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- This function is called after setting theoretical function by means of TFumili::SetUserFunc and initializing parameters. Optionally one can set FCN function (see TFumili::SetFCN and TFumili::Eval) If FCN is undefined then user has to provide data arrays by calling TFumili::SetData procedure. TFumili::Minimize return following values: 0 - fit is converged -2 - function is not decreasing (or bad derivatives) -3 - error estimations are infinite -4 - maximum number of iterations is exceeded
Prints fit results. ikode is the type of printing parameters p is function value ikode = 1 - print values, errors and limits ikode = 2 - print values, errors and steps ikode = 3 - print values, errors, steps and derivatives ikode = 4 - print only values and errors
Sets pointer to data array provided by user. Necessary if SetFCN is not called. numpoints: number of experimental points vecsize: size of data point vector + 2 (for N-dimensional fit vecsize=N+2) exdata: data array with following format exdata[0] = ExpValue_0 - experimental data value number 0 exdata[1] = ExpSigma_0 - error of value number 0 exdata[2] = X_0[0] exdata[3] = X_0[1] ......... exdata[vecsize-1] = X_0[vecsize-3] exdata[vecsize] = ExpValue_1 exdata[vecsize+1] = ExpSigma_1 exdata[vecsize+2] = X_1[0] ......... exdata[vecsize*(numpoints-1)] = ExpValue_(numpoints-1) ......... exdata[vecsize*numpoints-1] = X_(numpoints-1)[vecsize-3]
Sets for prameter number ipar initial parameter value, name parname, initial error verr and limits vlow and vhigh If vlow = vhigh but not equil to zero, parameter will be fixed. If vlow = vhigh = 0, parameter is released and its limits are discarded
Evaluates objective function ( chi-square ), gradients and Z-matrix using data provided by user via TFumili::SetData
Minimization function for H1s using a Chisquare method Default method (function evaluated at center of bin) for each point the cache contains the following info -1D : bc,e,xc (bin content, error, x of center of bin) -2D : bc,e,xc,yc -3D : bc,e,xc,yc,zc
Minimization function for H1s using a Chisquare method The "I"ntegral method is used for each point the cache contains the following info -1D : bc,e,xc,xw (bin content, error, x of center of bin, x bin width of bin) -2D : bc,e,xc,xw,yc,yw -3D : bc,e,xc,xw,yc,yw,zc,zw
Minimization function for H1s using a Likelihood method*-*-*-*-*-* Basically, it forms the likelihood by determining the Poisson probability that given a number of entries in a particular bin, the fit would predict it's value. This is then done for each bin, and the sum of the logs is taken as the likelihood. Default method (function evaluated at center of bin) for each point the cache contains the following info -1D : bc,e,xc (bin content, error, x of center of bin) -2D : bc,e,xc,yc -3D : bc,e,xc,yc,zc
Minimization function for H1s using a Likelihood method*-*-*-*-*-*
Basically, it forms the likelihood by determining the Poisson
probability that given a number of entries in a particular bin,
the fit would predict it's value. This is then done for each bin,
and the sum of the logs is taken as the likelihood.
The "I"ntegral method is used
for each point the cache contains the following info
-1D : bc,e,xc,xw (bin content, error, x of center of bin, x bin width of bin)
-2D : bc,e,xc,xw,yc,yw
-3D : bc,e,xc,xw,yc,yw,zc,zw