library: libTMVA
#include "DecisionTreeNode.h"

TMVA::DecisionTreeNode


class description - header file - source file - inheritance tree (.pdf)

class TMVA::DecisionTreeNode : public TMVA::Node

Inheritance Chart:
TMVA::Node
<-
TMVA::DecisionTreeNode

    public:
DecisionTreeNode(TMVA::Event* e = NULL) DecisionTreeNode(TMVA::Node* p) DecisionTreeNode(const TMVA::DecisionTreeNode&) virtual ~DecisionTreeNode() static TClass* Class() Bool_t GetCutType() const Double_t GetCutValue() const Double_t GetNEvents() const Int_t GetNodeType() const Double_t GetSeparationGain() const Double_t GetSeparationIndex() const Double_t GetSoverSB() const virtual Bool_t GoesLeft(const TMVA::Event*) const virtual Bool_t GoesRight(const TMVA::Event*) const virtual TClass* IsA() const TMVA::DecisionTreeNode& operator=(const TMVA::DecisionTreeNode&) virtual void PrintRec(ostream& os, Int_t depth = 0, const string pos = root) const virtual TMVA::NodeID ReadRec(ifstream& is, TMVA::NodeID nodeID, TMVA::Node* parent = NULL) void SetCutType(Bool_t t) void SetCutValue(Double_t c) void SetNEvents(Double_t nev) void SetNodeType(Int_t t) void SetSeparationGain(Double_t sep) void SetSeparationIndex(Double_t sep) void SetSoverSB(Double_t ssb) virtual void ShowMembers(TMemberInspector& insp, char* parent) virtual void Streamer(TBuffer& b) void StreamerNVirtual(TBuffer& b)

Data Members

    private:
Double_t fCutValue cut value appplied on this node to discriminate bkg against sig Bool_t fCutType true: if event variable > cutValue ==> signal , false otherwise Double_t fSoverSB S/(S+B) at this node (from training) Double_t fSeparationIndex measure of "purity" (separation between S and B) AT this node Double_t fSeparationGain measure of "purity", separation, or information gained BY this nodes selection Double_t fNEvents number of events in that entered the node (during training) Int_t fNodeType Type of node: -1 == Bkg-leaf, 1 == Signal-leaf, 0 = internal

Class Description

_______________________________________________________________________

 Node for the Decision Tree

 The node specifies ONE variable out of the given set of selection variable
 that is used to split the sample which "arrives" at the node, into a left
 (background-enhanced) and a right (signal-enhanced) sample.
_______________________________________________________________________
DecisionTreeNode(TMVA::Event* e)
 constructor of an essentially "empty" node floating in space
DecisionTreeNode(TMVA::Node* p)
 constructor of a daughter node as a daughter of 'p'
Bool_t GoesRight(const TMVA::Event * e)
 test event if it decends the tree at this node to the right
Bool_t GoesLeft(const TMVA::Event * e)
 test event if it decends the tree at this node to the left
void PrintRec(ostream& os, const Int_t Depth, const string pos )
recursively print the node and its daughters (--> print the 'tree')
TMVA::NodeID ReadRec(ifstream& is, TMVA::NodeID nodeID, TMVA::Node* Parent )
recursively read the node and its daughters (--> read the 'tree')
virtual ~DecisionTreeNode()
void SetCutType( Bool_t t )
 set true: if event variable > cutValue ==> signal , false otherwise
Bool_t GetCutType( void )
 return kTRUE: Cuts select signal, kFALSE: Cuts select bkg
void SetNodeType( Int_t t )
 set node type: 1 signal node, -1 bkg leave, 0 intermediate Node
Int_t GetNodeType( void )
 return node type: 1 signal node, -1 bkg leave, 0 intermediate Node
void SetSoverSB( Double_t ssb )
set S/(S+B) at this node (from  training)
Double_t GetSoverSB( void )
return  S/(S+B) at this node (from  training)
void SetSeparationIndex( Double_t sep )
 set the choosen index, measure of "purity" (separation between S and B) AT this node
Double_t GetSeparationIndex( void )
 return the separation index AT this node
void SetSeparationGain( Double_t sep )
 set the separation, or information gained BY this nodes selection
Double_t GetSeparationGain( void )
 return the gain in separation obtained by this nodes selection
void SetNEvents( Double_t nev )
 set the number of events that entered the node (during training)
Double_t GetNEvents( void )
 return  the number of events that entered the node (during training)

Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss
Last update: root/tmva $Id: DecisionTreeNode.cxx,v 1.4 2006/05/31 14:01:33 rdm Exp $


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.