library: libTMVA
#include "MethodHMatrix.h"

TMVA::MethodHMatrix


class description - header file - source file - inheritance tree (.pdf)

class TMVA::MethodHMatrix : public TMVA::MethodBase

Inheritance Chart:
TObject
<-
TMVA::MethodBase
<-
TMVA::MethodHMatrix
    private:
Double_t GetChi2(TMVA::Event* e, TMVA::MethodBase::Type) const void InitHMatrix() public:
MethodHMatrix(TString jobName, vector<TString>* theVariables, TTree* theTree = 0, TString theOption = , TDirectory* theTargetDir = 0) MethodHMatrix(vector<TString>* theVariables, TString theWeightFile, TDirectory* theTargetDir = NULL) MethodHMatrix(const TMVA::MethodHMatrix&) virtual ~MethodHMatrix() static TClass* Class() virtual Double_t GetMvaValue(TMVA::Event* e) virtual TClass* IsA() const TMVA::MethodHMatrix& operator=(const TMVA::MethodHMatrix&) virtual void ReadWeightsFromFile() virtual void ShowMembers(TMemberInspector& insp, char* parent) virtual void Streamer(TBuffer& b) void StreamerNVirtual(TBuffer& b) virtual void Train() virtual void WriteHistosToFile() virtual void WriteWeightsToFile()

Data Members

    private:
TMatrixD* fInvHMatrixS inverse H-matrix (signal) TMatrixD* fInvHMatrixB inverse H-matrix (background) TVectorD* fVecMeanS vector of mean values (signal) TVectorD* fVecMeanB vector of mean values (background) Bool_t fNormaliseInputVars normalise input variables

Class Description

_______________________________________________________________________
H-Matrix method, which is implemented as a simple comparison of chi-squared estimators for signal and background, taking into account the linear correlations between the input variables This MVA approach is used by the DØ collaboration (FNAL) for the purpose of electron identification (see, eg., hep-ex/9507007). As it is implemented in TMVA, it is usually equivalent or worse than the Fisher-Mahalanobis discriminant, and it has only been added for the purpose of completeness. Two χ2 estimators are computed for an event, each one for signal and background, using the estimates for the means and covariance matrices obtained from the training sample:
TMVA then uses as normalised analyser for event (i) the ratio: (χS(i)2 − χB2(i)) (χS2(i) + χB2(i)).
_______________________________________________________________________
MethodHMatrix( TString jobName, vector<TString>* theVariables, TTree* theTree, TString theOption, TDirectory* theTargetDir )
 standard constructor for the H-Matrix method

 HMatrix options: none
MethodHMatrix( vector<TString> *theVariables, TString theWeightFile, TDirectory* theTargetDir )
 constructor to calculate the H-Matrix from the weight file
void InitHMatrix( void )
 default initialisation called by all constructors
~MethodHMatrix( void )
 destructor
void Train( void )
 computes H-matrices for signal and background samples
Double_t GetMvaValue( TMVA::Event *e )
 returns the H-matrix signal estimator
Double_t GetChi2( TMVA::Event *e, Type type )
 compute chi2-estimator for event according to type (signal/background)
void WriteWeightsToFile( void )
 write matrices and mean vectors to file
void ReadWeightsFromFile( void )
 read matrices and mean vectors from file
void WriteHistosToFile( void )
 write special monitoring histograms to file - not implemented for H-Matrix
MethodHMatrix( TString jobName, vector<TString>* theVariables, TTree* theTree = 0, TString theOption = "", TDirectory* theTargetDir = 0 )

Author: Andreas Hoecker, Xavier Prudent, Joerg Stelzer, Helge Voss, Kai Voss
Last update: root/tmva $Id: MethodHMatrix.cxx,v 1.4 2006/05/23 19:35:06 brun Exp $
Copyright (c) 2005: *


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.