library: libTMVA #include "MethodHMatrix.h" |
Inheritance Chart: | |||||||||||||
|
private:
Double_t GetChi2(TMVA::Event* e, TMVA::MethodBase::Type) const void InitHMatrix() public:
MethodHMatrix(TString jobName, vector<TString>* theVariables, TTree* theTree = 0, TString theOption = , TDirectory* theTargetDir = 0) MethodHMatrix(vector<TString>* theVariables, TString theWeightFile, TDirectory* theTargetDir = NULL) MethodHMatrix(const TMVA::MethodHMatrix&) virtual ~MethodHMatrix() static TClass* Class() virtual Double_t GetMvaValue(TMVA::Event* e) virtual TClass* IsA() const TMVA::MethodHMatrix& operator=(const TMVA::MethodHMatrix&) virtual void ReadWeightsFromFile() virtual void ShowMembers(TMemberInspector& insp, char* parent) virtual void Streamer(TBuffer& b) void StreamerNVirtual(TBuffer& b) virtual void Train() virtual void WriteHistosToFile() virtual void WriteWeightsToFile()
private:
TMatrixD* fInvHMatrixS inverse H-matrix (signal) TMatrixD* fInvHMatrixB inverse H-matrix (background) TVectorD* fVecMeanS vector of mean values (signal) TVectorD* fVecMeanB vector of mean values (background) Bool_t fNormaliseInputVars normalise input variables
_______________________________________________________________________H-Matrix method, which is implemented as a simple comparison of chi-squared estimators for signal and background, taking into account the linear correlations between the input variables This MVA approach is used by the DØ collaboration (FNAL) for the purpose of electron identification (see, eg., hep-ex/9507007). As it is implemented in TMVA, it is usually equivalent or worse than the Fisher-Mahalanobis discriminant, and it has only been added for the purpose of completeness. Two χ2 estimators are computed for an event, each one for signal and background, using the estimates for the means and covariance matrices obtained from the training sample:
_______________________________________________________________________
standard constructor for the H-Matrix method HMatrix options: none
constructor to calculate the H-Matrix from the weight file
compute chi2-estimator for event according to type (signal/background)
write special monitoring histograms to file - not implemented for H-Matrix