library: libPhysics #include "TRolke.h" |
TRolke
class description - header file - source file - inheritance tree (.pdf)
protected:
Double_t EvalLikeMod1(Double_t mu, Int_t x, Int_t y, Int_t z, Double_t e, Double_t tau, Double_t b, Int_t m, Int_t what)
Double_t EvalLikeMod2(Double_t mu, Int_t x, Int_t y, Double_t em, Double_t e, Double_t sde, Double_t tau, Double_t b, Int_t what)
Double_t EvalLikeMod3(Double_t mu, Int_t x, Double_t bm, Double_t em, Double_t e, Double_t sde, Double_t sdb, Double_t b, Int_t what)
Double_t EvalLikeMod4(Double_t mu, Int_t x, Int_t y, Double_t tau, Double_t b, Int_t what)
Double_t EvalLikeMod5(Double_t mu, Int_t x, Double_t bm, Double_t sdb, Double_t b, Int_t what)
Double_t EvalLikeMod6(Double_t mu, Int_t x, Int_t z, Double_t e, Double_t b, Int_t m, Int_t what)
Double_t EvalLikeMod7(Double_t mu, Int_t x, Double_t em, Double_t e, Double_t sde, Double_t b, Int_t what)
static Double_t EvalMonomial(Double_t x, const Int_t* coef, Int_t N)
static Double_t EvalPolynomial(Double_t x, const Int_t* coef, Int_t N)
Double_t Interval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m)
Double_t LikeGradMod1(Double_t e, Double_t mu, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m)
Double_t Likelihood(Double_t mu, Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m, Int_t what)
Double_t LikeMod1(Double_t mu, Double_t b, Double_t e, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m)
Double_t LikeMod2(Double_t mu, Double_t b, Double_t e, Int_t x, Int_t y, Double_t em, Double_t tau, Double_t v)
Double_t LikeMod3(Double_t mu, Double_t b, Double_t e, Int_t x, Double_t bm, Double_t em, Double_t u, Double_t v)
Double_t LikeMod4(Double_t mu, Double_t b, Int_t x, Int_t y, Double_t tau)
Double_t LikeMod5(Double_t mu, Double_t b, Int_t x, Double_t bm, Double_t u)
Double_t LikeMod6(Double_t mu, Double_t b, Double_t e, Int_t x, Int_t z, Int_t m)
Double_t LikeMod7(Double_t mu, Double_t b, Double_t e, Int_t x, Double_t em, Double_t v)
void ProfLikeMod1(Double_t mu, Double_t& b, Double_t& e, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m)
public:
TRolke(Double_t CL = 0.9, Option_t* option = "")
TRolke(const TRolke&)
virtual ~TRolke()
Double_t CalculateInterval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m)
static TClass* Class()
Double_t GetCL() const
Double_t GetLowerLimit() const
Int_t GetSwitch() const
Double_t GetUpperLimit() const
virtual TClass* IsA() const
TRolke& operator=(const TRolke&)
void SetCL(Double_t CL)
void SetSwitch(Int_t sw)
virtual void ShowMembers(TMemberInspector& insp, char* parent)
virtual void Streamer(TBuffer& b)
void StreamerNVirtual(TBuffer& b)
protected:
Double_t fCL confidence level as a fraction [e.g. 90% = 0.9]
Double_t fUpperLimit the calculated upper limit
Double_t fLowerLimit the calculated lower limit
Int_t fSwitch 0: for unbounded likelihood
TRolke
This class computes confidence intervals for the rate of a Poisson
in the presence of background and efficiency with a fully frequentist
treatment of the uncertainties in the efficiency and background estimate
using the profile likelihood method.
The signal is always assumed to be Poisson.
The method is very similar to the one used in MINUIT (MINOS).
Two options are offered to deal with cases where the maximum likelihood
estimate (MLE) is not in the physical region. Version "bounded likelihood"
is the one used by MINOS if bounds for the physical region are chosen. Versi// on "unbounded likelihood (the default) allows the MLE to be in the
unphysical region. It has however better coverage.
For more details consult the reference (see below).
It allows the following Models:
1: Background - Poisson, Efficiency - Binomial (cl,x,y,z,tau,m)
2: Background - Poisson, Efficiency - Gaussian (cl,xd,y,em,tau,sde)
3: Background - Gaussian, Efficiency - Gaussian (cl,x,bm,em,sd)
4: Background - Poisson, Efficiency - known (cl,x,y,tau,e)
5: Background - Gaussian, Efficiency - known (cl,x,y,z,sdb,e)
6: Background - known, Efficiency - Binomial (cl,x,z,m,b)
7: Background - known, Efficiency - Gaussian (cl,x,em,sde,b)
Parameter definition:
cl = Confidence level
x = number of observed events
y = number of background events
z = number of simulated signal events
em = measurement of the efficiency.
bm = background estimate
tau = ratio between signal and background region (in case background is
observed) ratio between observed and simulated livetime in case
background is determined from MC.
sd(x) = sigma of the Gaussian
e = true efficiency (in case known)
b = expected background (in case known)
m = number of MC runs
mid = ID number of the model ...
For a description of the method and its properties:
W.Rolke, A. Lopez, J. Conrad and Fred James
"Limits and Confidence Intervals in presence of nuisance parameters"
http://lanl.arxiv.org/abs/physics/0403059
Nucl.Instrum.Meth.A551:493-503,2005
Should I use TRolke, TFeldmanCousins, TLimit?
============================================
1. I guess TRolke makes TFeldmanCousins obsolete?
Certainly not. TFeldmanCousins is the fully frequentist construction and
should be used in case of no (or negligible uncertainties). It is however
not capable of treating uncertainties in nuisance parameters.
TRolke is desined for this case and it is shown in the reference above
that it has good coverage properties for most cases, ie it might be
used where FeldmannCousins can't.
2. What are the advantages of TRolke over TLimit?
TRolke is fully frequentist. TLimit treats nuisance parameters Bayesian.
For a coverage study of a Bayesian method refer to
physics/0408039 (Tegenfeldt & J.C). However, this note studies
the coverage of Feldman&Cousins with Bayesian treatment of nuisance
parameters. To make a long story short: using the Bayesian method you
might introduce a small amount of over-coverage (though I haven't shown it
for TLimit). On the other hand, coverage of course is a not so interesting
when you consider yourself a Bayesian.
Author: Jan Conrad (CERN)
see example in tutorial Rolke.C
Copyright CERN 2004 Jan.Conrad@cern.ch
Double_t CalculateInterval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em,Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m)
calculate interval
Double_t Interval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em,Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m)
Calculates the Confidence Interval
Double_t Likelihood(Double_t mu, Int_t x, Int_t y, Int_t z, Double_t bm,Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m, Int_t what)
Chooses between the different profile likelihood functions to use for the
different models.
Returns evaluation of the profile likelihood functions.
Author: Jan Conrad 9/2/2004
Last update: root/physics:$Name: $:$Id: TRolke.cxx,v 1.13 2006/05/17 06:49:58 brun Exp $
Copyright (C) 1995-2004, Rene Brun and Fons Rademakers. *
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.