library: libTMVA
#include "MethodCommittee.h"

TMVA::MethodCommittee


class description - header file - source file
viewCVS header - viewCVS source

class TMVA::MethodCommittee: public TMVA::MethodBase

Inheritance Inherited Members Includes Libraries
Class Charts

Function Members (Methods)

Display options:
Show inherited
Show non-public
public:
virtual~MethodCommittee()
voidTObject::AbstractMethod(const char* method) const
virtual voidTObject::AppendPad(Option_t* option = "")
virtual Double_tBoost(TMVA::IMethod*, UInt_t imember)
virtual voidTObject::Browse(TBrowser* b)
static TClass*Class()
virtual const char*TObject::ClassName() const
virtual voidTObject::Clear(Option_t* = "")
virtual TObject*TObject::Clone(const char* newname = "") const
virtual Int_tTObject::Compare(const TObject* obj) const
virtual voidTObject::Copy(TObject& object) const
virtual const TMVA::Ranking*CreateRanking()
TMVA::DataSet&TMVA::MethodBase::Data() const
virtual voidDeclareOptions()
virtual voidTObject::Delete(Option_t* option = "")
virtual Int_tTObject::DistancetoPrimitive(Int_t px, Int_t py)
virtual voidTObject::Draw(Option_t* option = "")
virtual voidTObject::DrawClass() const
virtual TObject*TObject::DrawClone(Option_t* option = "") const
virtual voidTObject::Dump() const
virtual voidTObject::Error(const char* method, const char* msgfmt) const
virtual voidTObject::Execute(const char* method, const char* params, Int_t* error = 0)
virtual voidTObject::Execute(TMethod* method, TObjArray* params, Int_t* error = 0)
virtual voidTObject::ExecuteEvent(Int_t event, Int_t px, Int_t py)
virtual voidTObject::Fatal(const char* method, const char* msgfmt) const
virtual TObject*TObject::FindObject(const char* name) const
virtual TObject*TObject::FindObject(const TObject* obj) const
const vector<Double_t>&GetBoostWeights() const
const vector<TMVA::IMethod*>&GetCommittee() const
virtual Option_t*TObject::GetDrawOption() const
static Long_tTObject::GetDtorOnly()
Double_tTMVA::MethodBase::GetEffForRoot(Double_t)
virtual Double_tTMVA::MethodBase::GetEfficiency(TString, TTree*)
Double_tTMVA::MethodBase::GetEventVal(Int_t ivar) const
Double_tTMVA::MethodBase::GetEventValNormalized(Int_t ivar) const
Double_tTMVA::MethodBase::GetEventWeight() const
virtual const char*TObject::GetIconName() const
const TString&TMVA::MethodBase::GetInputExp(int i) const
const TString&TMVA::MethodBase::GetInputVar(int i) const
virtual const TString&TMVA::MethodBase::GetJobName() const
virtual const TString&TMVA::MethodBase::GetMethodName() const
virtual const TString&TMVA::MethodBase::GetMethodTitle() const
virtual const TMVA::Types::EMVATMVA::MethodBase::GetMethodType() const
virtual Double_tTMVA::MethodBase::GetmuTransform(TTree*)
virtual Double_tGetMvaValue()
virtual const char*TMVA::MethodBase::GetName() const
Int_tTMVA::MethodBase::GetNvar() const
virtual char*TObject::GetObjectInfo(Int_t px, Int_t py) const
static Bool_tTObject::GetObjectStat()
virtual Double_tTMVA::MethodBase::GetOptimalSignificance(Double_t SignalEvents, Double_t BackgroundEvents, Double_t& optimal_significance_value) const
virtual Option_t*TObject::GetOption() const
TStringTMVA::MethodBase::GetOptions() const
virtual TMVA::Types::EPreprocessingMethodTMVA::MethodBase::GetPreprocessingMethod() const
virtual Double_tTMVA::MethodBase::GetSeparation()
virtual Double_tTMVA::MethodBase::GetSignificance()
TTree*TMVA::MethodBase::GetTestTree() const
static TMVA::MethodBase*TMVA::MethodBase::GetThisBase()
virtual const char*TObject::GetTitle() const
virtual Double_tTMVA::MethodBase::GetTrainingEfficiency(TString)
TTree*TMVA::MethodBase::GetTrainingTree() const
virtual UInt_tTObject::GetUniqueID() const
vector<Double_t>GetVariableImportance()
Double_tGetVariableImportance(UInt_t ivar)
virtual TStringTMVA::MethodBase::GetWeightFileDir() const
virtual TStringTMVA::MethodBase::GetWeightFileExtension() const
TStringTMVA::MethodBase::GetWeightFileName() const
TMVA::MethodBase::EWeightFileTypeTMVA::MethodBase::GetWeightFileType() const
Double_tTMVA::MethodBase::GetXmax(Int_t ivar, TMVA::Types::EPreprocessingMethod corr = Types::kNone) const
Double_tTMVA::MethodBase::GetXmax(const TString& var, TMVA::Types::EPreprocessingMethod corr = Types::kNone) const
Double_tTMVA::MethodBase::GetXmin(Int_t ivar, TMVA::Types::EPreprocessingMethod corr = Types::kNone) const
Double_tTMVA::MethodBase::GetXmin(const TString& var, TMVA::Types::EPreprocessingMethod corr = Types::kNone) const
virtual Bool_tTObject::HandleTimer(TTimer* timer)
virtual ULong_tTObject::Hash() const
Bool_tTMVA::MethodBase::HasTrainingTree() const
static Double_tTMVA::MethodBase::IGetEffForRoot(Double_t)
virtual voidTObject::Info(const char* method, const char* msgfmt) const
virtual Bool_tTObject::InheritsFrom(const char* classname) const
virtual Bool_tTObject::InheritsFrom(const TClass* cl) const
virtual voidTObject::Inspect() const
voidTObject::InvertBit(UInt_t f)
virtual TClass*IsA() const
virtual Bool_tTObject::IsEqual(const TObject* obj) const
virtual Bool_tTObject::IsFolder() const
virtual Bool_tTMVA::MethodBase::IsOK() const
Bool_tTObject::IsOnHeap() const
virtual Bool_tTMVA::MethodBase::IsSignalLike()
virtual Bool_tTObject::IsSortable() const
Bool_tTObject::IsZombie() const
virtual voidTObject::ls(Option_t* option = "") const
voidTObject::MayNotUse(const char* method) const
TMVA::MethodCommitteeMethodCommittee(TMVA::DataSet& theData, TString theWeightFile, TDirectory* theTargetDir = NULL)
TMVA::MethodCommitteeMethodCommittee(TString jobName, TString committeeTitle, TMVA::DataSet& theData, TString committeeOptions, TMVA::Types::EMVA method, TString methodOptions, TDirectory* theTargetDir = 0)
Double_tTMVA::MethodBase::Norm(Int_t ivar, Double_t x) const
Double_tTMVA::MethodBase::Norm(TString var, Double_t x) const
virtual Bool_tTObject::Notify()
static voidTObject::operator delete(void* ptr)
static voidTObject::operator delete(void* ptr, void* vp)
static voidTObject::operator delete[](void* ptr)
static voidTObject::operator delete[](void* ptr, void* vp)
void*TObject::operator new(size_t sz)
void*TObject::operator new(size_t sz, void* vp)
void*TObject::operator new[](size_t sz)
void*TObject::operator new[](size_t sz, void* vp)
TMVA::IMethod&TMVA::IMethod::operator=(const TMVA::IMethod&)
virtual voidTObject::Paint(Option_t* option = "")
virtual voidTObject::Pop()
virtual voidTMVA::MethodBase::PrepareEvaluationTree(TTree* theTestTree)
virtual voidTObject::Print(Option_t* option = "") const
virtual voidProcessOptions()
virtual Int_tTObject::Read(const char* name)
virtual voidTMVA::MethodBase::ReadStateFromFile()
virtual voidTMVA::MethodBase::ReadStateFromStream(istream& i)
virtual Bool_tTMVA::MethodBase::ReadTestEvent(UInt_t ievt, TMVA::Types::ESBType type = Types::kMaxSBType)
Bool_tTMVA::MethodBase::ReadTrainingEvent(UInt_t ievt, TMVA::Types::ESBType type = Types::kMaxSBType)
virtual voidReadWeightsFromStream(istream& istr)
virtual voidTObject::RecursiveRemove(TObject* obj)
voidTObject::ResetBit(UInt_t f)
virtual voidTObject::SaveAs(const char* filename = "", Option_t* option = "") const
virtual voidTObject::SavePrimitive(ostream& out, Option_t* option = "")
voidTObject::SetBit(UInt_t f)
voidTObject::SetBit(UInt_t f, Bool_t set)
virtual voidTObject::SetDrawOption(Option_t* option = "")
static voidTObject::SetDtorOnly(void* obj)
virtual voidTMVA::MethodBase::SetJobName(TString jobName)
voidTMVA::MethodBase::SetMethodName(TString methodName)
voidTMVA::MethodBase::SetMethodTitle(TString methodTitle)
voidTMVA::MethodBase::SetMethodType(TMVA::Types::EMVA methodType)
voidTMVA::MethodBase::SetNvar(Int_t n)
static voidTObject::SetObjectStat(Bool_t stat)
voidTMVA::MethodBase::SetPreprocessingMethod(TMVA::Types::EPreprocessingMethod m)
virtual voidTObject::SetUniqueID(UInt_t uid)
voidTMVA::MethodBase::SetVerbose(Bool_t v = kTRUE)
virtual voidTMVA::MethodBase::SetWeightFileDir(TString fileDir)
virtual voidTMVA::MethodBase::SetWeightFileExtension(TString fileExtension)
voidTMVA::MethodBase::SetWeightFileName(TString)
voidTMVA::MethodBase::SetWeightFileType(TMVA::MethodBase::EWeightFileType w)
voidTMVA::MethodBase::SetXmax(Int_t ivar, Double_t x, TMVA::Types::EPreprocessingMethod corr = Types::kNone)
voidTMVA::MethodBase::SetXmax(const TString& var, Double_t x, TMVA::Types::EPreprocessingMethod corr = Types::kNone)
voidTMVA::MethodBase::SetXmin(Int_t ivar, Double_t x, TMVA::Types::EPreprocessingMethod corr = Types::kNone)
voidTMVA::MethodBase::SetXmin(const TString& var, Double_t x, TMVA::Types::EPreprocessingMethod corr = Types::kNone)
virtual voidShowMembers(TMemberInspector& insp, char* parent)
virtual voidStreamer(TBuffer& b)
voidStreamerNVirtual(TBuffer& b)
virtual voidTObject::SysError(const char* method, const char* msgfmt) const
virtual voidTMVA::MethodBase::Test(TTree* theTestTree = 0)
Bool_tTObject::TestBit(UInt_t f) const
Int_tTObject::TestBits(UInt_t f) const
virtual voidTMVA::MethodBase::TestInit(TTree* theTestTree = 0)
virtual voidTrain()
voidTMVA::MethodBase::TrainMethod()
virtual voidTObject::UseCurrentStyle()
Bool_tTMVA::MethodBase::Verbose() const
virtual voidTObject::Warning(const char* method, const char* msgfmt) const
virtual Int_tTObject::Write(const char* name = "0", Int_t option = 0, Int_t bufsize = 0)
virtual Int_tTObject::Write(const char* name = "0", Int_t option = 0, Int_t bufsize = 0) const
virtual voidTMVA::MethodBase::WriteEvaluationHistosToFile(TDirectory* targetDir)
virtual voidWriteMonitoringHistosToFile() const
voidWriteStateToFile() const
virtual voidTMVA::MethodBase::WriteStateToStream(ostream& o) const
virtual voidWriteWeightsToStream(ostream& o) const
protected:
TDirectory*TMVA::MethodBase::BaseDir() const
Bool_tTMVA::MethodBase::CheckSanity(TTree* theTree = 0)
virtual voidTObject::DoError(int level, const char* location, const char* fmt, va_list va) const
voidTMVA::MethodBase::EnableLooseOptions(Bool_t b = kTRUE)
TMVA::MethodBase::ECutOrientationTMVA::MethodBase::GetCutOrientation() const
TMVA::Types::ESBTypeTMVA::MethodBase::GetPreprocessingType() const
Double_tTMVA::MethodBase::GetSignalReferenceCut() const
const TString&TMVA::MethodBase::GetTestvarName() const
const TString&TMVA::MethodBase::GetTestvarPrefix() const
const TList&TMVA::MethodBase::ListOfOptions() const
TDirectory*TMVA::MethodBase::LocalTDir() const
voidTObject::MakeZombie()
voidTMVA::MethodBase::ParseOptions(Bool_t verbose = kTRUE)
voidTMVA::MethodBase::PrintOptions() const
voidTMVA::MethodBase::ReadOptionsFromStream(istream& istr)
voidTMVA::MethodBase::ResetThisBase()
voidTMVA::MethodBase::SetPreprocessingType(TMVA::Types::ESBType t)
voidTMVA::MethodBase::SetSignalReferenceCut(Double_t cut)
voidTMVA::MethodBase::SetTestvarName()
voidTMVA::MethodBase::SetTestvarName(TString v)
voidTMVA::MethodBase::SetTestvarPrefix(TString prefix)
voidTMVA::MethodBase::Statistics(TMVA::Types::ETreeType treeType, const TString& theVarName, Double_t&, Double_t&, Double_t&, Double_t&, Double_t&, Double_t&, Bool_t norm = kFALSE)
voidTMVA::MethodBase::WriteOptionsToStream(ostream& o) const
private:
Double_tAdaBoost(TMVA::IMethod*)
Double_tBagging(UInt_t imember)
vector<Double_t>&GetBoostWeights()
vector<IMethod*>&GetCommittee()
voidInitCommittee()

Data Members

public:
enum TMVA::MethodBase::EWeightFileType { kROOT
kTEXT
};
enum TMVA::MethodBase::ECutOrientation { kNegative
kPositive
};
enum TObject::EStatusBits { kCanDelete
kMustCleanup
kObjInCanvas
kIsReferenced
kHasUUID
kCannotPick
kNoContextMenu
kInvalidObject
};
enum TObject::[unnamed] { kIsOnHeap
kNotDeleted
kZombie
kBitMask
kSingleKey
kOverwrite
kWriteDelete
};
protected:
TMVA::Ranking*TMVA::MethodBase::fRankingranking
vector<TString>*TMVA::MethodBase::fInputVarsvector of input variables used in MVA
Bool_tTMVA::MethodBase::fIsOKstatus of sanity checks
TH1*TMVA::MethodBase::fHistS_plotbinMVA plots used for graphics representation (signal)
TH1*TMVA::MethodBase::fHistB_plotbinMVA plots used for graphics representation (background)
TH1*TMVA::MethodBase::fHistS_highbinMVA plots used for efficiency calculations (signal)
TH1*TMVA::MethodBase::fHistB_highbinMVA plots used for efficiency calculations (background)
TH1*TMVA::MethodBase::fEffSefficiency plot (signal)
TH1*TMVA::MethodBase::fEffBefficiency plot (background)
TH1*TMVA::MethodBase::fEffBvsSbackground efficiency versus signal efficiency
TH1*TMVA::MethodBase::fRejBvsSbackground rejection (=1-eff.) versus signal efficiency
TH1*TMVA::MethodBase::fHistBhatSworking histograms needed for mu-transform (signal)
TH1*TMVA::MethodBase::fHistBhatBworking histograms needed for mu-transform (background)
TH1*TMVA::MethodBase::fHistMuSmu-transform (signal)
TH1*TMVA::MethodBase::fHistMuBmu-transform (background)
TH1*TMVA::MethodBase::fTrainEffSTraining efficiency plot (signal)
TH1*TMVA::MethodBase::fTrainEffBTraining efficiency plot (background)
TH1*TMVA::MethodBase::fTrainEffBvsSTraining background efficiency versus signal efficiency
TH1*TMVA::MethodBase::fTrainRejBvsSTraining background rejection (=1-eff.) versus signal efficiency
Double_tTMVA::MethodBase::fX
Double_tTMVA::MethodBase::fMode
TGraph*TMVA::MethodBase::fGraphSgraphs used for splines for efficiency (signal)
TGraph*TMVA::MethodBase::fGraphBgraphs used for splines for efficiency (background)
TGraph*TMVA::MethodBase::fGrapheffBvsSgraphs used for splines for signal eff. versus background eff.
TMVA::PDF*TMVA::MethodBase::fSplSPDFs of MVA distribution (signal)
TMVA::PDF*TMVA::MethodBase::fSplBPDFs of MVA distribution (background)
TSpline*TMVA::MethodBase::fSpleffBvsSsplines for signal eff. versus background eff.
TGraph*TMVA::MethodBase::fGraphTrainSgraphs used for splines for training efficiency (signal)
TGraph*TMVA::MethodBase::fGraphTrainBgraphs used for splines for training efficiency (background)
TGraph*TMVA::MethodBase::fGraphTrainEffBvsSgraphs used for splines for training signal eff. versus background eff.
TMVA::PDF*TMVA::MethodBase::fSplTrainSPDFs of training MVA distribution (signal)
TMVA::PDF*TMVA::MethodBase::fSplTrainBPDFs of training MVA distribution (background)
TSpline*TMVA::MethodBase::fSplTrainEffBvsSsplines for training signal eff. versus background eff.
Int_tTMVA::MethodBase::fNbinsnumber of bins in representative histograms
Int_tTMVA::MethodBase::fNbinsHnumber of bins in evaluation histograms
TMVA::MethodBase::ECutOrientationTMVA::MethodBase::fCutOrientation+1 if Sig>Bkg, -1 otherwise
TMVA::TSpline1*TMVA::MethodBase::fSplRefShelper splines for RootFinder (signal)
TMVA::TSpline1*TMVA::MethodBase::fSplRefBhelper splines for RootFinder (background)
TMVA::TSpline1*TMVA::MethodBase::fSplTrainRefShelper splines for RootFinder (signal)
TMVA::TSpline1*TMVA::MethodBase::fSplTrainRefBhelper splines for RootFinder (background)
TMVA::OptionBase*TMVA::MethodBase::fLastDeclaredOptionlast declared option
TListTMVA::MethodBase::fListOfOptionsoption list
TMVA::MsgLoggerTMVA::MethodBase::fLoggermessage logger
private:
UInt_tfNMembersnumber of members requested
vector<IMethod*>fCommitteethe collection of members
vector<Double_t>fBoostWeightsthe weights applied in the individual boosts
TStringfBoostTypestring specifying the boost type
TMVA::Types::EMVAfMemberTypethe MVA method to be boosted
TStringfMemberOptionthe options for that method
Bool_tfUseMemberDecisionuse binary information from IsSignal
Bool_tfUseWeightedMembersin the committee weighted from AdaBoost
TH1F*fBoostFactorHistweights applied in boosting
TH2F*fErrFractHisterror fraction vs member number
TTree*fMonitorNtuplemonitoring ntuple
Int_tfITreentuple var: ith member
Double_tfBoostFactorntuple var: boost weight
Double_tfErrorFractionntuple var: misclassification error fraction
Int_tfNnodesntuple var: nNodes
vector<Double_t>fVariableImportancethe relative importance of the different variables

Class Description

                                                                      
 Boosting: 

 the idea behind the boosting is, that signal events from the training
 sample, that end up in a background node (and vice versa) are given a
 larger weight than events that are in the correct leave node. This
 results in a re-weighed training event sample, with which then a new
 decision tree can be developed. The boosting can be applied several
 times (typically 100-500 times) and one ends up with a set of decision
 trees (a forest).

 Bagging: 

 In this particular variant of the Boosted Decision Trees the boosting
 is not done on the basis of previous training results, but by a simple
 stochasitc re-sampling of the initial training event sample.
_______________________________________________________________________
MethodCommittee( TString jobName, TString committeeTitle, DataSet& theData, TString committeeOptions, Types::EMVA method, TString methodOptions, TDirectory* theTargetDir )
 constructor
MethodCommittee( DataSet& theData, TString theWeightFile, TDirectory* theTargetDir )
 constructor for calculating Committee-MVA using previously generatad decision trees
 the result of the previous training (the decision trees) are read in via the
 weightfile. Make sure the "theVariables" correspond to the ones used in 
 creating the "weight"-file
void DeclareOptions()
 define the options (their key words) that can be set in the option string 
 know options:
 NMembers           <string>     number of members in the committee
 UseMemberDecision  <bool>       use signal information from event (otherwise assume signal)
 UseWeightedMembers <bool>       use weighted trees or simple average in classification from the forest

 BoostType          <string>     boosting type
    available values are:        AdaBoost  <default>
                                 Bagging
void ProcessOptions()
 process user options
void InitCommittee( void )
 common initialisation with defaults for the Committee-Method
~MethodCommittee( void )
destructor
void WriteStateToFile()
 Function to write options and weights to file
void Train( void )
 default sanity checks
Double_t Boost( TMVA::IMethod* method, UInt_t imember )
 apply the boosting alogrithim (the algorithm is selecte via the the "option" given
 in the constructor. The return value is the boosting weight 
Double_t AdaBoost( TMVA::IMethod* method )
 the AdaBoost implementation.
 a new training sample is generated by weighting 
 events that are misclassified by the decision tree. The weight
 applied is w = (1-err)/err or more general:
            w = ((1-err)/err)^beta
 where err is the fracthin of misclassified events in the tree ( <0.5 assuming
 demanding the that previous selection was better than random guessing)
 and "beta" beeing a free parameter (standard: beta = 1) that modifies the
 boosting.
Double_t Bagging( UInt_t imember )
 call it Bootstrapping, re-sampling or whatever you like, in the end it is nothing
 else but applying "random boostweights" to each event.
void WriteWeightsToStream( ostream& o )
 write the state of the method to an output stream
void ReadWeightsFromStream( istream& istr )
 read the state of the method from an input stream
Double_t GetMvaValue()
 return the MVA value (range [-1;1]) that classifies the
 event.according to the majority vote from the total number of
 decision trees
 In the literature I found that people actually use the 
 weighted majority vote (using the boost weights) .. However I
 did not see any improvement in doing so :(  
 --> this is currently switched off
void WriteMonitoringHistosToFile( void )
 here we could write some histograms created during the processing
 to the output file.
vector< Double_t > GetVariableImportance()
 return the relative variable importance, normalized to all
 variables together having the importance 1. The importance in
 evaluated as the total separation-gain that this variable had in
 the decision trees (weighted by the number of events)
Double_t GetVariableImportance(UInt_t ivar)
 return the variable importance
const TMVA::Ranking* CreateRanking()
 computes ranking of input variables
const std::vector<TMVA::IMethod*>& GetCommittee()
 accessors
{ return fCommittee; }
const std::vector<Double_t>& GetBoostWeights()
{ return fBoostWeights; }
std::vector<IMethod*>& GetCommittee()
 accessors
{ return fCommittee; }
std::vector<Double_t>& GetBoostWeights()
{ return fBoostWeights; }

Author: Andreas Hoecker, Joerg Stelzer, Helge Voss
Last update: root/tmva $Id: MethodCommittee.cxx,v 1.6 2006/11/20 15:35:28 brun Exp $
Copyright (c) 2005: *


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.