~CylindricalEta3D<Double32_t>() | |
ROOT::Math::CylindricalEta3D<Double32_t> | CylindricalEta3D<Double32_t>() |
ROOT::Math::CylindricalEta3D<Double32_t> | CylindricalEta3D<Double32_t>(const ROOT::Math::CylindricalEta3D<Double32_t>& v) |
ROOT::Math::CylindricalEta3D<Double32_t> | CylindricalEta3D<Double32_t>(ROOT::Math::CylindricalEta3D<Double32_t>::Scalar rho, ROOT::Math::CylindricalEta3D<Double32_t>::Scalar eta, ROOT::Math::CylindricalEta3D<Double32_t>::Scalar phi) |
Double32_t | Eta() const |
void | GetCoordinates(ROOT::Math::CylindricalEta3D<Double32_t>::Scalar* dest) const |
void | GetCoordinates(ROOT::Math::CylindricalEta3D<Double32_t>::Scalar& rho, ROOT::Math::CylindricalEta3D<Double32_t>::Scalar& eta, ROOT::Math::CylindricalEta3D<Double32_t>::Scalar& phi) const |
Double32_t | Mag2() const |
void | Negate() |
bool | operator!=(const ROOT::Math::CylindricalEta3D<Double32_t>& rhs) const |
ROOT::Math::CylindricalEta3D<Double32_t>& | operator=(const ROOT::Math::CylindricalEta3D<Double32_t>& v) |
bool | operator==(const ROOT::Math::CylindricalEta3D<Double32_t>& rhs) const |
Double32_t | Perp2() const |
Double32_t | Phi() const |
Double32_t | R() const |
Double32_t | Rho() const |
void | Scale(Double32_t a) |
void | SetCoordinates(const ROOT::Math::CylindricalEta3D<Double32_t>::Scalar* src) |
void | SetCoordinates(ROOT::Math::CylindricalEta3D<Double32_t>::Scalar rho, ROOT::Math::CylindricalEta3D<Double32_t>::Scalar eta, ROOT::Math::CylindricalEta3D<Double32_t>::Scalar phi) |
void | SetEta(Double32_t eta) |
void | SetPhi(Double32_t phi) |
void | SetR(ROOT::Math::CylindricalEta3D<Double32_t>::Scalar r) |
void | SetRho(Double32_t rho) |
void | SetTheta(ROOT::Math::CylindricalEta3D<Double32_t>::Scalar theta) |
void | SetX(ROOT::Math::CylindricalEta3D<Double32_t>::Scalar x) |
void | SetXYZ(ROOT::Math::CylindricalEta3D<Double32_t>::Scalar x, ROOT::Math::CylindricalEta3D<Double32_t>::Scalar y, ROOT::Math::CylindricalEta3D<Double32_t>::Scalar z) |
void | SetY(ROOT::Math::CylindricalEta3D<Double32_t>::Scalar y) |
void | SetZ(ROOT::Math::CylindricalEta3D<Double32_t>::Scalar z) |
Double32_t | Theta() const |
Double32_t | X() const |
Double32_t | x() const |
Double32_t | Y() const |
Double32_t | y() const |
Double32_t | Z() const |
Double32_t | z() const |
Double32_t | fEta | |
Double32_t | fPhi | |
Double32_t | fRho |
Set internal data based on an array of 3 Scalar numbers
get internal data into an array of 3 Scalar numbers
Set internal data based on 3 Scalar numbers
get internal data into 3 Scalar numbers
setters (only for data members) set the rho coordinate value keeping eta and phi constant
all values using cartesian coordina
scale by a scalar quantity a -- for cylindrical eta coords, as long as a >= 0, only rho changes!
Exact component-by-component equality Note: Peculiar representaions of the zero vector such as (0,1,0) will not test as equal to one another.
{return !(operator==(rhs));}
============= Compatibility section ================== The following make this coordinate system look enough like a CLHEP vector that an assignment member template can work with either
{ return X();}
============= Specializations for improved speed ================== (none) ====== Set member functions for coordinates in other systems =======