virtual | ~Derivator() |

ROOT::Math::Derivator | Derivator() |

ROOT::Math::Derivator | Derivator(const ROOT::Math::IGenFunction& f) |

ROOT::Math::Derivator | Derivator(const ROOT::Math::Derivator::GSLFuncPointer& f, void* p = 0) |

double | Error() const |

double | Eval(double x, double h = 1E-8) const |

static double | Eval(const ROOT::Math::IGenFunction& f, double x, double h = 1E-8) |

static double | Eval(const ROOT::Math::IMultiGenFunction& f, const double* x, unsigned int icoord = 0, double h = 1E-8) |

static double | Eval(ROOT::Math::IParamFunction& f, double x, const double* p, unsigned int ipar = 0, double h = 1E-8) |

static double | Eval(ROOT::Math::IParamMultiFunction& f, const double* x, const double* p, unsigned int ipar = 0, double h = 1E-8) |

double | EvalBackward(double x, double h = 1E-8) const |

static double | EvalBackward(const ROOT::Math::IGenFunction& f, double x, double h = 1E-8) |

double | EvalCentral(double x, double h = 1E-8) const |

static double | EvalCentral(const ROOT::Math::IGenFunction& f, double x, double h = 1E-8) |

double | EvalForward(double x, double h = 1E-8) const |

static double | EvalForward(const ROOT::Math::IGenFunction& f, double x, double h = 1E-8) |

double | Result() const |

void | SetFunction(const ROOT::Math::IGenFunction& f) |

void | SetFunction(const ROOT::Math::Derivator::GSLFuncPointer& f, void* p = 0) |

int | Status() const |

explicit Derivator(const IGenFunction &f)

Construct using a GSL function pointer type @param f : free function pointer of the GSL required type @param p : pointer to the object carrying the function state (for example the function object itself)

void SetFunction(const ROOT::Math::IGenFunction& f)

SetFunction(const ROOT::Math::Derivator::GSLFuncPointer& f, void* p = 0)

double Eval(double x, double h = 1E-8) const

Computes the numerical derivative of a function f at a point x. It uses Derivator::EvalCentral to compute the derivative using an adaptive central difference algorithm with a step size h

double EvalCentral(double x, double h = 1E-8) const

Computes the numerical derivative at a point x using an adaptive central difference algorithm with a step size h.

double EvalForward(double x, double h = 1E-8) const

Computes the numerical derivative at a point x using an adaptive forward difference algorithm with a step size h. The function is evaluated only at points greater than x and at x itself.

double EvalBackward(double x, double h = 1E-8) const

Computes the numerical derivative at a point x using an adaptive backward difference algorithm with a step size h. The function is evaluated only at points less than x and at x itself.

double Eval(const ROOT::Math::IGenFunction& f, double x, double h = 1E-8)

@name --- Static methods --- This methods don't require to use a Derivator object, and are designed to be used in fast calculation. Error and status code cannot be retrieved in this case Computes the numerical derivative of a function f at a point x. It uses Derivator::EvalCentral to compute the derivative using an adaptive central difference algorithm with a step size h

double EvalCentral(const ROOT::Math::IGenFunction& f, double x, double h = 1E-8)

Computes the numerical derivative of a function f at a point x using an adaptive central difference algorithm with a step size h

double EvalForward(const ROOT::Math::IGenFunction& f, double x, double h = 1E-8)

Computes the numerical derivative of a function f at a point x using an adaptive forward difference algorithm with a step size h. The function is evaluated only at points greater than x and at x itself

double EvalBackward(const ROOT::Math::IGenFunction& f, double x, double h = 1E-8)

Computes the numerical derivative of a function f at a point x using an adaptive backward difference algorithm with a step size h. The function is evaluated only at points less than x and at x itself

double Eval(const ROOT::Math::IMultiGenFunction& f, const double* x, unsigned int icoord = 0, double h = 1E-8)

Derivatives for multi-dimension functions Evaluate the partial derivative of a multi-dim function with respect coordinate x_icoord at the point x[]

double Eval(IParamFunction & f, double x, const double * p, unsigned int ipar = 0, double h = 1E-8)

Evaluate the derivative with respect a parameter for one-dim parameteric function at the point ( x,p[]) with respect the parameter p_ipar

double Eval(IParamMultiFunction & f, const double * x, const double * p, unsigned int ipar = 0, double h = 1E-8)

Evaluate the derivative with respect a parameter for a multi-dim parameteric function at the point ( x[],p[]) with respect the parameter p_ipar