Class for performing numerical integration of a multidimensional function. It uses the numerical integration algorithms of GSL, which reimplements the algorithms used in the QUADPACK, a numerical integration package written in Fortran. Plain MC, MISER and VEGAS integration algorithms are supported for integration over finite (hypercubic) ranges. <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_16.html#SEC248">GSL Manual</A>. It implements also the interface ROOT::Math::VirtualIntegratorMultiDim so it can be instantiate using the plugin manager (plugin name is "GSLMCIntegrator") @ingroup MCIntegration
| virtual | ~GSLMCIntegrator() |
| double | ChiSqr() |
| virtual double | Error() const |
| ROOT::Math::GSLMCIntegrator | GSLMCIntegrator(ROOT::Math::IntegrationMultiDim::Type type = MCIntegration::VEGAS, double absTol = 1.E-6, double relTol = 1E-4, unsigned int calls = 500000) |
| ROOT::Math::GSLMCIntegrator | GSLMCIntegrator(const char* type, double absTol, double relTol, unsigned int calls) |
| virtual double | Integral(const double* a, const double* b) |
| double | Integral(const ROOT::Math::GSLMCIntegrator::GSLMonteFuncPointer& f, unsigned int dim, double* a, double* b, void* p = 0) |
| virtual double | Result() const |
| virtual void | SetAbsTolerance(double absTolerance) |
| virtual void | SetFunction(const ROOT::Math::IMultiGenFunction& f) |
| void | SetFunction(ROOT::Math::GSLMCIntegrator::GSLMonteFuncPointer f, unsigned int dim, void* p = 0) |
| void | SetGenerator(ROOT::Math::GSLRngWrapper* r) |
| void | SetMode(ROOT::Math::MCIntegration::Mode mode) |
| void | SetParameters(const ROOT::Math::VegasParameters& p) |
| void | SetParameters(const ROOT::Math::MiserParameters& p) |
| virtual void | SetRelTolerance(double relTolerance) |
| void | SetType(ROOT::Math::IntegrationMultiDim::Type type) |
| double | Sigma() |
| virtual int | Status() const |
| bool | CheckFunction() |
| void | DoInitialize() |
| ROOT::Math::GSLMCIntegrator | GSLMCIntegrator(const ROOT::Math::GSLMCIntegrator&) |
| ROOT::Math::GSLMCIntegrator& | operator=(const ROOT::Math::GSLMCIntegrator&) |
| double | fAbsTol | |
| unsigned int | fCalls | |
| unsigned int | fDim | |
| double | fError | |
| ROOT::Math::GSLMonteFunctionWrapper* | fFunction | |
| ROOT::Math::MCIntegration::Mode | fMode | |
| double | fRelTol | |
| double | fResult | |
| ROOT::Math::GSLRngWrapper* | fRng | |
| int | fStatus | |
| ROOT::Math::IntegrationMultiDim::Type | fType | |
| ROOT::Math::GSLMCIntegrationWorkspace* | fWorkspace |

constructors constructor of GSL MCIntegrator. VEGAS MC is set as default integration type @param type type of integration. The possible types are defined in the Integration::Type enumeration @param absTol desired absolute Error @param relTol desired relative Error @param calls maximum number of function calls
methods using GSLMonteFuncPointer evaluate the Integral of a function f over the defined hypercube (a,b) @param f integration function. The function type must implement the mathlib::IGenFunction interface @param a lower value of the integration interval @param b upper value of the integration interval
evaluate the integral using the previously defined function
setter for control Parameters (getters are not needed so far ) set the desired relative Error
to be added later as options for basic MC methods The possible rules are defined in the Integration::GKRule enumeration. The integration rule can be modified only for ADAPTIVE type integrations void SetIntegrationRule(Integration::GKRule ); set random number generator
set parameters for PLAIN method void SetPParameters(const PlainParameters &p); returns the error sigma from the last iteration of the Vegas algorithm
returns chi-squared per degree of freedom for the estimate of the integral in the Vegas algorithm