class ROOT::Math::RootFinder<ROOT::Math::Roots::Steffenson>


Class to find the Root of one dimensional functions.
The class is templated on the type of Root solver algorithms.
The possible types of Root-finding algorithms are:
<ul>
<li>Root Bracketing Algorithms which they do not require function derivatives
<ol>
<li>Roots::Bisection
<li>Roots::FalsePos
<li>Roots::Brent
</ol>
<li>Root Finding Algorithms using Derivatives
<ol>
<li>Roots::Newton
<li>Roots::Secant
<li>Roots::Steffenson
</ol>
</ul>

This class does not cupport copying

@ingroup RootFinders


Function Members (Methods)

public:
virtual~RootFinder<ROOT::Math::Roots::Steffenson>()
intIterate()
intIterations() const
const char*Name() const
doubleRoot() const
ROOT::Math::RootFinder<ROOT::Math::Roots::Steffenson>RootFinder<ROOT::Math::Roots::Steffenson>()
intSetFunction(const ROOT::Math::IGradFunction& f, double Root)
intSetFunction(const ROOT::Math::IGenFunction& f, double xlow, double xup)
intSolve(int maxIter = 100, double absTol = 1E-3, double relTol = 1E-6)
static intTestDelta(double r1, double r0, double epsAbs, double epsRel)
static intTestInterval(double xlow, double xup, double epsAbs, double epsRel)
static intTestResidual(double f, double epsAbs)
private:
ROOT::Math::RootFinder<ROOT::Math::Roots::Steffenson>&operator=(const ROOT::Math::RootFinder<ROOT::Math::Roots::Steffenson>& rhs)
ROOT::Math::RootFinder<ROOT::Math::Roots::Steffenson>RootFinder<ROOT::Math::Roots::Steffenson>(const ROOT::Math::RootFinder<ROOT::Math::Roots::Steffenson>&)

Data Members

private:
ROOT::Math::Roots::SteffensonfSolvertype of algorithm to be used

Class Charts

Inheritance Inherited Members Includes Libraries
Class Charts

Function documentation

int SetFunction(const ROOT::Math::IGenFunction& f, double xlow, double xup)
Provide to the solver the function and the initial search interval [xlow, xup]
for algorithms not using derivatives (bracketing algorithms)
The templated function f must be of a type implementing the \a operator() method,
<em>  double  operator() (  double  x ) </em>
Returns non zero if interval is not valid (i.e. does not contains a root)

return fSolver. SetFunction(const ROOT::Math::IGenFunction& f, double xlow, double xup)
int Solve(int maxIter = 100, double absTol = 1E-3, double relTol = 1E-6)
Compute the roots iterating until the estimate of the Root is within the required tolerance returning
the iteration Status

int Iterations()
Return the number of iteration performed to find the Root.

int Iterate()
Perform a single iteration and return the Status

double Root()
Return the current and latest estimate of the Root

const char * Name()
Return the current and latest estimate of the lower value of the Root-finding interval (for bracketing algorithms)

double XLower() const {
return fSolver.XLower();
}

Return the current and latest estimate of the upper value of the Root-finding interval (for bracketing algorithms)

double XUpper() const {
return  fSolver.XUpper();
}

Get Name of the Root-finding solver algorithm

int TestInterval(double xlow, double xup, double epsAbs, double epsRel)
Test convertgence Status of current iteration using interval values (for bracketing algorithms)

int TestDelta(double r1, double r0, double epsAbs, double epsRel)
Test convergence Status of current iteration using last Root estimates (for algorithms using function derivatives)

int TestResidual(double f, double epsAbs)
Test function residual


Last update: root/mathmore:$Id: RootFinder.h 21503 2007-12-19 17:34:54Z moneta $
Copyright (c) 2004 ROOT Foundation, CERN/PH-SFT *

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.