class ROOT::Math::Transform3D


    Basic 3D Transformation class describing  a rotation and then a translation
    The internal data are a 3D rotation data (represented as a 3x3 matrix) and a 3D vector data.
    They are represented and held in this class like a 3x4 matrix (a simple array of 12 numbers).

    The class can be constructed from any 3D rotation object
    (ROOT::Math::Rotation3D, ROOT::Math::AxisAngle, ROOT::Math::Quaternion, etc...) and/or
    a 3D Vector (ROOT::Math::DislacementVector3D or via ROOT::Math::Translation ) representing a Translation.
    The Transformation is defined by applying first the rotation and then the translation.
    A transformation defined by applying first a translation and then a rotation is equivalent to the
    transformation obtained applying first the rotation and then a translation equivalent to the rotated vector.
    The operator * can be used to obtain directly such transformations, in addition to combine various
    transformations.
    Keep in mind that the operator * (like in the case of rotations ) is not commutative.
    The operator * is used (in addition to operator() ) to apply a transformations on the vector
    (DisplacementVector3D and LorentzVector classes) and point (PositionVector3D)  classes.
    In the case of Vector objects the transformation only rotates them and does not translate them.
    Only Point objects are able to be both rotated and translated.


    @ingroup GenVector


Function Members (Methods)

public:
~Transform3D()
voidGetComponents(double* begin) const
voidGetComponents(double& xx, double& xy, double& xz, double& dx, double& yx, double& yy, double& yz, double& dy, double& zx, double& zy, double& zz, double& dz) const
voidGetDecomposition(ROOT::Math::Rotation3D& r, ROOT::Math::Transform3D::Vector& v) const
voidGetDecomposition(ROOT::Math::RotationZYX& r, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v) const
voidGetDecomposition(ROOT::Math::AxisAngle& r, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v) const
voidGetDecomposition(ROOT::Math::EulerAngles& r, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v) const
voidGetDecomposition(ROOT::Math::Quaternion& r, ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v) const
voidGetRotation(ROOT::Math::Rotation3D& r) const
voidGetRotation(ROOT::Math::RotationZYX& r) const
voidGetRotation(ROOT::Math::AxisAngle& r) const
voidGetRotation(ROOT::Math::EulerAngles& r) const
voidGetRotation(ROOT::Math::Quaternion& r) const
ROOT::Math::Transform3DInverse() const
voidInvert()
booloperator!=(const ROOT::Math::Transform3D& rhs) const
ROOT::Math::Transform3D::Pointoperator()(const ROOT::Math::Transform3D::Point& p) const
ROOT::Math::Transform3D::Vectoroperator()(const ROOT::Math::Transform3D::Vector& v) const
ROOT::Math::Plane3Doperator()(const ROOT::Math::Plane3D& plane) const
ROOT::Math::Transform3Doperator*(const ROOT::Math::Transform3D& t) const
ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator*(const ROOT::Math::PositionVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v) const
ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>operator*(const ROOT::Math::DisplacementVector3D<ROOT::Math::Cartesian3D<double>,ROOT::Math::DefaultCoordinateSystemTag>& v) const
ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double> >operator*(const ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double> >& v) const
ROOT::Math::Transform3D&operator*=(const ROOT::Math::Transform3D& t)
ROOT::Math::Transform3D&operator=(const ROOT::Math::Transform3D&)
booloperator==(const ROOT::Math::Transform3D& rhs) const
ROOT::Math::Rotation3DRotation() const
voidSetComponents(double* begin, double* end)
voidSetComponents(double xx, double xy, double xz, double dx, double yx, double yy, double yz, double dy, double zx, double zy, double zz, double dz)
ROOT::Math::Transform3DTransform3D()
ROOT::Math::Transform3DTransform3D(const ROOT::Math::Rotation3D& r)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::AxisAngle& r)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::EulerAngles& r)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::Quaternion& r)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::RotationZYX& r)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::RotationX& r)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::RotationY& r)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::RotationZ& r)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::Transform3D::Vector& v)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::Transform3D&)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::Rotation3D& r, const ROOT::Math::Transform3D::Vector& v)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::Rotation3D& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::AxisAngle& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::EulerAngles& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::RotationZYX& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::Quaternion& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::RotationX& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::RotationY& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::RotationZ& r, const ROOT::Math::Translation3D& t)
ROOT::Math::Transform3DTransform3D(double* begin, double* end)
ROOT::Math::Transform3DTransform3D(const ROOT::Math::Transform3D::Point& fr0, const ROOT::Math::Transform3D::Point& fr1, const ROOT::Math::Transform3D::Point& fr2, const ROOT::Math::Transform3D::Point& to0, const ROOT::Math::Transform3D::Point& to1, const ROOT::Math::Transform3D::Point& to2)
ROOT::Math::Transform3DTransform3D(double xx, double xy, double xz, double dx, double yx, double yy, double yz, double dy, double zx, double zy, double zz, double dz)
ROOT::Math::Translation3DTranslation() const
protected:
voidAssignFrom(const ROOT::Math::Rotation3D& r)
voidAssignFrom(const ROOT::Math::Transform3D::Vector& v)
voidAssignFrom(const ROOT::Math::Rotation3D& r, const ROOT::Math::Transform3D::Vector& v)
voidSetIdentity()

Data Members

public:
enum ETransform3DMatrixIndex { kXX
kXY
kXZ
kDX
kYX
kYY
kYZ
kDY
kZX
kZY
kZZ
kDZ
};
private:
doublefM[12]transformation elements (3x4 matrix)

Class Charts

Inheritance Inherited Members Includes Libraries
Class Charts

Function documentation

Transform3D()
       Default constructor (identy rotation) + zero translation

SetIdentity()
Transform3D(IT begin, IT end)
      Construct given a pair of pointers or iterators defining the
      beginning and end of an array of 12 Scalars

SetComponents(double* begin, double* end)
Transform3D( const Rotation3D & r, const Vector & v)
      Construct from a rotation and then a translation described by a Vector

AssignFrom(const ROOT::Math::Rotation3D& r, const ROOT::Math::Transform3D::Vector& v)
Transform3D( const Rotation3D & r, const Translation3D & t)
      Construct from a rotation and then a translation described by a Translation3D class

AssignFrom(const ROOT::Math::Rotation3D& r, const ROOT::Math::Transform3D::Vector& v)
Transform3D( const ARotation & r, const DisplacementVector3D<CoordSystem,Tag> & v)
      Construct from a rotation (any rotation object)  and then a translation
      (represented by any DisplacementVector)
      The requirements on the rotation and vector objects are that they can be transformed in a
      Rotation3D class and in a Cartesian3D Vector

AssignFrom( Rotation3D(r), Vector (v.X(),v.Y(),v.Z()) )
Transform3D( const ARotation & r, const Translation3D & t)
      Construct from a rotation (any rotation object)  and then a translation
      represented by a Translation3D class
      The requirements on the rotation is that it can be transformed in a
      Rotation3D class

Transform3D( const Vector & v, const Rotation3D & r)
      Construct from a translation and then a rotation (inverse assignment)

explicit Transform3D( const Rotation3D & r)
      Construct from a 3D Rotation only with zero translation

explicit Transform3D( const AxisAngle & r)
 convenience methods for constructing a Transform3D from all the 3D rotations classes
 (cannot use templates for conflict with LA)
explicit Transform3D( const EulerAngles & r)
explicit Transform3D( const Quaternion & r)
explicit Transform3D( const RotationZYX & r)
explicit Transform3D( const RotationX & r)
 Constructors from axial rotations
 TO DO: implement direct methods for axial rotations without going through Rotation3D
explicit Transform3D( const RotationY & r)
explicit Transform3D( const RotationZ & r)
explicit Transform3D( const DisplacementVector3D<CoordSystem,Tag> & v)
      Construct from a translation only, represented by any DisplacementVector3D
      and with an identity rotation

explicit Transform3D( const Vector & v)
      Construct from a translation only, represented by a Cartesian 3D Vector,
      and with an identity rotation

explicit Transform3D( const Translation3D & t)
      Construct from a translation only, represented by a Translation3D class
      and with an identity rotation

Transform3D(const DisplacementVector3D<CoordSystem,Tag> & v , const ARotation & r)
#if !defined(__MAKECINT__) && !defined(G__DICTIONARY)  // this is ambigous with double * , double *

      Construct from a translation (using any type of DisplacementVector )
      and then a rotation (any rotation object).
      Requirement on the rotation and vector objects are that they can be transformed in a
      Rotation3D class and in a Vector

explicit Transform3D(const ForeignMatrix & m)
 use compiler generated copy ctor, copy assignmet and dtor

      Construct from a linear algebra matrix of size at least 3x4,
      which must support operator()(i,j) to obtain elements (0,0) thru (2,3).
      The 3x3 sub-block is assumed to be the rotation part and the translations vector
      are described by the 4-th column

SetComponents(m)
Transform3D(double xx, double xy, double xz, double dx, double yx, double yy, double yz, double dy, double zx, double zy, double zz, double dz)
      Raw constructor from 12 Scalar components

Transform3D & operator=(const ROOT::Math::Transform3D& )
      Construct from a linear algebra matrix of size at least 3x4,
      which must support operator()(i,j) to obtain elements (0,0) thru (2,3).
      The 3x3 sub-block is assumed to be the rotation part and the translations vector
      are described by the 4-th column

void GetComponents(IT begin, IT end)
      Get the 12 matrix components into data specified by an iterator begin
      and another to the end of the desired data (12 past start).

void GetComponents(double* begin) const
      Get the 12 matrix components into data specified by an iterator begin

void GetDecomposition(AnyRotation &r, V &v)
      Get the rotation and translation vector representing the 3D transformation
      in any rotation and any vector (the Translation class could also be used)

GetRotation(r)
void GetDecomposition(Rotation3D &r, Vector &v)
      Get the rotation and translation vector representing the 3D transformation

GetRotation(r)
void GetRotation(AnyRotation &r)
      Get the  rotation (any type) representing the 3D transformation

Point operator()(const Point & p)
 operations on points and vectors

      Transformation operation for Position Vector in Cartesian coordinate
      For a Position Vector first a rotation and then a translation is applied

Vector operator()(const Vector & v)
      Transformation operation for Displacement Vectors in Cartesian coordinate
      For the Displacement Vectors only the rotation applies - no translations

PositionVector3D<CoordSystem> operator()(const PositionVector3D <CoordSystem> & p)
      Transformation operation for Position Vector in any coordinate system

void Invert()
       Invert the transformation in place

Transform3D Inverse()
      Return the inverse of the transformation.

return ! operator==(const ROOT::Math::Transform3D& rhs) const
return Transform3D(double xx, double xy, double xz, double dx, double yx, double yy, double yz, double dy, double zx, double zy, double zz, double dz)
 combination of transformations
return Transform3D( r, r(t.Vect()) )
return Transform3D( r3, r3(t.Vect()) )

Last change: root/mathcore:$Id: Transform3D.h 22516 2008-03-07 15:14:26Z moneta $
Last generated: 2008-06-25 08:30
Copyright (c) 2005 , LCG ROOT MathLib Team *

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.