23#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
24#include <numpy/arrayobject.h>
73 fMinWeightFractionLeaf(0.0),
79 fMaxLeafNodes("None"),
93 fMinWeightFractionLeaf(0.0),
99 fMaxLeafNodes(
"None"),
125 loss function to be optimized. 'log_loss' refers to\
126 logistic loss for classification\
127 with probabilistic outputs. For loss 'exponential' gradient\
128 boosting recovers the AdaBoost algorithm.");
131 learning rate shrinks the contribution of each tree by `learning_rate`.\
132 There is a trade-off between learning_rate and n_estimators.");
135 The number of boosting stages to perform. Gradient boosting\
136 is fairly robust to over-fitting so a large number usually\
137 results in better performance.");
140 The fraction of samples to be used for fitting the individual base\
141 learners. If smaller than 1.0 this results in Stochastic Gradient\
142 Boosting. `subsample` interacts with the parameter `n_estimators`.\
143 Choosing `subsample < 1.0` leads to a reduction of variance\
144 and an increase in bias.");
147 The minimum number of samples required to split an internal node.");
150 The minimum number of samples in newly created leaves. A split is \
151 discarded if after the split, one of the leaves would contain less then \
152 ``min_samples_leaf`` samples.");
155 The minimum weighted fraction of the input samples required to be at a \
159 The maximum depth of the tree. If None, then nodes are expanded until \
160 all leaves are pure or until all leaves contain less than \
161 min_samples_split samples. \
162 Ignored if ``max_leaf_nodes`` is not None.");
165 An estimator object that is used to compute the initial\
166 predictions. ``init`` has to provide ``fit`` and ``predict``.\
167 If None it uses ``loss.init_estimator`");
170 If int, random_state is the seed used by the random number generator;\
171 If RandomState instance, random_state is the random number generator;\
172 If None, the random number generator is the RandomState instance used\
178 Controls the verbosity of the tree building process.");
181 Grow trees with ``max_leaf_nodes`` in best-first fashion.\
182 Best nodes are defined as relative reduction in impurity.\
183 If None then unlimited number of leaf nodes.\
184 If not None then ``max_depth`` will be ignored.");
187 When set to ``True``, reuse the solution of the previous call to fit\
188 and add more estimators to the ensemble, otherwise, just fit a whole\
192 "Store trained classifier in this file");
199 if (
fLoss !=
"log_loss" &&
fLoss !=
"exponential") {
201 <<
" The options are 'log_loss' or 'exponential'." <<
Endl;
207 Log() << kFATAL <<
"LearningRate <= 0 ... that does not work!" <<
Endl;
213 Log() << kFATAL <<
"NEstimators <= 0 ... that does not work!" <<
Endl;
219 Log() << kFATAL <<
"MinSamplesSplit < 0 ... that does not work!" <<
Endl;
225 Log() << kFATAL <<
"Subsample < 0 ... that does not work!" <<
Endl;
231 Log() << kFATAL <<
"MinSamplesLeaf < 0 ... that does not work!" <<
Endl;
237 Log() << kFATAL <<
"MinSamplesSplit < 0 ... that does not work!" <<
Endl;
243 Log() << kFATAL <<
"MinWeightFractionLeaf < 0 ... that does not work !" <<
Endl;
249 Log() << kFATAL <<
" MaxDepth <= 0 ... that does not work !! " <<
Endl;
257 <<
" The options are None or BaseEstimator, which is an estimator object that"
258 <<
"is used to compute the initial predictions. "
259 <<
"'init' has to provide 'fit' and 'predict' methods."
260 <<
" If None it uses 'loss.init_estimator'." <<
Endl;
267 <<
" If int, random_state is the seed used by the random number generator;"
268 <<
" If RandomState instance, random_state is the random number generator;"
269 <<
" If None, the random number generator is the RandomState instance used by 'np.random'."
282 <<
"int, float, string or None, optional (default='auto')"
283 <<
"The number of features to consider when looking for the best split:"
284 <<
"If int, then consider `max_features` features at each split."
285 <<
"If float, then `max_features` is a percentage and"
286 <<
"`int(max_features * n_features)` features are considered at each split."
287 <<
"If 'auto', then `max_features=sqrt(n_features)`."
288 <<
"If 'sqrt', then `max_features=sqrt(n_features)`."
289 <<
"If 'log2', then `max_features=log2(n_features)`."
290 <<
"If None, then `max_features=n_features`." <<
Endl;
296 <<
" The options are None or integer." <<
Endl;
364 PyRunString(
"classifier = sklearn.ensemble.GradientBoostingClassifier(loss=loss, learning_rate=learningRate, n_estimators=nEstimators, max_depth=maxDepth, min_samples_split=minSamplesSplit, min_samples_leaf=minSamplesLeaf, min_weight_fraction_leaf=minWeightFractionLeaf, subsample=subsample, max_features=maxFeatures, max_leaf_nodes=maxLeafNodes, init=init, verbose=verbose, warm_start=warmStart, random_state=randomState)",
365 "Failed to setup classifier");
369 PyRunString(
"dump = classifier.fit(trainData, trainDataClasses, trainDataWeights)",
"Failed to train classifier");
374 Log() << kFATAL <<
"Can't create classifier object from GradientBoostingClassifier" <<
Endl;
411 <<
" sample (" << nEvents <<
" events)" <<
Endl;
434 for (
int i = 0; i < nEvents; ++i) {
443 <<
"Elapsed time for evaluation of " << nEvents <<
" events: "
444 <<
timer.GetElapsedTime() <<
" " <<
Endl;
545 if(
pRanking == 0)
Log() << kFATAL <<
"Failed to get ranking from classifier" <<
Endl;
564 Log() <<
"A gradient tree boosting classifier builds a model from an ensemble" <<
Endl;
565 Log() <<
"of decision trees, which are adapted each boosting step to fit better" <<
Endl;
566 Log() <<
"to previously misclassified events." <<
Endl;
568 Log() <<
"Check out the scikit-learn documentation for more information." <<
Endl;
#define REGISTER_METHOD(CLASS)
for example
unsigned int UInt_t
Unsigned integer 4 bytes (unsigned int)
long long Long64_t
Portable signed long integer 8 bytes.
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
OptionBase * DeclareOptionRef(T &ref, const TString &name, const TString &desc="")
Class that contains all the data information.
UInt_t GetNClasses() const
const Event * GetEvent() const
returns event without transformations
Types::ETreeType GetCurrentType() const
Long64_t GetNEvents(Types::ETreeType type=Types::kMaxTreeType) const
Long64_t GetNTrainingEvents() const
void SetCurrentEvent(Long64_t ievt) const
const Event * GetTrainingEvent(Long64_t ievt) const
PyGILState_STATE m_GILState
const char * GetName() const override
virtual void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
Bool_t IsModelPersistence() const
const TString & GetWeightFileDir() const
const TString & GetMethodName() const
DataSetInfo & DataInfo() const
virtual void TestClassification()
initialization
UInt_t GetNVariables() const
void NoErrorCalc(Double_t *const err, Double_t *const errUpper)
const TString & GetInputLabel(Int_t i) const
void ProcessOptions() override
std::vector< Float_t > & GetMulticlassValues() override
PyObject * pMinSamplesLeaf
Double_t fMinWeightFractionLeaf
const Ranking * CreateRanking() override
std::vector< Double_t > mvaValues
std::vector< Float_t > classValues
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets) override
MethodPyGTB(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
Double_t GetMvaValue(Double_t *errLower=nullptr, Double_t *errUpper=nullptr) override
void DeclareOptions() override
std::vector< Double_t > GetMvaValues(Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false) override
get all the MVA values for the events of the current Data type
void TestClassification() override
initialization
void GetHelpMessage() const override
TString fFilenameClassifier
PyObject * pMinSamplesSplit
PyObject * pMinWeightFractionLeaf
void ReadModelFromFile() override
Virtual base class for all TMVA method based on Python.
static int PyIsInitialized()
Check Python interpreter initialization status.
PyObject * Eval(TString code)
Evaluate Python code.
static void PyInitialize()
Initialize Python interpreter.
static void Serialize(TString file, PyObject *classifier)
Serialize Python object.
static Int_t UnSerialize(TString file, PyObject **obj)
Unserialize Python object.
void PyRunString(TString code, TString errorMessage="Failed to run python code", int start=256)
Execute Python code from string.
Ranking for variables in method (implementation)
virtual void AddRank(const Rank &rank)
Add a new rank take ownership of it.
Timing information for training and evaluation of MVA methods.
Singleton class for Global types used by TMVA.
@ kSignal
Never change this number - it is elsewhere assumed to be zero !
const char * Data() const
create variable transformations
MsgLogger & Endl(MsgLogger &ml)