2#ifndef TMVA_SOFIE_ROperator_Comparision
3#define TMVA_SOFIE_ROperator_Comparision
12namespace Experimental{
17template <
typename T, EComparisionOperator Op1>
22 static const std::string
Name() {
return "Equal"; }
23 static std::string
Op(
const std::string &
t1,
const std::string
t2) {
return t1 +
" == " +
t2 +
" ? true : false "; }
29 static const std::string
Name() {
return "Less"; }
30 static std::string
Op(
const std::string &
t1,
const std::string
t2) {
return t1 +
" < " +
t2 +
" ? true : false "; }
36 static const std::string
Name() {
return "LessOrEqual"; }
37 static std::string
Op(
const std::string &
t1,
const std::string
t2) {
return t1 +
" <= " +
t2 +
" ? true : false "; }
43 static const std::string
Name() {
return "Greater"; }
44 static std::string
Op(
const std::string &
t1,
const std::string
t2) {
return t1 +
" > " +
t2 +
" ? true : false "; }
50 static const std::string
Name() {
return "GreaterOrEqual"; }
51 static std::string
Op(
const std::string &
t1,
const std::string
t2) {
return t1 +
" >= " +
t2 +
" ? true : false " ; }
55template<
typename T, EComparisionOperator Op>
97 throw std::runtime_error(std::string(
"TMVA SOFIE Comparision Op Input Tensor ") +
fNX1 +
"is not found in model");
100 throw std::runtime_error(std::string(
"TMVA SOFIE Comparision Op Input Tensor ") +
fNX2 +
"is not found in model");
118 std::default_delete<T[]>());
134 std::default_delete<T[]>());
154 for (
size_t i = 0; i <
length; i++)
176 throw std::runtime_error(
"TMVA SOFIE Comparision Op called to Generate without being initialized first");
178 std::stringstream out;
184 out <<
SP <<
"// Broadcasting uninitialized tensor " <<
fNX1 <<
"\n";
188 out <<
SP <<
SP <<
"delete[] data;\n";
194 out <<
SP <<
"// Broadcasting uninitialized tensor " <<
fNX2 <<
"\n";
198 out <<
SP <<
SP <<
"delete[] data;\n";
204 out <<
SP <<
"for (size_t id = 0; id < " <<
length <<
" ; id++){\n";
209 out <<
SP <<
"const std::vector<bool> & tensor_" <<
fNY <<
" = fTensor_" <<
fNY <<
";\n";
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h length
const_iterator begin() const
const_iterator end() const
const ETensorType & GetTensorType(std::string name)
const std::vector< std::string > & GetOutputTensorNames() const
void AddIntermediateTensor(std::string tensor_name, ETensorType type, std::vector< Dim > dim_shape)
bool CheckIfTensorAlreadyExist(std::string tensor_name)
void AddConstantTensor(std::string tensor_name, ETensorType type, std::vector< std::size_t > shape, std::shared_ptr< void > data)
bool IsInitializedTensor(const std::string &name) const
const std::vector< size_t > & GetTensorShape(std::string name)
std::shared_ptr< void > GetInitializedTensorData(std::string tensor_name)
void UpdateInitializedTensor(std::string tensor_name, ETensorType type, std::vector< std::size_t > shape, std::shared_ptr< void > data)
std::vector< ETensorType > TypeInference(std::vector< ETensorType > input) override
std::vector< size_t > fShapeX2
std::string Generate(std::string OpName) override
std::vector< size_t > fShapeX1
std::vector< std::vector< size_t > > ShapeInference(std::vector< std::vector< size_t > > input) override
std::vector< size_t > fShapeY
std::string fNBroadcastedX2
ROperator_Comparision(const std::string &nameX1, const std::string &nameX2, const std::string &nameY)
void Initialize(RModel &model) override
std::string fNBroadcastedX1
std::vector< std::string_view > fInputTensorNames
bool fIsOutputConstant
flag to identify if operator has a constant output (no need to generate code)
const std::string SP
space used to correctly indent the generated C++ code
std::vector< std::string_view > fOutputTensorNames
bool AreSameShape(const std::vector< size_t > &, const std::vector< size_t > &)
std::vector< size_t > UnidirectionalBroadcastShape(std::vector< size_t >, std::vector< size_t >)
std::string ConvertValuesToString(size_t n, const T *data)
std::string ConvertShapeToString(std::vector< size_t > shape)
std::string ConvertTypeToString(ETensorType type)
std::size_t ConvertShapeToLength(std::vector< size_t > shape)
create variable transformations
static std::string Op(const std::string &t1, const std::string t2)
static bool Result(T v1, T v2)
static const std::string Name()
static const std::string Name()
static std::string Op(const std::string &t1, const std::string t2)
static bool Result(T v1, T v2)
static const std::string Name()
static bool Result(T v1, T v2)
static std::string Op(const std::string &t1, const std::string t2)
static bool Result(T v1, T v2)
static const std::string Name()
static std::string Op(const std::string &t1, const std::string t2)
static const std::string Name()
static bool Result(T v1, T v2)
static std::string Op(const std::string &t1, const std::string t2)