This tutorial is the analysis of the W boson mass taken from the ATLAS Open Data release in 2020 (http://opendata.atlas.cern/release/2020/documentation/). The data was recorded with the ATLAS detector during 2016 at a center-of-mass energy of 13 TeV. W bosons are produced frequently at the LHC and are an important background to studies of Standard Model processes, for example the Higgs boson analyses.
The analysis is translated to a RDataFrame workflow processing up to 60 GB of simulated events and data. By default the analysis runs on a preskimmed dataset to reduce the runtime. The full dataset can be used with the –full-dataset argument and you can also run only on a fraction of the original dataset using the argument –lumi-scale.
import ROOT
import sys
import json
import argparse
import os
help="Run only on a fraction of the total available 10 fb^-1 (only usable together with --full-dataset)")
help="Use the full dataset (use --lumi-scale to run only on a fraction of it)")
parser.add_argument(
"-t", action=
"store_true", default=
False, help=
"Use implicit multi threading (for the full dataset only possible with --lumi-scale 1.0)")
if 'df105_WBosonAnalysis.py' in sys.argv[0]:
else:
lumi = 10064.0
print(
'Run on data corresponding to {:.2f} fb^-1 ...'.
format(lumi * lumi_scale / 1000.0))
if args.full_dataset: dataset_path =
"root://eospublic.cern.ch//eos/opendata/atlas/OutreachDatasets/2020-01-22"
else: dataset_path = "root://eospublic.cern.ch//eos/root-eos/reduced_atlas_opendata/w"
df = {}
xsecs = {}
sumws = {}
samples = []
for p in processes:
for d in files[p]:
folder = d[0]
sample = d[1]
xsecs[sample] = d[2]
sumws[sample] = d[3]
num_events = d[4]
df[sample] = df[sample].
Range(
int(num_events * lumi_scale))
bool GoodElectronOrMuon(int type, float pt, float eta, float phi, float e, float trackd0pv, float tracksigd0pv, float z0)
{
ROOT::Math::PtEtaPhiEVector p(pt / 1000.0, eta, phi, e / 1000.0);
if (abs(z0 * sin(p.theta())) > 0.5) return false;
if (type == 11 && abs(eta) < 2.46 && (abs(eta) < 1.37 || abs(eta) > 1.52)) {
if (abs(trackd0pv / tracksigd0pv) > 5) return false;
return true;
}
if (type == 13 && abs(eta) < 2.5) {
if (abs(trackd0pv / tracksigd0pv) > 3) return false;
return true;
}
return false;
}
""")
for s in samples:
df[s] = df[s].Filter("trigE || trigM")\
.Filter("met_et > 30000")
df[s] = df[s].Define("good_lep", "lep_isTightID && lep_pt > 35000 && lep_ptcone30 / lep_pt < 0.1 && lep_etcone20 / lep_pt < 0.1")\
.Filter("ROOT::VecOps::Sum(good_lep) == 1")
df[s] = df[s].Define("idx", "ROOT::VecOps::ArgMax(good_lep)")\
.Filter("GoodElectronOrMuon(lep_type[idx], lep_pt[idx], lep_eta[idx], lep_phi[idx], lep_E[idx], lep_trackd0pvunbiased[idx], lep_tracksigd0pvunbiased[idx], lep_z0[idx])")
for s in samples:
if "data" in s:
df[s] = df[s].Define("weight", "1.0")
else:
df[s] = df[s].Define(
"weight",
"scaleFactor_ELE * scaleFactor_MUON * scaleFactor_LepTRIGGER * scaleFactor_PILEUP * mcWeight * {} / {} * {}".
format(xsecs[s], sumws[s], lumi))
float ComputeTransverseMass(float met_et, float met_phi, float lep_pt, float lep_eta, float lep_phi, float lep_e)
{
ROOT::Math::PtEtaPhiEVector met(met_et, 0, met_phi, met_et);
ROOT::Math::PtEtaPhiEVector lep(lep_pt, lep_eta, lep_phi, lep_e);
return (met + lep).Mt() / 1000.0;
}
""")
histos = {}
for s in samples:
df[s] = df[s].Define("mt_w", "ComputeTransverseMass(met_et, met_phi, lep_pt[idx], lep_eta[idx], lep_phi[idx], lep_E[idx])")
h = None
t = histos[d[1]].GetValue()
return h
[singletop, diboson, ttbar, zjets, wjets],
[(0.82, 0.94, 0.76), (0.76, 0.54, 0.57), (0.61, 0.6, 0.8), (0.97, 0.81, 0.41), (0.87, 0.35, 0.42)]):
print("Saved figure to df105_WBosonAnalysis.png")
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
A struct which stores the parameters of a TH1D.