Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
rf901_numintconfig.C File Reference

Detailed Description

View in nbviewer Open in SWAN
Numeric algorithm tuning: configuration and customization of how numeric (partial) integrals are executed

#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooGaussian.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "RooPlot.h"
#include "RooLandau.h"
#include "RooArgSet.h"
#include <iomanip>
using namespace RooFit;
{
// A d j u s t g l o b a l 1 D i n t e g r a t i o n p r e c i s i o n
// ----------------------------------------------------------------------------
// Print current global default configuration for numeric integration strategies
// Example: Change global precision for 1D integrals from 1e-7 to 1e-6
//
// The relative epsilon (change as fraction of current best integral estimate) and
// absolute epsilon (absolute change w.r.t last best integral estimate) can be specified
// separately. For most pdf integrals the relative change criterium is the most important,
// however for certain non-pdf functions that integrate out to zero a separate absolute
// change criterium is necessary to declare convergence of the integral
//
// NB: This change is for illustration only. In general the precision should be at least 1e-7
// for normalization integrals for MINUIT to succeed.
//
// N u m e r i c i n t e g r a t i o n o f l a n d a u p d f
// ------------------------------------------------------------------
RooRealVar x("x", "x", -10, 10);
RooLandau landau("landau", "landau", x, 0.0, 0.1);
// Disable analytic integration from demonstration purposes
landau.forceNumInt(true);
// Activate debug-level messages for topic integration to be able to follow actions below
RooMsgService::instance().addStream(DEBUG, Topic(Integration));
// Calculate integral over landau with default choice of numeric integrator
std::unique_ptr<RooAbsReal> intLandau{landau.createIntegral(x)};
double val = intLandau->getVal();
cout << " [1] int_dx landau(x) = " << setprecision(15) << val << endl;
// S a m e w i t h c u s t o m c o n f i g u r a t i o n
// -----------------------------------------------------------
// Construct a custom configuration which uses the adaptive Gauss-Kronrod technique
// for closed 1D integrals
#ifdef R__HAS_MATHMORE
customConfig.method1D().setLabel("RooAdaptiveGaussKronrodIntegrator1D");
#else
Warning("rf901_numintconfig","ROOT is built without Mathmore (GSL) support. Cannot use RooAdaptiveGaussKronrodIntegrator1D");
#endif
// Calculate integral over landau with custom integral specification
std::unique_ptr<RooAbsReal> intLandau2{landau.createIntegral(x, NumIntConfig(customConfig))};
double val2 = intLandau2->getVal();
cout << " [2] int_dx landau(x) = " << val2 << endl;
// A d j u s t i n g d e f a u l t c o n f i g f o r a s p e c i f i c p d f
// -------------------------------------------------------------------------------------
// Another possibility: associate custom numeric integration configuration as default for object 'landau'
landau.setIntegratorConfig(customConfig);
// Calculate integral over landau custom numeric integrator specified as object default
std::unique_ptr<RooAbsReal> intLandau3{landau.createIntegral(x)};
double val3 = intLandau3->getVal();
cout << " [3] int_dx landau(x) = " << val3 << endl;
// Another possibility: Change global default for 1D numeric integration strategy on finite domains
#ifdef R__HAS_MATHMORE
RooAbsReal::defaultIntegratorConfig()->method1D().setLabel("RooAdaptiveGaussKronrodIntegrator1D");
// A d j u s t i n g p a r a m e t e r s o f a s p e c i f i c t e c h n i q u e
// ---------------------------------------------------------------------------------------
// Adjust maximum number of steps of RooIntegrator1D in the global default configuration
RooAbsReal::defaultIntegratorConfig()->getConfigSection("RooIntegrator1D").setRealValue("maxSteps", 30);
// Example of how to change the parameters of a numeric integrator
// (Each config section is a RooArgSet with RooRealVars holding real-valued parameters
// and RooCategories holding parameters with a finite set of options)
customConfig.getConfigSection("RooAdaptiveGaussKronrodIntegrator1D").setRealValue("maxSeg", 50);
customConfig.getConfigSection("RooAdaptiveGaussKronrodIntegrator1D").setCatLabel("method", "15Points");
// Example of how to print set of possible values for "method" category
customConfig.getConfigSection("RooAdaptiveGaussKronrodIntegrator1D").find("method")->Print("v");
#endif
}
#define DEBUG
#define e(i)
Definition RSha256.hxx:103
void Warning(const char *location, const char *msgfmt,...)
Use this function in warning situations.
Definition TError.cxx:229
bool setRealValue(const char *name, double newVal=0.0, bool verbose=false)
Set value of a RooAbsRealLValue stored in set with given name to newVal No error messages are printed...
static RooNumIntConfig * defaultIntegratorConfig()
Returns the default numeric integration configuration for all RooAbsReals.
bool setLabel(const char *label, bool printError=true) override
Set value by specifying the name of the desired state.
Landau distribution p.d.f.
Definition RooLandau.h:24
static RooMsgService & instance()
Return reference to singleton instance.
Int_t addStream(RooFit::MsgLevel level, const RooCmdArg &arg1={}, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={})
Add a message logging stream for message with given RooFit::MsgLevel or higher.
Holds the configuration parameters of the various numeric integrators used by RooRealIntegral.
void Print(Option_t *options=nullptr) const override
This method must be overridden when a class wants to print itself.
void setEpsRel(double newEpsRel)
Set relative convergence criteria (convergence if std::abs(Err)/abs(Int)<newEpsRel)
const RooArgSet & getConfigSection(const char *name) const
Retrieve configuration information specific to integrator with given name.
RooCategory & method1D()
void setEpsAbs(double newEpsAbs)
Set absolute convergence criteria (convergence if std::abs(Err)<newEpsAbs)
Variable that can be changed from the outside.
Definition RooRealVar.h:37
Double_t x[n]
Definition legend1.C:17
double landau(double x, double mu, double sigma)
Definition MathFuncs.h:336
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
Definition CodegenImpl.h:64
Requested precision: 1e-07 absolute, 1e-07 relative
1-D integration method: RooIntegrator1D (RooImproperIntegrator1D if open-ended)
2-D integration method: RooAdaptiveIntegratorND (N/A if open-ended)
N-D integration method: RooAdaptiveIntegratorND (N/A if open-ended)
Available integration methods:
*** RooBinIntegrator ***
Capabilities: [1-D] [2-D] [N-D]
Configuration:
1) numBins = 100
*** RooIntegrator1D ***
Capabilities: [1-D]
Configuration:
1) sumRule = Trapezoid(idx = 0)
2) extrapolation = Wynn-Epsilon(idx = 1)
3) maxSteps = 20
4) minSteps = 999
5) fixSteps = 0
*** RooIntegrator2D ***
Capabilities: [2-D]
Configuration:
(Depends on 'RooIntegrator1D')
*** RooSegmentedIntegrator1D ***
Capabilities: [1-D]
Configuration:
1) numSeg = 3
(Depends on 'RooIntegrator1D')
*** RooSegmentedIntegrator2D ***
Capabilities: [2-D]
Configuration:
(Depends on 'RooSegmentedIntegrator1D')
*** RooImproperIntegrator1D ***
Capabilities: [1-D] [OpenEnded]
Configuration:
(Depends on 'RooIntegrator1D')
*** RooMCIntegrator ***
Capabilities: [1-D] [2-D] [N-D]
Configuration:
1) samplingMode = Importance(idx = 0)
2) genType = QuasiRandom(idx = 0)
3) verbose = false(idx = 0)
4) alpha = 1.5
5) nRefineIter = 5
6) nRefinePerDim = 1000
7) nIntPerDim = 5000
*** RooAdaptiveIntegratorND ***
Capabilities: [2-D] [N-D]
Configuration:
1) maxEval2D = 100000
2) maxEval3D = 1e+06
3) maxEvalND = 1e+07
4) maxWarn = 5
*** RooAdaptiveGaussKronrodIntegrator1D ***
Capabilities: [1-D] [OpenEnded]
Configuration:
1) maxSeg = 100
2) method = 21Points(idx = 2)
*** RooGaussKronrodIntegrator1D ***
Capabilities: [1-D] [OpenEnded]
Configuration:
[#3] INFO:Integration -- RooRealIntegral::ctor(landau_Int[x]) Constructing integral of function landau over observables(x) with normalization () with range identifier <none>
[#3] DEBUG:Integration -- landau: Adding observable x as shape dependent
[#3] DEBUG:Integration -- landau: Adding parameter 0 as value dependent
[#3] DEBUG:Integration -- landau: Adding parameter 0.1 as value dependent
[#3] INFO:Integration -- landau: Observable x is suitable for analytical integration (if supported by p.d.f)
[#3] INFO:Integration -- landau: Observables (x) are numerically integrated
[#1] INFO:NumericIntegration -- RooRealIntegral::init(landau_Int[x]) using numeric integrator RooIntegrator1D to calculate Int(x)
[1] int_dx landau(x) = 0.0989653362054419
[#3] INFO:Integration -- RooRealIntegral::ctor(landau_Int[x]) Constructing integral of function landau over observables(x) with normalization () with range identifier <none>
[#3] DEBUG:Integration -- landau: Adding observable x as shape dependent
[#3] DEBUG:Integration -- landau: Adding parameter 0 as value dependent
[#3] DEBUG:Integration -- landau: Adding parameter 0.1 as value dependent
[#3] INFO:Integration -- landau: Observable x is suitable for analytical integration (if supported by p.d.f)
[#3] INFO:Integration -- landau: Observables (x) are numerically integrated
[#1] INFO:NumericIntegration -- RooRealIntegral::init(landau_Int[x]) using numeric integrator RooAdaptiveGaussKronrodIntegrator1D to calculate Int(x)
[2] int_dx landau(x) = 0.098957102921895
[#3] INFO:Integration -- RooRealIntegral::ctor(landau_Int[x]) Constructing integral of function landau over observables(x) with normalization () with range identifier <none>
[#3] DEBUG:Integration -- landau: Adding observable x as shape dependent
[#3] DEBUG:Integration -- landau: Adding parameter 0 as value dependent
[#3] DEBUG:Integration -- landau: Adding parameter 0.1 as value dependent
[#3] INFO:Integration -- landau: Observable x is suitable for analytical integration (if supported by p.d.f)
[#3] INFO:Integration -- landau: Observables (x) are numerically integrated
[#1] INFO:NumericIntegration -- RooRealIntegral::init(landau_Int[x]) using numeric integrator RooAdaptiveGaussKronrodIntegrator1D to calculate Int(x)
[3] int_dx landau(x) = 0.098957102921895
--- RooAbsArg ---
Value State: clean
Shape State: clean
Attributes: [SnapShot_ExtRefClone]
Address: 0x557ec303aed0
Clients:
Servers:
Proxies:
--- RooAbsCategory ---
Value = 1 "15Points)
Possible states:
15Points 1
21Points 2
31Points 3
41Points 4
51Points 5
61Points 6
WynnEpsilon 0
Date
July 2008
Author
Wouter Verkerke

Definition in file rf901_numintconfig.C.