Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
viewer3DLocal.C File Reference

Detailed Description

Demonstrates 3D viewer architecture TVirtualViewer3D and TBuffer3D in the local frame.

Here each shape is described in a TBuffer3D class, with a suitible translation matrix to place each instance NOTE: to be executed via .x viewer3DLocal.C+

NOTE: We don't implement raw tesselation of sphere - hence this will not appear in viewers which don't support directly (non-OpenGL) Shows that viewers can at least deal gracefully with these cases

Our abstract base shape class.

As we overload TObject::Paint which is called directly from compiled code, this script must also be compiled to work correctly.

#if defined(__CINT__) && !defined(__MAKECINT__)
{
gSystem->CompileMacro("viewer3DLocal.C");
}
#else
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
R__EXTERN TSystem * gSystem
Definition TSystem.h:561
virtual int CompileMacro(const char *filename, Option_t *opt="", const char *library_name="", const char *build_dir="", UInt_t dirmode=0)
This method compiles and loads a shared library containing the code from the file "filename".
Definition TSystem.cxx:2836
#include "TBuffer3D.h"
#include "TBuffer3DTypes.h"
#include "TObject.h"
#include "TVirtualPad.h"
#include "TAtt3D.h"
#include <vector>
class Shape : public TObject {
public:
Shape(Int_t color, Double_t x, Double_t y, Double_t z);
~Shape() override{};
virtual TBuffer3D &GetBuffer3D(UInt_t reqSections) = 0;
protected:
Double_t fX, fY, fZ; // Origin
Int_t fColor;
ClassDefOverride(Shape, 0);
};
ClassImp(Shape);
Shape::Shape(Int_t color, Double_t x, Double_t y, Double_t z) : fX(x), fY(y), fZ(z), fColor(color) {}
class Sphere : public Shape {
public:
~Sphere() override{};
TBuffer3D &GetBuffer3D(UInt_t reqSections) override;
private:
Double_t fRadius;
ClassDefOverride(Sphere, 0);
};
ClassImp(Sphere);
Sphere::Sphere(Int_t color, Double_t x, Double_t y, Double_t z, Double_t radius)
: Shape(color, x, y, z), fRadius(radius)
{
}
TBuffer3D &Sphere::GetBuffer3D(UInt_t reqSections)
{
static TBuffer3DSphere buffer;
// Complete kCore section - this could be moved to Shape base class
buffer.fID = this;
buffer.fColor = fColor; // Color index - see gROOT->GetColor()
buffer.fTransparency = 0; // Transparency 0 (opaque) - 100 (fully transparent)
// Complete local/master transformation matrix - simple x/y/z
// translation. Easiest way to set identity then override the
// translation components
buffer.fLocalMaster[12] = fX;
buffer.fLocalMaster[13] = fY;
buffer.fLocalMaster[14] = fZ;
buffer.fLocalFrame = kTRUE; // Local frame
buffer.fReflection = kFALSE;
}
// Complete kBoundingBox section
Double_t origin[3] = {0.0, 0.0, 0.0};
Double_t halfLength[3] = {fRadius, fRadius, fRadius};
}
// Complete kShapeSpecific section
buffer.fRadiusOuter = fRadius;
buffer.fRadiusInner = 0.0;
buffer.fThetaMin = 0.0;
buffer.fThetaMax = 180.0;
buffer.fPhiMin = 0.0;
buffer.fPhiMax = 360.0;
}
// We don't implement raw tesselation of sphere - hence this will
// not appear in viewers which don't support directly (non-OpenGL)
// Complete kRawSizes section
// buffer.SetSectionsValid(TBuffer3D::kRawSizes);
}
// Complete kRaw section
// buffer.SetSectionsValid(TBuffer3D::kRaw);
}
return buffer;
}
class Box : public Shape {
public:
~Box() override{};
TBuffer3D &GetBuffer3D(UInt_t reqSections) override;
private:
Double_t fDX, fDY, fDZ; // Half lengths
};
ClassImp(Box);
: Shape(color, x, y, z), fDX(dX), fDY(dY), fDZ(dZ)
{
}
TBuffer3D &Box::GetBuffer3D(UInt_t reqSections)
{
// Complete kCore section - this could be moved to Shape base class
buffer.fID = this;
buffer.fColor = fColor; // Color index - see gROOT->GetColor()
buffer.fTransparency = 0; // Transparency 0 (opaque) - 100 (fully transparent)
// Complete local/master transformation matrix - simple x/y/z
// translation. Easiest way to set identity then override the
// translation components
buffer.fLocalMaster[12] = fX;
buffer.fLocalMaster[13] = fY;
buffer.fLocalMaster[14] = fZ;
buffer.fLocalFrame = kTRUE; // Local frame
buffer.fReflection = kFALSE;
}
// Complete kBoundingBox section
Double_t origin[3] = {fX, fY, fZ};
Double_t halfLength[3] = {fDX, fDY, fDZ};
}
// No kShapeSpecific section
// Complete kRawSizes section
buffer.SetRawSizes(8, 3 * 8, 12, 3 * 12, 6, 6 * 6);
}
// Complete kRaw section
// Points (8)
// 3 components: x,y,z
buffer.fPnts[0] = fX - fDX;
buffer.fPnts[1] = fY - fDY;
buffer.fPnts[2] = fZ - fDZ; // 0
buffer.fPnts[3] = fX + fDX;
buffer.fPnts[4] = fY - fDY;
buffer.fPnts[5] = fZ - fDZ; // 1
buffer.fPnts[6] = fX + fDX;
buffer.fPnts[7] = fY + fDY;
buffer.fPnts[8] = fZ - fDZ; // 2
buffer.fPnts[9] = fX - fDX;
buffer.fPnts[10] = fY + fDY;
buffer.fPnts[11] = fZ - fDZ; // 3
buffer.fPnts[12] = fX - fDX;
buffer.fPnts[13] = fY - fDY;
buffer.fPnts[14] = fZ + fDZ; // 4
buffer.fPnts[15] = fX + fDX;
buffer.fPnts[16] = fY - fDY;
buffer.fPnts[17] = fZ + fDZ; // 5
buffer.fPnts[18] = fX + fDX;
buffer.fPnts[19] = fY + fDY;
buffer.fPnts[20] = fZ + fDZ; // 6
buffer.fPnts[21] = fX - fDX;
buffer.fPnts[22] = fY + fDY;
buffer.fPnts[23] = fZ + fDZ; // 7
// Segments (12)
// 3 components: segment color(ignored), start point index, end point index
// Indexes reference the above points
buffer.fSegs[0] = fColor;
buffer.fSegs[1] = 0;
buffer.fSegs[2] = 1; // 0
buffer.fSegs[3] = fColor;
buffer.fSegs[4] = 1;
buffer.fSegs[5] = 2; // 1
buffer.fSegs[6] = fColor;
buffer.fSegs[7] = 2;
buffer.fSegs[8] = 3; // 2
buffer.fSegs[9] = fColor;
buffer.fSegs[10] = 3;
buffer.fSegs[11] = 0; // 3
buffer.fSegs[12] = fColor;
buffer.fSegs[13] = 4;
buffer.fSegs[14] = 5; // 4
buffer.fSegs[15] = fColor;
buffer.fSegs[16] = 5;
buffer.fSegs[17] = 6; // 5
buffer.fSegs[18] = fColor;
buffer.fSegs[19] = 6;
buffer.fSegs[20] = 7; // 6
buffer.fSegs[21] = fColor;
buffer.fSegs[22] = 7;
buffer.fSegs[23] = 4; // 7
buffer.fSegs[24] = fColor;
buffer.fSegs[25] = 0;
buffer.fSegs[26] = 4; // 8
buffer.fSegs[27] = fColor;
buffer.fSegs[28] = 1;
buffer.fSegs[29] = 5; // 9
buffer.fSegs[30] = fColor;
buffer.fSegs[31] = 2;
buffer.fSegs[32] = 6; // 10
buffer.fSegs[33] = fColor;
buffer.fSegs[34] = 3;
buffer.fSegs[35] = 7; // 11
// Polygons (6)
// 5+ (2+n) components: polygon color (ignored), segment count(n=3+),
// seg1, seg2 .... segn index
// Segments indexes refer to the above 12 segments
// Here n=4 - each polygon defines a rectangle - 4 sides.
buffer.fPols[0] = fColor;
buffer.fPols[1] = 4;
buffer.fPols[2] = 8; // 0
buffer.fPols[3] = 4;
buffer.fPols[4] = 9;
buffer.fPols[5] = 0;
buffer.fPols[6] = fColor;
buffer.fPols[7] = 4;
buffer.fPols[8] = 9; // 1
buffer.fPols[9] = 5;
buffer.fPols[10] = 10;
buffer.fPols[11] = 1;
buffer.fPols[12] = fColor;
buffer.fPols[13] = 4;
buffer.fPols[14] = 10; // 2
buffer.fPols[15] = 6;
buffer.fPols[16] = 11;
buffer.fPols[17] = 2;
buffer.fPols[18] = fColor;
buffer.fPols[19] = 4;
buffer.fPols[20] = 11; // 3
buffer.fPols[21] = 7;
buffer.fPols[22] = 8;
buffer.fPols[23] = 3;
buffer.fPols[24] = fColor;
buffer.fPols[25] = 4;
buffer.fPols[26] = 1; // 4
buffer.fPols[27] = 2;
buffer.fPols[28] = 3;
buffer.fPols[29] = 0;
buffer.fPols[30] = fColor;
buffer.fPols[31] = 4;
buffer.fPols[32] = 7; // 5
buffer.fPols[33] = 6;
buffer.fPols[34] = 5;
buffer.fPols[35] = 4;
}
return buffer;
}
class SBPyramid : public Shape {
public:
~SBPyramid() override{};
TBuffer3D &GetBuffer3D(UInt_t reqSections) override;
private:
Double_t fDX, fDY, fDZ; // Base half lengths dX,dY
// Pyr. height dZ
};
SBPyramid::SBPyramid(Int_t color, Double_t x, Double_t y, Double_t z, Double_t dX, Double_t dY, Double_t dZ)
: Shape(color, x, y, z), fDX(dX), fDY(dY), fDZ(dZ)
{
}
TBuffer3D &SBPyramid::GetBuffer3D(UInt_t reqSections)
{
// Complete kCore section
buffer.fID = this;
buffer.fColor = fColor; // Color index - see gROOT->GetColor()
buffer.fTransparency = 0; // Transparency 0 (opaque) - 100 (fully transparent)
// Complete local/master transformation matrix - simple x/y/z
// translation. Easiest way to set identity then override the
// translation components
buffer.fLocalMaster[12] = fX;
buffer.fLocalMaster[13] = fY;
buffer.fLocalMaster[14] = fZ;
buffer.fLocalFrame = kTRUE; // Local frame
buffer.fReflection = kFALSE;
}
// Complete kBoundingBox section
Double_t halfLength[3] = {fDX, fDY, fDZ / 2.0};
Double_t origin[3] = {fX, fY, fZ + halfLength[2]};
}
// No kShapeSpecific section
// Complete kRawSizes section
buffer.SetRawSizes(5, 3 * 5, 8, 3 * 8, 5, 6 + 4 * 5);
}
// Complete kRaw section
// Points (5)
// 3 components: x,y,z
buffer.fPnts[0] = fX - fDX;
buffer.fPnts[1] = fY - fDY;
buffer.fPnts[2] = fZ; // 0
buffer.fPnts[3] = fX + fDX;
buffer.fPnts[4] = fY - fDY;
buffer.fPnts[5] = fZ; // 1
buffer.fPnts[6] = fX + fDX;
buffer.fPnts[7] = fY + fDY;
buffer.fPnts[8] = fZ; // 2
buffer.fPnts[9] = fX - fDX;
buffer.fPnts[10] = fY + fDY;
buffer.fPnts[11] = fZ; // 3
buffer.fPnts[12] = fX;
buffer.fPnts[13] = fY;
buffer.fPnts[14] = fZ + fDZ; // 4 (pyr top point)
// Segments (8)
// 3 components: segment color(ignored), start point index, end point index
// Indexes reference the above points
buffer.fSegs[0] = fColor;
buffer.fSegs[1] = 0;
buffer.fSegs[2] = 1; // 0 base
buffer.fSegs[3] = fColor;
buffer.fSegs[4] = 1;
buffer.fSegs[5] = 2; // 1 base
buffer.fSegs[6] = fColor;
buffer.fSegs[7] = 2;
buffer.fSegs[8] = 3; // 2 base
buffer.fSegs[9] = fColor;
buffer.fSegs[10] = 3;
buffer.fSegs[11] = 0; // 3 base
buffer.fSegs[12] = fColor;
buffer.fSegs[13] = 0;
buffer.fSegs[14] = 4; // 4 side
buffer.fSegs[15] = fColor;
buffer.fSegs[16] = 1;
buffer.fSegs[17] = 4; // 5 side
buffer.fSegs[18] = fColor;
buffer.fSegs[19] = 2;
buffer.fSegs[20] = 4; // 6 side
buffer.fSegs[21] = fColor;
buffer.fSegs[22] = 3;
buffer.fSegs[23] = 4; // 7 side
// Polygons (6)
// 5+ (2+n) components: polygon color (ignored), segment count(n=3+),
// seg1, seg2 .... segn index
// Segments indexes refer to the above 12 segments
// Here n=4 - each polygon defines a rectangle - 4 sides.
buffer.fPols[0] = fColor;
buffer.fPols[1] = 4;
buffer.fPols[2] = 0; // base
buffer.fPols[3] = 1;
buffer.fPols[4] = 2;
buffer.fPols[5] = 3;
buffer.fPols[6] = fColor;
buffer.fPols[7] = 3;
buffer.fPols[8] = 0; // side 0
buffer.fPols[9] = 4;
buffer.fPols[10] = 5;
buffer.fPols[11] = fColor;
buffer.fPols[12] = 3;
buffer.fPols[13] = 1; // side 1
buffer.fPols[14] = 5;
buffer.fPols[15] = 6;
buffer.fPols[16] = fColor;
buffer.fPols[17] = 3;
buffer.fPols[18] = 2; // side 2
buffer.fPols[19] = 6;
buffer.fPols[20] = 7;
buffer.fPols[21] = fColor;
buffer.fPols[22] = 3;
buffer.fPols[23] = 3; // side 3
buffer.fPols[24] = 7;
buffer.fPols[25] = 4;
}
return buffer;
}
class MyGeom : public TObject, public TAtt3D {
public:
MyGeom();
~MyGeom() override;
void Draw(Option_t *option) override;
void Paint(Option_t *option) override;
private:
std::vector<Shape *> fShapes;
};
MyGeom::MyGeom()
{
// Create our simple geometry - sphere, couple of boxes
// and a square base pyramid
Shape *aShape;
aShape = new Sphere(kYellow, 80.0, 60.0, 120.0, 10.0);
fShapes.push_back(aShape);
aShape = new Box(kRed, 0.0, 0.0, 0.0, 20.0, 20.0, 20.0);
fShapes.push_back(aShape);
aShape = new Box(kBlue, 50.0, 100.0, 200.0, 5.0, 10.0, 15.0);
fShapes.push_back(aShape);
aShape = new SBPyramid(kGreen, 20.0, 25.0, 45.0, 30.0, 30.0, 90.0);
fShapes.push_back(aShape);
}
MyGeom::~MyGeom()
{
// Clear out fShapes
}
void MyGeom::Draw(Option_t *option)
{
TObject::Draw(option);
// Ask pad to create 3D viewer of type 'option'
gPad->GetViewer3D(option);
}
void MyGeom::Paint(Option_t * /*option*/)
{
TVirtualViewer3D *viewer = gPad->GetViewer3D();
// If MyGeom derives from TAtt3D then pad will recognise
// that the object it is asking to paint is 3D, and open/close
// the scene for us. If not Open/Close are required
// viewer->BeginScene();
// We are working in the master frame - so we don't bother
// to ask the viewer if it prefers local. Viewer's must
// always support master frame as minimum. c.f. with
// viewer3DLocal.C
std::vector<Shape *>::const_iterator ShapeIt = fShapes.begin();
Shape *shape;
while (ShapeIt != fShapes.end()) {
shape = *ShapeIt;
TBuffer3D &buffer = shape->GetBuffer3D(reqSections);
reqSections = viewer->AddObject(buffer);
shape->GetBuffer3D(reqSections);
viewer->AddObject(buffer);
}
}
// Not required as we are TAtt3D subclass
// viewer->EndScene();
}
{
printf("\n\nviewer3DLocal: This frame demonstates local frame use of 3D viewer architecture.\n");
printf("Creates sphere, two boxes and a square based pyramid, described in local frame.\n");
printf("We do not implement raw tesselation of sphere - hence will not appear in viewers\n");
printf("which do not support in natively (non-GL viewer).\n\n");
myGeom->Draw("ogl");
}
// #endif
#define d(i)
Definition RSha256.hxx:102
int Int_t
Definition RtypesCore.h:45
unsigned int UInt_t
Definition RtypesCore.h:46
constexpr Bool_t kFALSE
Definition RtypesCore.h:94
double Double_t
Definition RtypesCore.h:59
constexpr Bool_t kTRUE
Definition RtypesCore.h:93
const char Option_t
Definition RtypesCore.h:66
#define ClassImp(name)
Definition Rtypes.h:382
@ kRed
Definition Rtypes.h:66
@ kGreen
Definition Rtypes.h:66
@ kBlue
Definition Rtypes.h:66
@ kYellow
Definition Rtypes.h:66
#define ClassDefOverride(name, id)
Definition Rtypes.h:346
Option_t Option_t option
#define gPad
const_iterator begin() const
const_iterator end() const
Use this attribute class when an object should have 3D capabilities.
Definition TAtt3D.h:19
Sphere description class - see TBuffer3DTypes for producer classes Supports hollow and cut spheres.
Definition TBuffer3D.h:130
Double_t fRadiusInner
Definition TBuffer3D.h:144
Double_t fThetaMin
Definition TBuffer3D.h:146
Double_t fPhiMin
Definition TBuffer3D.h:148
Double_t fThetaMax
Definition TBuffer3D.h:147
Double_t fRadiusOuter
Definition TBuffer3D.h:145
Double_t fPhiMax
Definition TBuffer3D.h:149
Generic 3D primitive description class.
Definition TBuffer3D.h:18
void SetLocalMasterIdentity()
Set kRaw tessellation section of buffer with supplied sizes.
Int_t * fPols
Definition TBuffer3D.h:115
@ kBoundingBox
Definition TBuffer3D.h:51
@ kShapeSpecific
Definition TBuffer3D.h:52
Double_t fLocalMaster[16]
Definition TBuffer3D.h:93
void ClearSectionsValid()
Clear any sections marked valid.
void SetSectionsValid(UInt_t mask)
Definition TBuffer3D.h:65
Int_t * fSegs
Definition TBuffer3D.h:114
Bool_t fLocalFrame
Definition TBuffer3D.h:90
Int_t fColor
Definition TBuffer3D.h:88
Short_t fTransparency
Definition TBuffer3D.h:89
void SetAABoundingBox(const Double_t origin[3], const Double_t halfLengths[3])
Set fBBVertex in kBoundingBox section to a axis aligned (local) BB using supplied origin and box half...
Bool_t fReflection
Definition TBuffer3D.h:91
TObject * fID
Definition TBuffer3D.h:87
Bool_t SetRawSizes(UInt_t reqPnts, UInt_t reqPntsCapacity, UInt_t reqSegs, UInt_t reqSegsCapacity, UInt_t reqPols, UInt_t reqPolsCapacity)
Set kRaw tessellation section of buffer with supplied sizes.
Double_t * fPnts
Definition TBuffer3D.h:113
Mother of all ROOT objects.
Definition TObject.h:41
virtual void Draw(Option_t *option="")
Default Draw method for all objects.
Definition TObject.cxx:292
Abstract 3D shapes viewer.
Double_t y[n]
Definition legend1.C:17
Double_t x[n]
Definition legend1.C:17
th1 Draw()
Author
Richard Maunder

Definition in file viewer3DLocal.C.