Logo ROOT   6.08/07
Reference Guide
RotationZ.h
Go to the documentation of this file.
1 // @(#)root/mathcore:$Id$
2 // Authors: W. Brown, M. Fischler, L. Moneta 2005
3 
4  /**********************************************************************
5  * *
6  * Copyright (c) 2005 , LCG ROOT FNAL MathLib Team *
7  * *
8  * *
9  **********************************************************************/
10 
11 // Header file for class RotationZ representing a rotation about the Z axis
12 //
13 // Created by: Mark Fischler Mon July 18 2005
14 //
15 // Last update: $Id$
16 //
17 #ifndef ROOT_Math_GenVector_RotationZ
18 #define ROOT_Math_GenVector_RotationZ 1
19 
20 
26 
28 
29 #include <cmath>
30 
31 namespace ROOT {
32 namespace Math {
33 
34 
35 //__________________________________________________________________________________________
36  /**
37  Rotation class representing a 3D rotation about the Z axis by the angle of rotation.
38  For efficiency reason, in addition to the the angle, the sine and cosine of the angle are held
39 
40  @ingroup GenVector
41  */
42 
43 class RotationZ {
44 
45 public:
46 
47  typedef double Scalar;
48 
49 
50  // ========== Constructors and Assignment =====================
51 
52  /**
53  Default constructor (identity rotation)
54  */
55  RotationZ() : fAngle(0), fSin(0), fCos(1) { }
56 
57  /**
58  Construct from an angle
59  */
60  explicit RotationZ( Scalar angle ) : fAngle(angle),
61  fSin(std::sin(angle)),
62  fCos(std::cos(angle))
63  {
64  Rectify();
65  }
66 
67  // The compiler-generated copy ctor, copy assignment, and dtor are OK.
68 
69  /**
70  Rectify makes sure the angle is in (-pi,pi]
71  */
72  void Rectify() {
73  if ( std::fabs(fAngle) >= M_PI ) {
74  double x = fAngle / (2.0 * M_PI);
75  fAngle = (2.0 * M_PI) * ( x + std::floor(.5-x) );
76  fSin = std::sin(fAngle);
77  fCos = std::cos(fAngle);
78  }
79  }
80 
81  // ======== Components ==============
82 
83  /**
84  Set given the angle.
85  */
86  void SetAngle (Scalar angle) {
87  fSin=std::sin(angle);
88  fCos=std::cos(angle);
89  fAngle= angle;
90  Rectify();
91  }
92  void SetComponents (Scalar angle) { SetAngle(angle); }
93 
94  /**
95  Get the angle
96  */
97  void GetAngle ( Scalar & angle ) const { angle = atan2 (fSin,fCos); }
98  void GetComponents ( Scalar & angle ) const { GetAngle(angle); }
99 
100  /**
101  Angle of rotation
102  */
103  Scalar Angle () const { return atan2 (fSin,fCos); }
104 
105  /**
106  Sine or Cosine of the rotation angle
107  */
108  Scalar SinAngle () const { return fSin; }
109  Scalar CosAngle () const { return fCos; }
110 
111  // =========== operations ==============
112 
113 // /**
114 // Rotation operation on a cartesian vector
115 // */
116 // typedef DisplacementVector3D< Cartesian3D<double> > XYZVector;
117 // XYZVector operator() (const XYZVector & v) const {
118 // return XYZVector
119 // ( fCos*v.x()-fSin*v.y(), fCos*v.y()+fSin*v.x(), v.z() );
120 // }
121 
122  /**
123  Rotation operation on a displacement vector in any coordinate system
124  */
125  template <class CoordSystem, class U>
129  xyz.SetXYZ( fCos*v.x()-fSin*v.y(), fCos*v.y()+fSin*v.x(), v.z() );
131  }
132 
133  /**
134  Rotation operation on a position vector in any coordinate system
135  */
136  template <class CoordSystem, class U>
141  return PositionVector3D<CoordSystem,U> ( rxyz );
142  }
143 
144  /**
145  Rotation operation on a Lorentz vector in any 4D coordinate system
146  */
147  template <class CoordSystem>
151  xyz = operator()(xyz);
152  LorentzVector< PxPyPzE4D<double> > xyzt (xyz.X(), xyz.Y(), xyz.Z(), v.E());
153  return LorentzVector<CoordSystem> ( xyzt );
154  }
155 
156  /**
157  Rotation operation on an arbitrary vector v.
158  Preconditions: v must implement methods x(), y(), and z()
159  and the arbitrary vector type must have a constructor taking (x,y,z)
160  */
161  template <class ForeignVector>
162  ForeignVector
163  operator() (const ForeignVector & v) const {
166  return ForeignVector ( rxyz.X(), rxyz.Y(), rxyz.Z() );
167  }
168 
169  /**
170  Overload operator * for rotation on a vector
171  */
172  template <class AVector>
173  inline
174  AVector operator* (const AVector & v) const
175  {
176  return operator()(v);
177  }
178 
179  /**
180  Invert a rotation in place
181  */
182  void Invert() { fAngle = -fAngle; fSin = -fSin; }
183 
184  /**
185  Return inverse of a rotation
186  */
187  RotationZ Inverse() const { RotationZ t(*this); t.Invert(); return t; }
188 
189  // ========= Multi-Rotation Operations ===============
190 
191  /**
192  Multiply (combine) two rotations
193  */
194  RotationZ operator * (const RotationZ & r) const {
195  RotationZ ans;
196  double x = (fAngle + r.fAngle) / (2.0 * M_PI);
197  ans.fAngle = (2.0 * M_PI) * ( x + std::floor(.5-x) );
198  ans.fSin = fSin*r.fCos + fCos*r.fSin;
199  ans.fCos = fCos*r.fCos - fSin*r.fSin;
200  return ans;
201  }
202 
203  /**
204  Post-Multiply (on right) by another rotation : T = T*R
205  */
206  RotationZ & operator *= (const RotationZ & r) { return *this = (*this)*r; }
207 
208  /**
209  Equality/inequality operators
210  */
211  bool operator == (const RotationZ & rhs) const {
212  if( fAngle != rhs.fAngle ) return false;
213  return true;
214  }
215  bool operator != (const RotationZ & rhs) const {
216  return ! operator==(rhs);
217  }
218 
219 private:
220 
221  Scalar fAngle; // rotation angle
222  Scalar fSin; // sine of the rotation angle
223  Scalar fCos; // cosine of the rotaiton angle
224 
225 }; // RotationZ
226 
227 // ============ Class RotationZ ends here ============
228 
229 /**
230  Distance between two rotations
231  */
232 template <class R>
233 inline
234 typename RotationZ::Scalar
235 Distance ( const RotationZ& r1, const R & r2) {return gv_detail::dist(r1,r2);}
236 
237 /**
238  Stream Output and Input
239  */
240  // TODO - I/O should be put in the manipulator form
241 
242 inline
243 std::ostream & operator<< (std::ostream & os, const RotationZ & r) {
244  os << " RotationZ(" << r.Angle() << ") ";
245  return os;
246 }
247 
248 
249 } // namespace Math
250 } // namespace ROOT
251 
252 #endif // ROOT_Math_GenVector_RotationZ
Scalar SinAngle() const
Sine or Cosine of the rotation angle.
Definition: RotationZ.h:108
XYZVector ans(TestRotation const &t, XYZVector const &v_in)
Class describing a generic LorentzVector in the 4D space-time, using the specified coordinate system ...
Definition: LorentzVector.h:54
double dist(Rotation3D const &r1, Rotation3D const &r2)
Definition: 3DDistances.cxx:48
RotationZ(Scalar angle)
Construct from an angle.
Definition: RotationZ.h:60
DisplacementVector3D< CoordSystem, Tag > & SetXYZ(Scalar a, Scalar b, Scalar c)
set the values of the vector from the cartesian components (x,y,z) (if the vector is held in polar or...
This namespace contains pre-defined functions to be used in conjuction with TExecutor::Map and TExecu...
Definition: StringConv.hxx:21
void SetAngle(Scalar angle)
Set given the angle.
Definition: RotationZ.h:86
Rotation class representing a 3D rotation about the Z axis by the angle of rotation.
Definition: RotationZ.h:43
bool operator==(const RotationZ &rhs) const
Equality/inequality operators.
Definition: RotationZ.h:211
Scalar CosAngle() const
Definition: RotationZ.h:109
RotationZ & operator*=(const RotationZ &r)
Post-Multiply (on right) by another rotation : T = T*R.
Definition: RotationZ.h:206
Class describing a generic position vector (point) in 3 dimensions.
STL namespace.
double cos(double)
std::ostream & operator<<(std::ostream &os, const AxisAngle &a)
Stream Output and Input.
Definition: AxisAngle.cxx:91
Scalar X() const
Cartesian X, converting if necessary from internal coordinate system.
Double_t x[n]
Definition: legend1.C:17
Scalar Z() const
Cartesian Z, converting if necessary from internal coordinate system.
Scalar Y() const
Cartesian Y, converting if necessary from internal coordinate system.
void GetAngle(Scalar &angle) const
Get the angle.
Definition: RotationZ.h:97
Scalar E() const
return 4-th component (time, or energy for a 4-momentum vector)
double sin(double)
void GetComponents(Scalar &angle) const
Definition: RotationZ.h:98
Class describing a generic displacement vector in 3 dimensions.
VecExpr< UnaryOp< Fabs< T >, VecExpr< A, T, D >, T >, T, D > fabs(const VecExpr< A, T, D > &rhs)
TRandom2 r(17)
#define M_PI
Definition: Rotated.cxx:105
SVector< double, 2 > v
Definition: Dict.h:5
unsigned int r1[N_CITIES]
Definition: simanTSP.cxx:321
double floor(double)
RotationZ()
Default constructor (identity rotation)
Definition: RotationZ.h:55
double atan2(double, double)
Namespace for new Math classes and functions.
void Invert()
Invert a rotation in place.
Definition: RotationZ.h:182
DisplacementVector3D< CoordSystem, U > operator()(const DisplacementVector3D< CoordSystem, U > &v) const
Rotation operation on a cartesian vector.
Definition: RotationZ.h:127
void SetComponents(Scalar angle)
Definition: RotationZ.h:92
AxisAngle::Scalar Distance(const AxisAngle &r1, const R &r2)
Distance between two rotations.
Definition: AxisAngle.h:326
bool operator!=(const RotationZ &rhs) const
Definition: RotationZ.h:215
void Rectify()
Rectify makes sure the angle is in (-pi,pi].
Definition: RotationZ.h:72
Scalar Angle() const
Angle of rotation.
Definition: RotationZ.h:103
AVector operator*(const AVector &v) const
Overload operator * for rotation on a vector.
Definition: RotationZ.h:174
::ROOT::Math::DisplacementVector3D< Cartesian3D< Scalar > > Vect() const
get the spatial components of the Vector in a DisplacementVector based on Cartesian Coordinates ...
RotationZ Inverse() const
Return inverse of a rotation.
Definition: RotationZ.h:187
TRandom3 R
a TMatrixD.
Definition: testIO.cxx:28
unsigned int r2[N_CITIES]
Definition: simanTSP.cxx:322