78double HypoTestInverter::fgCLAccuracy = 0.005;
79unsigned int HypoTestInverter::fgNToys = 500;
81double HypoTestInverter::fgAbsAccuracy = 0.05;
82double HypoTestInverter::fgRelAccuracy = 0.05;
83std::string HypoTestInverter::fgAlgo =
"logSecant";
85bool HypoTestInverter::fgCloseProof =
false;
89template<
class HypoTestType>
90struct HypoTestWrapper {
92 static void SetToys(HypoTestType *
h,
int toyNull,
int toyAlt) {
h->SetToys(toyNull,toyAlt); }
99void HypoTestInverter::SetCloseProof(
Bool_t flag) {
131 if (!modelSB || ! modelB)
133 assert(modelSB && modelB);
136 <<
"\t\t using as S+B (null) model : "
138 <<
"\t\t using as B (alternate) model : "
139 << modelB->
GetName() <<
"\n" << std::endl;
144 if (!bPdf || !bObs) {
155 if (!poiB || !poiB->
find(scanVariable.
GetName()) ||
158 << scanVariable.
GetName() <<
" not equal to zero "
159 <<
" user must check input model configurations " << endl;
160 if (poiB)
delete poiB;
178 fCalcType(kUndefined),
179 fNBins(0), fXmin(1), fXmax(1),
198 fScannedVariable(scannedVariable),
204 fCalcType(kUndefined),
205 fNBins(0), fXmin(1), fXmax(1),
251 fScannedVariable(scannedVariable),
258 fNBins(0), fXmin(1), fXmax(1),
284 fScannedVariable(scannedVariable),
290 fCalcType(kFrequentist),
291 fNBins(0), fXmin(1), fXmax(1),
316 fScannedVariable(scannedVariable),
322 fCalcType(kAsymptotic),
323 fNBins(0), fXmin(1), fXmax(1),
349 fScannedVariable(scannedVariable),
356 fNBins(0), fXmin(1), fXmax(1),
383 fCalculator0(0), fScannedVariable(0),
396 if (
this == &rhs)
return *
this;
461 TString results_name =
"result_";
464 TString title =
"HypoTestInverter Result For ";
495 oocoutI((
TObject*)0,
Eval) <<
"HypoTestInverter::GetInterval - return an already existing interval " << std::endl;
500 oocoutI((
TObject*)0,
Eval) <<
"HypoTestInverter::GetInterval - run a fixed scan" << std::endl;
503 oocoutE((
TObject*)0,
Eval) <<
"HypoTestInverter::GetInterval - error running a fixed scan " << std::endl;
506 oocoutI((
TObject*)0,
Eval) <<
"HypoTestInverter::GetInterval - run an automatic scan" << std::endl;
507 double limit(0),err(0);
510 oocoutE((
TObject*)0,
Eval) <<
"HypoTestInverter::GetInterval - error running an auto scan " << std::endl;
564 while (clsMidErr >=
fgCLAccuracy && (clsTarget == -1 ||
fabs(clsMid-clsTarget) < 3*clsMidErr) ) {
565 std::unique_ptr<HypoTestResult> more(hc.
GetHypoTest());
570 hcResult->
Append(more.get());
573 if (
fVerbose) std::cout << (
fUseCLs ?
"\tCLs = " :
"\tCLsplusb = ") << clsMid <<
" +/- " << clsMidErr << std::endl;
580 "\tCLs = " << hcResult->
CLs() <<
" +/- " << hcResult->
CLsError() <<
"\n" <<
581 "\tCLb = " << hcResult->
CLb() <<
" +/- " << hcResult->
CLbError() <<
"\n" <<
618 if ( nBins==1 && xMin!=xMax ) {
621 if ( xMin==xMax && nBins>1 ) {
627 << xMin <<
") smaller than xMax (" << xMax <<
")\n";
631 if (xMin < fScannedVariable->getMin()) {
634 << xMin << std::endl;
639 << xMax << std::endl;
642 if (xMin <= 0. && scanLog) {
648 for (
int i=0; i<nBins; i++) {
652 thisX =
exp(
log(xMin) + i*(
log(xMax)-
log(xMin))/(nBins-1) );
654 thisX = xMin + i*(xMax-xMin)/(nBins-1);
660 if ( status==
false ) {
661 std::cout <<
"\t\tLoop interrupted because of failed status\n";
678 if ( rVal < fScannedVariable->getMin() ) {
681 <<
" on the scanned variable rather than " << rVal<<
"\n";
689 <<
" on the scanned variable rather than " << rVal<<
"\n";
704 const_cast<ModelConfig*
>(sbModel)->SetSnapshot(poi);
725 else lastXtested = -999;
730 oocoutI((
TObject*)0,
Eval) <<
"HypoTestInverter::RunOnePoint - Merge with previous result for "
734 prevResult->
Append(result);
739 oocoutI((
TObject*)0,
Eval) <<
"HypoTestInverter::RunOnePoint - replace previous empty result\n";
781 if ((hint != 0) && (*hint >
r->getMin())) {
782 r->setMax(std::min<double>(3.0 * (*hint),
r->getMax()));
783 r->setMin(std::max<double>(0.3 * (*hint),
r->getMin()));
785 <<
" search in interval " <<
r->getMin() <<
" , " <<
r->getMax() << std::endl;
792 typedef std::pair<double,double> CLs_t;
793 double clsTarget =
fSize;
794 CLs_t clsMin(1,0), clsMax(0,0), clsMid(0,0);
795 double rMin =
r->getMin(), rMax =
r->getMax();
796 limit = 0.5*(rMax + rMin);
797 limitErr = 0.5*(rMax - rMin);
800 TF1 expoFit(
"expoFit",
"[0]*exp([1]*(x-[2]))", rMin, rMax);
826 if (
fVerbose > 0) std::cout <<
"Search for upper limit to the limit" << std::endl;
827 for (
int tries = 0; tries < 6; ++tries) {
830 oocoutE((
TObject*)0,
Eval) <<
"HypoTestInverter::RunLimit - Hypotest failed" << std::endl;
834 if (clsMax.first == 0 || clsMax.first + 3 *
fabs(clsMax.second) < clsTarget )
break;
838 <<
" = " << rMax <<
" still get "
839 << (
fUseCLs ?
"CLs" :
"CLsplusb") <<
" = " << clsMax.first << std::endl;
844 oocoutI((
TObject*)0,
Eval) <<
"HypoTestInverter::RunLimit - Search for lower limit to the limit" << std::endl;
854 if (clsMin.first != 1 && clsMin.first - 3 *
fabs(clsMin.second) < clsTarget) {
860 for (
int tries = 0; tries < 6; ++tries) {
863 if (clsMin.first == 1 || clsMin.first - 3 *
fabs(clsMin.second) > clsTarget)
break;
867 <<
" = " << rMin <<
" still get " << (
fUseCLs ?
"CLs" :
"CLsplusb")
868 <<
" = " << clsMin.first << std::endl;
876 oocoutI((
TObject*)0,
Eval) <<
"HypoTestInverter::RunLimit - Now doing proper bracketing & bisection" << std::endl;
881 oocoutW((
TObject*)0,
Eval) <<
"HypoTestInverter::RunLimit - maximum number of toys reached " << std::endl;
887 limit = 0.5*(rMin+rMax); limitErr = 0.5*(rMax-rMin);
888 if (
fgAlgo ==
"logSecant" && clsMax.first != 0) {
889 double logMin =
log(clsMin.first), logMax =
log(clsMax.first), logTarget =
log(clsTarget);
890 limit = rMin + (rMax-rMin) * (logTarget - logMin)/(logMax - logMin);
891 if (clsMax.second != 0 && clsMin.second != 0) {
892 limitErr = hypot((logTarget-logMax) * (clsMin.second/clsMin.first), (logTarget-logMin) * (clsMax.second/clsMax.first));
893 limitErr *= (rMax-rMin)/((logMax-logMin)*(logMax-logMin));
896 r->setError(limitErr);
899 if (limitErr < std::max(absAccuracy, relAccuracy * limit)) {
901 oocoutI((
TObject*)0,
Eval) <<
"HypoTestInverter::RunLimit - reached accuracy " << limitErr
902 <<
" below " << std::max(absAccuracy, relAccuracy * limit) << std::endl;
909 if (!
RunOnePoint(limit,
true, clsTarget) )
return false;
912 if (clsMid.second == -1) {
913 std::cerr <<
"Hypotest failed" << std::endl;
918 if (
fabs(clsMid.first-clsTarget) >= 2*clsMid.second) {
919 if ((clsMid.first>clsTarget) == (clsMax.first>clsTarget)) {
920 rMax = limit; clsMax = clsMid;
922 rMin = limit; clsMin = clsMid;
925 if (
fVerbose > 0) std::cout <<
"Trying to move the interval edges closer" << std::endl;
926 double rMinBound = rMin, rMaxBound = rMax;
928 while (clsMin.second == 0 ||
fabs(rMin-limit) > std::max(absAccuracy, relAccuracy * limit)) {
929 rMin = 0.5*(rMin+limit);
930 if (!
RunOnePoint(rMin,
true, clsTarget) )
return false;
933 if (
fabs(clsMin.first-clsTarget) <= 2*clsMin.second)
break;
936 while (clsMax.second == 0 ||
fabs(rMax-limit) > std::max(absAccuracy, relAccuracy * limit)) {
937 rMax = 0.5*(rMax+limit);
939 if (!
RunOnePoint(rMax,
true,clsTarget) )
return false;
941 if (
fabs(clsMax.first-clsTarget) <= 2*clsMax.second)
break;
944 expoFit.
SetRange(rMinBound,rMaxBound);
952 std::cout <<
"Limit: " <<
r->
GetName() <<
" < " << limit <<
" +/- " << limitErr <<
" [" << rMin <<
", " << rMax <<
"]\n";
958 double rMinBound, rMaxBound; expoFit.
GetRange(rMinBound, rMaxBound);
959 limitErr = std::max(
fabs(rMinBound-limit),
fabs(rMaxBound-limit));
966 for (
int j = 0; j <
fLimitPlot->GetN(); ++j) {
969 for (
int i = 0, imax = 8; i <= imax; ++i, ++npoints) {
979 if (limitErr < std::max(absAccuracy, relAccuracy * limit))
break;
984 if (!
RunOnePoint(rTry,
true,clsTarget) )
return false;
996 double xmin =
r->getMin(),
xmax =
r->getMax();
997 for (
int j = 0; j <
fLimitPlot->GetN(); ++j) {
1003 fLimitPlot->GetYaxis()->SetRangeUser(0.5*clsTarget, 1.5*clsTarget);
1005 expoFit.
Draw(
"SAME");
1016 <<
"\tLimit: " <<
r->
GetName() <<
" < " << limit <<
" +/- " << limitErr <<
" @ " << (1-
fSize) * 100 <<
"% CL\n";
1047 TList * clsDist = 0;
1048 TList * clsbDist = 0;
1074 TList * clsDist = 0;
1075 TList * clsbDist = 0;
1103 if (!bModel || ! sbModel)
return 0;
1111 <<
" assume is for POI = 0" << std::endl;
1116 paramPoint = *poibkg;
1120 if (!toymcSampler) {
1139 bool storePValues = clsDist || clsbDist || clbDist;
1140 if (
fNBins <=0 && storePValues) {
1141 oocoutW((
TObject*)0,
InputArguments) <<
"HypoTestInverter::RebuildDistribution - cannot return p values distribution with the auto scan" << std::endl;
1142 storePValues =
false;
1155 if (nToys <= 0) nToys = 100;
1157 std::vector<std::vector<double> > CLs_values(nPoints);
1158 std::vector<std::vector<double> > CLsb_values(nPoints);
1159 std::vector<std::vector<double> > CLb_values(nPoints);
1162 for (
int i = 0; i < nPoints; ++i) {
1163 CLs_values[i].reserve(nToys);
1164 CLb_values[i].reserve(nToys);
1165 CLsb_values[i].reserve(nToys);
1169 std::vector<double> limit_values; limit_values.reserve(nToys);
1172 << nToys << std::endl;
1182 assert(bModel->
GetPdf() );
1191 <<
" - the resulting limits will not be stored" << std::endl;
1194 TH1D * hL =
new TH1D(
"lowerLimitDist",
"Rebuilt lower limit distribution",100,1.,0.);
1195 TH1D * hU =
new TH1D(
"upperLimitDist",
"Rebuilt upper limit distribution",100,1.,0.);
1196 TH1D * hN =
new TH1D(
"nObs",
"Observed events",100,1.,0.);
1199 std::vector<TH1*> hCLb;
1200 std::vector<TH1*> hCLsb;
1201 std::vector<TH1*> hCLs;
1203 for (
int i = 0; i < nPoints; ++i) {
1204 hCLb.push_back(
new TH1D(
TString::Format(
"CLbDist_bin%d",i),
"CLb distribution",100,1.,0.));
1205 hCLs.push_back(
new TH1D(
TString::Format(
"ClsDist_bin%d",i),
"CLs distribution",100,1.,0.));
1206 hCLsb.push_back(
new TH1D(
TString::Format(
"CLsbDist_bin%d",i),
"CLs+b distribution",100,1.,0.));
1212 for (
int itoy = 0; itoy < nToys; ++itoy) {
1214 oocoutP((
TObject*)0,
Eval) <<
"\nHypoTestInverter - RebuildDistributions - running toy # " << itoy <<
" / "
1215 << nToys << std::endl;
1218 printf(
"\n\nshnapshot of s+b model \n");
1222 if (itoy> 0) *allParams = saveParams;
1238 for (
int i = 0; i < genObs.
getSize(); ++i) {
1240 if (
x) nObs +=
x->getVal();
1255 if (
r == 0)
continue;
1257 double value = (isUpper) ?
r->UpperLimit() :
r->LowerLimit();
1258 limit_values.push_back( value );
1259 hU->
Fill(
r->UpperLimit() );
1260 hL->
Fill(
r->LowerLimit() );
1263 std::cout <<
"The computed upper limit for toy #" << itoy <<
" is " << value << std::endl;
1266 if (itoy%10 == 0 || itoy == nToys-1) {
1272 if (!storePValues)
continue;
1277 else if (nPoints >
r->ArraySize()) {
1282 for (
int ipoint = 0; ipoint < nPoints; ++ipoint) {
1285 CLs_values[ipoint].push_back( hr->
CLs() );
1286 CLsb_values[ipoint].push_back( hr->
CLsplusb() );
1287 CLb_values[ipoint].push_back( hr->
CLb() );
1288 hCLs[ipoint]->Fill( hr->
CLs() );
1289 hCLb[ipoint]->Fill( hr->
CLb() );
1290 hCLsb[ipoint]->Fill( hr->
CLsplusb() );
1298 if (itoy%10 == 0 || itoy == nToys-1) {
1299 for (
int ipoint = 0; ipoint < nPoints; ++ipoint) {
1313 if (clsDist) clsDist->
SetOwner(
true);
1314 if (clbDist) clbDist->
SetOwner(
true);
1315 if (clsbDist) clsbDist->
SetOwner(
true);
1319 for (
int ipoint = 0; ipoint < nPoints; ++ipoint) {
1342 for (
int i = 0; i < nPoints && storePValues; ++i) {
1349 const char * disName = (isUpper) ?
"upperLimit_dist" :
"lowerLimit_dist";
RooArgSet * getParameters(const RooAbsData *data, Bool_t stripDisconnected=kTRUE) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
RooArgSet * getVariables(Bool_t stripDisconnected=kTRUE) const
Return RooArgSet with all variables (tree leaf nodes of expresssion tree)
RooAbsCollection * selectCommon(const RooAbsCollection &refColl) const
Create a subset of the current collection, consisting only of those elements that are contained as we...
RooAbsArg * first() const
virtual void Print(Option_t *options=0) const
This method must be overridden when a class wants to print itself.
RooAbsArg * find(const char *name) const
Find object with given name in list.
RooAbsData is the common abstract base class for binned and unbinned datasets.
virtual const RooArgSet * get() const
virtual Double_t sumEntries() const =0
virtual Int_t numEntries() const
Bool_t canBeExtended() const
virtual Double_t getMax(const char *name=0) const
Get maximum of currently defined range.
virtual Double_t getMin(const char *name=0) const
Get miniminum of currently defined range.
Double_t getVal(const RooArgSet *normalisationSet=nullptr) const
Evaluate object.
RooArgList is a container object that can hold multiple RooAbsArg objects.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
RooArgSet * snapshot(bool deepCopy=true) const
Use RooAbsCollection::snapshot(), but return as RooArgSet.
virtual Bool_t add(const RooAbsCollection &col, Bool_t silent=kFALSE)
Add a collection of arguments to this collection by calling add() for each element in the source coll...
static Double_t uniform(TRandom *generator=randomGenerator())
Return a number uniformly distributed from (0,1)
RooRealVar represents a variable that can be changed from the outside.
virtual void setVal(Double_t value)
Set value of variable to 'value'.
Hypothesis Test Calculator based on the asymptotic formulae for the profile likelihood ratio.
Does a frequentist hypothesis test.
Same purpose as HybridCalculatorOriginal, but different implementation.
Common base class for the Hypothesis Test Calculators.
const ModelConfig * GetNullModel(void) const
const ModelConfig * GetAlternateModel(void) const
TestStatSampler * GetTestStatSampler(void) const
Returns instance of TestStatSampler.
virtual HypoTestResult * GetHypoTest() const
inherited methods from HypoTestCalculator interface
virtual void SetData(RooAbsData &data)
Set the DataSet.
Class to plot an HypoTestInverterResult, result of the HypoTestInverter calculator.
TGraphErrors * MakePlot(Option_t *opt="")
return a TGraphErrors with the obtained observed p-values resultinf from the scan By default (Option ...
HypoTestInverterResult class holds the array of hypothesis test results and compute a confidence inte...
SamplingDistribution * GetLowerLimitDistribution() const
get expected lower limit distributions implemented using interpolation The size for the sampling dist...
HypoTestResult * GetResult(int index) const
return a pointer to the i^th result object
double fLowerLimitError
interpolation option (linear or spline)
int ArraySize() const
number of entries in the results array
virtual void SetConfidenceLevel(Double_t cl)
set the confidence level for the interval (eg. 0.95 for a 95% Confidence Interval)
std::vector< double > fXValues
number of points used to build expected p-values
void UseCLs(bool on=true)
flag to switch between using CLsb (default) or CLs as confidence level
double GetXValue(int index) const
function to return the value of the parameter of interest for the i^th entry in the results
double GetLastYError() const
TList fExpPValues
list of HypoTestResult for each point
double GetLastYValue() const
SamplingDistribution * GetUpperLimitDistribution() const
get expected upper limit distributions implemented using interpolation
A class for performing a hypothesis test inversion by scanning the hypothesis test results of a HypoT...
virtual void SetData(RooAbsData &)
Set the DataSet ( add to the the workspace if not already there ?)
static void CheckInputModels(const HypoTestCalculatorGeneric &hc, const RooRealVar &scanVar)
check the model given the given hypotestcalculator
RooRealVar * fScannedVariable
pointer to the generic hypotest calculator used
virtual ~HypoTestInverter()
destructor (delete the HypoTestInverterResult)
static double fgCLAccuracy
std::unique_ptr< HypoTestCalculatorGeneric > fHC
SamplingDistribution * RebuildDistributions(bool isUpper=true, int nToys=100, TList *clsDist=0, TList *clsbDist=0, TList *clbDist=0, const char *outputfile="HypoTestInverterRebuiltDist.root")
rebuild the sampling distributions by generating some toys and find for each of them a new upper limi...
HypoTestInverterResult * fResults
HypoTestInverter()
default constructor (doesn't do anything)
bool SetTestStatistic(TestStatistic &stat)
set the test statistic to use
virtual Double_t ConfidenceLevel() const
Get the Confidence level for the test.
SamplingDistribution * GetUpperLimitDistribution(bool rebuild=false, int nToys=100)
get the distribution of lower limit if rebuild = false (default) it will re-use the results of the sc...
static unsigned int fgNToys
void Clear()
delete contained result and graph
TestStatistic * GetTestStatistic() const
return the test statistic which is or will be used by the class
virtual HypoTestInverterResult * GetInterval() const
Run a fixed scan or the automatic scan depending on the configuration.
static std::string fgAlgo
bool RunLimit(double &limit, double &limitErr, double absTol=0, double relTol=0, const double *hint=0) const
Run an automatic scan until the desired accuracy is reached.
std::unique_ptr< TGraphErrors > fLimitPlot
bool RunFixedScan(int nBins, double xMin, double xMax, bool scanLog=false) const
Run a fixed scan.
bool RunOnePoint(double thisX, bool adaptive=false, double clTarget=-1) const
run only one point at the given POI value
ECalculatorType fCalcType
SamplingDistribution * GetLowerLimitDistribution(bool rebuild=false, int nToys=100)
get the distribution of lower limit if rebuild = false (default) it will re-use the results of the sc...
HypoTestInverter & operator=(const HypoTestInverter &rhs)
assignment operator NOTE: this class does not copy the contained result and the HypoTestCalculator,...
HypoTestCalculatorGeneric * fCalculator0
int fTotalToysRun
plot of limits
static double fgRelAccuracy
void CreateResults() const
create a new HypoTestInverterResult to hold all computed results
static double fgAbsAccuracy
static RooRealVar * GetVariableToScan(const HypoTestCalculatorGeneric &hc)
get the variable to scan try first with null model if not go to alternate model
HypoTestResult * Eval(HypoTestCalculatorGeneric &hc, bool adaptive, double clsTarget) const
Run the Hypothesis test at a previous configured point (internal function called by RunOnePoint)
HypoTestResult is a base class for results from hypothesis tests.
void SetBackgroundAsAlt(Bool_t l=kTRUE)
Double_t CLbError() const
The error on the "confidence level" of the null hypothesis.
Bool_t GetPValueIsRightTail(void) const
Double_t GetTestStatisticData(void) const
virtual void Append(const HypoTestResult *other)
add values from another HypoTestResult
virtual Double_t CLb() const
Convert NullPValue into a "confidence level".
virtual Double_t CLsplusb() const
Convert AlternatePValue into a "confidence level".
virtual Double_t AlternatePValue() const
Return p-value for alternate hypothesis.
virtual Double_t NullPValue() const
Return p-value for null hypothesis.
void SetTestStatisticData(const Double_t tsd)
Double_t CLsplusbError() const
The error on the "confidence level" of the alternative hypothesis.
virtual Double_t CLs() const
is simply (not a method, but a quantity)
SamplingDistribution * GetNullDistribution(void) const
Double_t CLsError() const
The error on the ratio .
SamplingDistribution * GetAltDistribution(void) const
IntervalCalculator is an interface class for a tools which produce RooStats ConfIntervals.
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
const RooArgSet * GetGlobalObservables() const
get RooArgSet for global observables (return NULL if not existing)
const RooArgSet * GetParametersOfInterest() const
get RooArgSet containing the parameter of interest (return NULL if not existing)
const RooArgSet * GetNuisanceParameters() const
get RooArgSet containing the nuisance parameters (return NULL if not existing)
const RooArgSet * GetObservables() const
get RooArgSet for observables (return NULL if not existing)
const RooArgSet * GetSnapshot() const
get RooArgSet for parameters for a particular hypothesis (return NULL if not existing)
RooAbsPdf * GetPdf() const
get model PDF (return NULL if pdf has not been specified or does not exist)
ProfileLikelihoodTestStat is an implementation of the TestStatistic interface that calculates the pro...
static void CloseProof(Option_t *option="s")
close all proof connections
This class simply holds a sampling distribution of some test statistic.
Int_t GetSize() const
size of samples
TestStatSampler is an interface class for a tools which produce RooStats SamplingDistributions.
virtual TestStatistic * GetTestStatistic() const =0
virtual void SetTestStatistic(TestStatistic *testStatistic)=0
TestStatistic is an interface class to provide a facility for construction test statistics distributi...
ToyMCSampler is an implementation of the TestStatSampler interface.
virtual void SetObservables(const RooArgSet &o)
virtual void SetPdf(RooAbsPdf &pdf)
virtual RooAbsData * GenerateToyData(RooArgSet ¶mPoint, RooAbsPdf &pdf) const
virtual void SetGlobalObservables(const RooArgSet &o)
virtual void SetNEventsPerToy(const Int_t nevents)
Forces the generation of exactly n events even for extended PDFs.
virtual void SetNuisanceParameters(const RooArgSet &np)
virtual void SetParametersForTestStat(const RooArgSet &nullpoi)
virtual void SetLineStyle(Style_t lstyle)
Set the line style.
virtual void SetLineWidth(Width_t lwidth)
Set the line width.
virtual void SetLineColor(Color_t lcolor)
Set the line color.
virtual void SetOwner(Bool_t enable=kTRUE)
Set whether this collection is the owner (enable==true) of its content.
virtual Double_t GetParError(Int_t ipar) const
Return value of parameter number ipar.
virtual void SetRange(Double_t xmin, Double_t xmax)
Initialize the upper and lower bounds to draw the function.
virtual void GetRange(Double_t *xmin, Double_t *xmax) const
Return range of a generic N-D function.
virtual void Draw(Option_t *option="")
Draw this function with its current attributes.
virtual void SetParameter(Int_t param, Double_t value)
virtual void FixParameter(Int_t ipar, Double_t value)
Fix the value of a parameter The specified value will be used in a fit operation.
virtual Double_t GetParameter(Int_t ipar) const
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
void Close(Option_t *option="") override
Close a file.
A TGraphErrors is a TGraph with error bars.
1-D histogram with a double per channel (see TH1 documentation)}
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
virtual void SetBuffer(Int_t buffersize, Option_t *option="")
Set the maximum number of entries to be kept in the buffer.
virtual TLine * DrawLine(Double_t x1, Double_t y1, Double_t x2, Double_t y2)
Draw this line with new coordinates.
virtual void Add(TObject *obj)
virtual TObject * Remove(TObject *obj)
Remove object from the list.
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
virtual void SetName(const char *name)
Set the name of the TNamed.
virtual TObject * Clone(const char *newname="") const
Make a clone of an object using the Streamer facility.
virtual const char * GetName() const
Returns name of object.
Mother of all ROOT objects.
virtual Int_t Write(const char *name=0, Int_t option=0, Int_t bufsize=0)
Write this object to the current directory.
@ kOverwrite
overwrite existing object with same name
virtual const char * GetName() const
Returns name of object.
virtual void Draw(Option_t *option="")
Default Draw method for all objects.
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Py_ssize_t ArraySize(const std::string &name)
VecExpr< UnaryOp< Fabs< T >, VecExpr< A, T, D >, T >, T, D > fabs(const VecExpr< A, T, D > &rhs)
Namespace for the RooStats classes.
void PrintListContent(const RooArgList &l, std::ostream &os=std::cout)
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Bool_t AreEqualAbs(Double_t af, Double_t bf, Double_t epsilon)