73 return output.CountChar(
',')+1;
79 fStructure.
Last(
':') - fStructure.
First(
':') - 1));
84 num = atoi(
TString(hidden(beg, end - beg)).Data());
87 end = hidden.
Index(
":", beg + 1);
88 if(layer==
cnt)
return num;
92 if(layer==
cnt)
return num;
110 brName =
TString(input(beg, end - beg));
112 brName = brName(1,brName.
Length()-1);
114 end = input.
Index(
",", beg + 1);
115 if(
cnt==idx)
return brName;
120 brName = brName(1,brName.
Length()-1);
130 return neuron ? neuron->
GetName() :
"NO SUCH NEURON";
139 return neuron ? neuron->
GetName() :
"NO SUCH NEURON";
148 std::cout <<
"Network with structure: " << fStructure.
Data() << std::endl;
149 std::cout <<
"inputs with low values in the differences plot may not be needed" << std::endl;
151 char var[64], sel[64];
160 <<
" +/- " << tmp->
GetRMS() << std::endl;
184 Int_t i(0), j(0), k(0),
l(0);
187 pos = re.
Index(formula,&len);
188 if(pos==-1 || len<3) {
193 TString newformula(formula,pos);
194 TString val = formula(pos+1,len-2);
196 formula = newformula;
197 index[i] = val.
Atoi();
199 TH1D tmp(
"tmpb",
"tmpb", 1, -FLT_MAX, FLT_MAX);
219 leaflist+=
Form(
"In%d/D:",i);
224 for (i=0; i<numOutNodes; i++)
225 leaflist+=
Form(
"Out%d/D:",i);
230 for (i=0; i<numOutNodes; i++)
231 leaflist+=
Form(
"True%d/D:",i);
237 for(j=0; j< nEvents; j++) {
255 params[i] += shift*rms[i];
257 params[i] -= 2*shift*rms[i];
261 params[i] += shift*rms[i];
272 for(i=0; i<
GetNeurons(1); i++)
delete formulas[i];
286 snprintf(sel,64,
"inNeuron==%d", i);
312 THStack* stack =
new THStack(
"differences",
"differences (impact of variables on ANN)");
315 char var[64], sel[64];
318 snprintf(sel,64,
"inNeuron==%d", i);
326 stack->
Draw(
"nostack");
342 THStack* stack =
new THStack(
"__NNout_TMLPA",
Form(
"Neural net output (neuron %d)",neuron));
343 TH1F *bgh =
new TH1F(
"__bgh_TMLPA",
"NN output", 50, -0.5, 1.5);
344 TH1F *sigh =
new TH1F(
"__sigh_TMLPA",
"NN output", 50, -0.5, 1.5);
352 data->
Draw(
">>__tmpSig_MLPA",signal,
"goff");
353 data->
Draw(
">>__tmpBkg_MLPA",bg,
"goff");
356 nEvents = bg_list->
GetN();
357 for(j=0; j< nEvents; j++) {
361 nEvents = signal_list->
GetN();
362 for(j=0; j< nEvents; j++) {
377 legend->
AddEntry(bgh,
"Background");
379 stack->
Draw(
"nostack");
403 drawline.
Form(
"Out.Out%d-True.True%d:True.True%d>>",
404 outnode, outnode, outnode);
405 fIOTree->
Draw(drawline+pipehist+
"(20)",
"",
"goff prof");
410 h->SetTitle(
Form(
"#Delta(output - truth) vs. truth for %s",
412 h->GetXaxis()->SetTitle(title);
413 h->GetYaxis()->SetTitle(
Form(
"#Delta(output - truth) for %s", title));
415 if (!strstr(option,
"goff"))
433 "Deviation of MLP output from truth");
437 if (!option || !strstr(option,
"goff"))
438 leg=
new TLegend(.4,.85,.95,.95,
"#Delta(output - truth) vs. truth for:");
440 const char* xAxisTitle=0;
446 h->SetLineColor(1+outnode);
451 xAxisTitle=
h->GetXaxis()->GetTitle();
478 TString pipehist=
Form(
"MLP_truthdev_i%d_o%d", innode, outnode);
480 drawline.
Form(
"Out.Out%d-True.True%d:In.In%d>>",
481 outnode, outnode, innode);
482 fIOTree->
Draw(drawline+pipehist+
"(50)",
"",
"goff prof");
487 h->SetTitle(
Form(
"#Delta(output - truth) of %s vs. input %s",
488 titleOutNeuron, titleInNeuron));
489 h->GetXaxis()->SetTitle(
Form(
"%s", titleInNeuron));
490 h->GetYaxis()->SetTitle(
Form(
"#Delta(output - truth) for %s",
492 if (!strstr(option,
"goff"))
509 sName.
Form(
"MLP_TruthDeviationIO_%d", outnode);
512 Form(
"Deviation of MLP output %s from truth",
517 if (!option || !strstr(option,
"goff"))
519 Form(
"#Delta(output - truth) of %s vs. input for:",
526 for (innode=0; innode<numInNodes; innode++) {
528 h->SetLineColor(1+innode);
530 if (
leg)
leg->AddEntry(
h,
h->GetXaxis()->GetTitle());
char * Form(const char *fmt,...)
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
virtual void SetFillStyle(Style_t fstyle)
Set the fill area style.
virtual void SetLineColor(Color_t lcolor)
Set the line color.
A TEventList object is a list of selected events (entries) in a TTree.
virtual Long64_t GetEntry(Int_t index) const
Return value of entry at index in the list.
virtual Int_t GetN() const
1-D histogram with a double per channel (see TH1 documentation)}
1-D histogram with a float per channel (see TH1 documentation)}
virtual void SetDirectory(TDirectory *dir)
By default when an histogram is created, it is added to the list of histogram objects in the current ...
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Double_t GetRMS(Int_t axis=1) const
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
The Histogram stack class.
virtual void Draw(Option_t *chopt="")
Draw this multihist with its current attributes.
TAxis * GetYaxis() const
Get x axis of the histogram used to draw the stack.
virtual void Add(TH1 *h, Option_t *option="")
add a new histogram to the list Only 1-d and 2-d histograms currently supported.
TAxis * GetXaxis() const
Get x axis of the histogram used to draw the stack.
This class displays a legend box (TPaveText) containing several legend entries.
TLegendEntry * AddEntry(const TObject *obj, const char *label="", Option_t *option="lpf")
Add a new entry to this legend.
virtual void Draw(Option_t *option="")
Draw this legend with its current attributes.
This utility class contains a set of tests usefull when developing a neural network.
Int_t GetNeurons(Int_t layer)
Returns the number of neurons in given layer.
Int_t GetLayers()
Returns the number of layers.
TProfile * DrawTruthDeviation(Int_t outnode=0, Option_t *option="")
Create a profile of the difference of the MLP output minus the true value for a given output node out...
void DrawDInput(Int_t i)
Draws the distribution (on the test sample) of the impact on the network output of a small variation ...
const char * GetOutputNeuronTitle(Int_t out)
Returns the name of any neuron from the output layer.
void DrawDInputs()
Draws the distribution (on the test sample) of the impact on the network output of a small variation ...
THStack * DrawTruthDeviationInsOut(Int_t outnode=0, Option_t *option="")
Creates a profile of the difference of the MLP output outnode minus the true value of outnode vs the ...
void CheckNetwork()
Gives some information about the network in the terminal.
void GatherInformations()
Collect information about what is useful in the network.
THStack * DrawTruthDeviations(Option_t *option="")
Creates TProfiles of the difference of the MLP output minus the true value vs the true value,...
TProfile * DrawTruthDeviationInOut(Int_t innode, Int_t outnode=0, Option_t *option="")
Creates a profile of the difference of the MLP output outnode minus the true value of outnode vs the ...
const char * GetInputNeuronTitle(Int_t in)
Returns the name of any neuron from the input layer.
TMultiLayerPerceptron * fNetwork
virtual ~TMLPAnalyzer()
Destructor.
TString GetNeuronFormula(Int_t idx)
Returns the formula used as input for neuron (idx) in the first layer.
void DrawNetwork(Int_t neuron, const char *signal, const char *bg)
Draws the distribution of the neural network (using ith neuron).
Double_t Evaluate(Int_t index, Double_t *params) const
Returns the Neural Net for a given set of input parameters #parameters must equal #input neurons.
TEventList * fTest
! EventList defining the events in the test dataset
TTree * fData
! pointer to the tree used as datasource
Double_t Result(Int_t event, Int_t index=0) const
Computes the output for a given event.
TString GetStructure() const
TObjArray fLastLayer
Collection of the output neurons; subset of fNetwork.
TObjArray fFirstLayer
Collection of the input neurons; subset of fNetwork.
void GetEntry(Int_t) const
Load an entry into the network.
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
virtual const char * GetName() const
Returns name of object.
This class describes an elementary neuron, which is the basic element for a Neural Network.
Regular expression class.
Ssiz_t Index(const TString &str, Ssiz_t *len, Ssiz_t start=0) const
Find the first occurrence of the regexp in string and return the position, or -1 if there is no match...
Int_t Atoi() const
Return integer value of string.
Ssiz_t First(char c) const
Find first occurrence of a character c.
const char * Data() const
Ssiz_t Last(char c) const
Find last occurrence of a character c.
Int_t CountChar(Int_t c) const
Return number of times character c occurs in the string.
TString & Remove(Ssiz_t pos)
void Form(const char *fmt,...)
Formats a string using a printf style format descriptor.
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
A TTree represents a columnar dataset.
virtual Int_t Fill()
Fill all branches.
virtual void SetDirectory(TDirectory *dir)
Change the tree's directory.
virtual void SetEventList(TEventList *list)
This function transfroms the given TEventList into a TEntryList The new TEntryList is owned by the TT...
TBranch * Branch(const char *name, T *obj, Int_t bufsize=32000, Int_t splitlevel=99)
Add a new branch, and infer the data type from the type of obj being passed.
TEventList * GetEventList() const
virtual void Draw(Option_t *opt)
Default Draw method for all objects.
virtual void ResetBranchAddresses()
Tell all of our branches to drop their current objects and allocate new ones.
Double_t Sqrt(Double_t x)
static void output(int code)