As input data is used a toy-MC sample consisting of four Gaussian-distributed and linearly correlated input variables. The methods to be used can be switched on and off by means of booleans, or via the prompt command, for example:
(note that the backslashes are mandatory) If no method given, a default set of classifiers is used. The output file "TMVAC.root" can be analysed with the use of dedicated macros (simply say: root -l <macro.C>), which can be conveniently invoked through a GUI that will appear at the end of the run of this macro. Launch the GUI via the command:
==> Start TMVAClassification
--- TMVAClassification : Using input file: /github/home/ROOT-CI/build/tutorials/tmva/data/tmva_class_example.root
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree TreeS of type Signal with 6000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree TreeB of type Background with 6000 events
Factory : Booking method: ␛[1mCuts␛[0m
:
: Use optimization method: "Monte Carlo"
: Use efficiency computation method: "Event Selection"
: Use "FSmart" cuts for variable: 'myvar1'
: Use "FSmart" cuts for variable: 'myvar2'
: Use "FSmart" cuts for variable: 'var3'
: Use "FSmart" cuts for variable: 'var4'
Factory : Booking method: ␛[1mCutsD␛[0m
:
CutsD : [dataset] : Create Transformation "Decorrelate" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
: Use optimization method: "Monte Carlo"
: Use efficiency computation method: "Event Selection"
: Use "FSmart" cuts for variable: 'myvar1'
: Use "FSmart" cuts for variable: 'myvar2'
: Use "FSmart" cuts for variable: 'var3'
: Use "FSmart" cuts for variable: 'var4'
Factory : Booking method: ␛[1mLikelihood␛[0m
:
Factory : Booking method: ␛[1mLikelihoodPCA␛[0m
:
LikelihoodPCA : [dataset] : Create Transformation "PCA" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
Factory : Booking method: ␛[1mPDERS␛[0m
:
Factory : Booking method: ␛[1mPDEFoam␛[0m
:
Factory : Booking method: ␛[1mKNN␛[0m
:
Factory : Booking method: ␛[1mLD␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree TreeS
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree TreeB
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 1000
: Signal -- testing events : 5000
: Signal -- training and testing events: 6000
: Background -- training events : 1000
: Background -- testing events : 5000
: Background -- training and testing events: 6000
:
DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------
: myvar1 myvar2 var3 var4
: myvar1: +1.000 -0.007 +0.754 +0.922
: myvar2: -0.007 +1.000 -0.065 +0.083
: var3: +0.754 -0.065 +1.000 +0.836
: var4: +0.922 +0.083 +0.836 +1.000
: ----------------------------------------
DataSetInfo : Correlation matrix (Background):
: ----------------------------------------
: myvar1 myvar2 var3 var4
: myvar1: +1.000 -0.073 +0.784 +0.925
: myvar2: -0.073 +1.000 -0.142 +0.019
: var3: +0.784 -0.142 +1.000 +0.844
: var4: +0.925 +0.019 +0.844 +1.000
: ----------------------------------------
DataSetFactory : [dataset] :
:
Factory : Booking method: ␛[1mFDA_GA␛[0m
:
: Create parameter interval for parameter 0 : [-1,1]
: Create parameter interval for parameter 1 : [-10,10]
: Create parameter interval for parameter 2 : [-10,10]
: Create parameter interval for parameter 3 : [-10,10]
: Create parameter interval for parameter 4 : [-10,10]
: User-defined formula string : "(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3"
: TFormula-compatible formula string: "[0]+[1]*[5]+[2]*[6]+[3]*[7]+[4]*[8]"
Factory : Booking method: ␛[1mMLPBNN␛[0m
:
MLPBNN : [dataset] : Create Transformation "N" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
MLPBNN : Building Network.
: Initializing weights
Factory : Booking method: ␛[1mDNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=N:WeightInitialization=XAVIERUNIFORM:Layout=TANH|128,TANH|128,TANH|128,LINEAR:TrainingStrategy=LearningRate=1e-2,Momentum=0.9,ConvergenceSteps=20,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,DropConfig=0.0+0.5+0.5+0.5:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=N:WeightInitialization=XAVIERUNIFORM:Layout=TANH|128,TANH|128,TANH|128,LINEAR:TrainingStrategy=LearningRate=1e-2,Momentum=0.9,ConvergenceSteps=20,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,DropConfig=0.0+0.5+0.5+0.5:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "N" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "TANH|128,TANH|128,TANH|128,LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIERUNIFORM" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-2,Momentum=0.9,ConvergenceSteps=20,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,DropConfig=0.0+0.5+0.5+0.5" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
DNN_CPU : [dataset] : Create Transformation "N" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mSVM␛[0m
:
SVM : [dataset] : Create Transformation "Norm" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
Factory : Booking method: ␛[1mBDT␛[0m
:
Factory : Booking method: ␛[1mRuleFit␛[0m
:
Factory : ␛[1mTrain all methods␛[0m
Factory : [dataset] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
Factory : [dataset] : Create Transformation "D" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
Factory : [dataset] : Create Transformation "P" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
Factory : [dataset] : Create Transformation "G" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
Factory : [dataset] : Create Transformation "D" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.082743 1.7823 [ -9.2312 7.0719 ]
: myvar2: -0.056644 1.0667 [ -3.7067 4.0291 ]
: var3: -0.045349 1.0930 [ -5.1570 4.1507 ]
: var4: 0.10542 1.2849 [ -6.3160 4.5211 ]
: -----------------------------------------------------------
: Preparing the Decorrelation transformation...
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.16999 1.0000 [ -4.4163 3.9983 ]
: myvar2: -0.080682 1.0000 [ -3.4441 3.7507 ]
: var3: -0.14363 1.0000 [ -3.7799 3.6146 ]
: var4: 0.32786 1.0000 [ -3.3861 3.3152 ]
: -----------------------------------------------------------
: Preparing the Principle Component (PCA) transformation...
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.018073 2.3492 [ -12.291 8.9889 ]
: myvar2: 0.035051 1.0778 [ -4.0607 3.7534 ]
: var3: 0.0032257 0.59616 [ -2.0543 1.9480 ]
: var4: -0.0086473 0.35251 [ -1.1198 1.0790 ]
: -----------------------------------------------------------
: Preparing the Gaussian transformation...
: Preparing the Decorrelation transformation...
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.0016393 1.0000 [ -3.3895 8.1139 ]
: myvar2: 0.041016 1.0000 [ -3.1771 5.7003 ]
: var3: 0.025202 1.0000 [ -3.3024 7.5164 ]
: var4: -0.030240 1.0000 [ -3.2555 8.8105 ]
: -----------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------
: Rank : Variable : Separation
: -------------------------------------
: 1 : Variable 4 : 2.867e-01
: 2 : Variable 3 : 1.746e-01
: 3 : myvar1 : 1.144e-01
: 4 : Expression 2 : 3.020e-02
: -------------------------------------
Factory : Train method: Cuts for Classification
:
FitterBase : <MCFitter> Sampling, please be patient ...
: Elapsed time: 3.52 sec
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.1
: Corresponding background efficiency : 0.00720161
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -4.57627 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 1.15847
: Cut[ 2]: -3.33777 < var3 <= 1e+30
: Cut[ 3]: 2.07512 < var4 <= 1e+30
: ------------------------------------------
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.2
: Corresponding background efficiency : 0.0223329
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -4.62984 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 1.09417
: Cut[ 2]: -3.55402 < var3 <= 1e+30
: Cut[ 3]: 1.56727 < var4 <= 1e+30
: ------------------------------------------
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.3
: Corresponding background efficiency : 0.0430248
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -8.53038 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 2.76914
: Cut[ 2]: -2.59305 < var3 <= 1e+30
: Cut[ 3]: 1.38904 < var4 <= 1e+30
: ------------------------------------------
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.4
: Corresponding background efficiency : 0.0734191
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -1.15162 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 3.31021
: Cut[ 2]: -2.40236 < var3 <= 1e+30
: Cut[ 3]: 1.06042 < var4 <= 1e+30
: ------------------------------------------
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.5
: Corresponding background efficiency : 0.116038
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -4.30702 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 4.05808
: Cut[ 2]: -1.86509 < var3 <= 1e+30
: Cut[ 3]: 0.791828 < var4 <= 1e+30
: ------------------------------------------
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.6
: Corresponding background efficiency : 0.178863
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -9.15649 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 2.72375
: Cut[ 2]: -4.02004 < var3 <= 1e+30
: Cut[ 3]: 0.491303 < var4 <= 1e+30
: ------------------------------------------
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.7
: Corresponding background efficiency : 0.232452
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -7.50811 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 2.79724
: Cut[ 2]: -4.57539 < var3 <= 1e+30
: Cut[ 3]: 0.204151 < var4 <= 1e+30
: ------------------------------------------
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.8
: Corresponding background efficiency : 0.314679
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -4.69509 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 4.04459
: Cut[ 2]: -2.16556 < var3 <= 1e+30
: Cut[ 3]: -0.0798275 < var4 <= 1e+30
: ------------------------------------------
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.9
: Corresponding background efficiency : 0.507037
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -4.1181 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 3.15831
: Cut[ 2]: -2.09059 < var3 <= 1e+30
: Cut[ 3]: -0.61029 < var4 <= 1e+30
: ------------------------------------------
: Elapsed time for training with 2000 events: 3.53 sec
Cuts : [dataset] : Evaluation of Cuts on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.000337 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_Cuts.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_Cuts.class.C␛[0m
: TMVAC.root:/dataset/Method_Cuts/Cuts
Factory : Training finished
:
Factory : Train method: CutsD for Classification
:
: Preparing the Decorrelation transformation...
TFHandler_CutsD : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.16999 1.0000 [ -4.4163 3.9983 ]
: myvar2: -0.080682 1.0000 [ -3.4441 3.7507 ]
: var3: -0.14363 1.0000 [ -3.7799 3.6146 ]
: var4: 0.32786 1.0000 [ -3.3861 3.3152 ]
: -----------------------------------------------------------
TFHandler_CutsD : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.16999 1.0000 [ -4.4163 3.9983 ]
: myvar2: -0.080682 1.0000 [ -3.4441 3.7507 ]
: var3: -0.14363 1.0000 [ -3.7799 3.6146 ]
: var4: 0.32786 1.0000 [ -3.3861 3.3152 ]
: -----------------------------------------------------------
FitterBase : <MCFitter> Sampling, please be patient ...
: Elapsed time: 2.57 sec
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.1
: Corresponding background efficiency : 0
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1113*[myvar1] + 0.054934*[myvar2] - 0.20558*[var3] - 0.79915*[var4] <= 1.67705
: Cut[ 1]: -1e+30 < + 0.054934*[myvar1] + 0.95764*[myvar2] + 0.13632*[var3] - 0.14903*[var4] <= 0.0771511
: Cut[ 2]: -2.49817 < - 0.20558*[myvar1] + 0.13632*[myvar2] + 1.715*[var3] - 0.71283*[var4] <= 1e+30
: Cut[ 3]: 1.59542 < - 0.79915*[myvar1] - 0.14903*[myvar2] - 0.71283*[var3] + 2.0962*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.2
: Corresponding background efficiency : 0.00318151
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1113*[myvar1] + 0.054934*[myvar2] - 0.20558*[var3] - 0.79915*[var4] <= 2.25342
: Cut[ 1]: -1e+30 < + 0.054934*[myvar1] + 0.95764*[myvar2] + 0.13632*[var3] - 0.14903*[var4] <= 0.817228
: Cut[ 2]: -3.70325 < - 0.20558*[myvar1] + 0.13632*[myvar2] + 1.715*[var3] - 0.71283*[var4] <= 1e+30
: Cut[ 3]: 1.48444 < - 0.79915*[myvar1] - 0.14903*[myvar2] - 0.71283*[var3] + 2.0962*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.3
: Corresponding background efficiency : 0.00804102
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1113*[myvar1] + 0.054934*[myvar2] - 0.20558*[var3] - 0.79915*[var4] <= 1.96798
: Cut[ 1]: -1e+30 < + 0.054934*[myvar1] + 0.95764*[myvar2] + 0.13632*[var3] - 0.14903*[var4] <= 3.75835
: Cut[ 2]: -0.545008 < - 0.20558*[myvar1] + 0.13632*[myvar2] + 1.715*[var3] - 0.71283*[var4] <= 1e+30
: Cut[ 3]: 1.1435 < - 0.79915*[myvar1] - 0.14903*[myvar2] - 0.71283*[var3] + 2.0962*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.4
: Corresponding background efficiency : 0.017039
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1113*[myvar1] + 0.054934*[myvar2] - 0.20558*[var3] - 0.79915*[var4] <= 1.88438
: Cut[ 1]: -1e+30 < + 0.054934*[myvar1] + 0.95764*[myvar2] + 0.13632*[var3] - 0.14903*[var4] <= 1.64561
: Cut[ 2]: -1.42115 < - 0.20558*[myvar1] + 0.13632*[myvar2] + 1.715*[var3] - 0.71283*[var4] <= 1e+30
: Cut[ 3]: 1.04216 < - 0.79915*[myvar1] - 0.14903*[myvar2] - 0.71283*[var3] + 2.0962*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.5
: Corresponding background efficiency : 0.029664
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1113*[myvar1] + 0.054934*[myvar2] - 0.20558*[var3] - 0.79915*[var4] <= 3.98405
: Cut[ 1]: -1e+30 < + 0.054934*[myvar1] + 0.95764*[myvar2] + 0.13632*[var3] - 0.14903*[var4] <= 2.83582
: Cut[ 2]: -1.48704 < - 0.20558*[myvar1] + 0.13632*[myvar2] + 1.715*[var3] - 0.71283*[var4] <= 1e+30
: Cut[ 3]: 0.922253 < - 0.79915*[myvar1] - 0.14903*[myvar2] - 0.71283*[var3] + 2.0962*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.6
: Corresponding background efficiency : 0.0566836
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1113*[myvar1] + 0.054934*[myvar2] - 0.20558*[var3] - 0.79915*[var4] <= 2.63541
: Cut[ 1]: -1e+30 < + 0.054934*[myvar1] + 0.95764*[myvar2] + 0.13632*[var3] - 0.14903*[var4] <= 2.4807
: Cut[ 2]: -1.54361 < - 0.20558*[myvar1] + 0.13632*[myvar2] + 1.715*[var3] - 0.71283*[var4] <= 1e+30
: Cut[ 3]: 0.717859 < - 0.79915*[myvar1] - 0.14903*[myvar2] - 0.71283*[var3] + 2.0962*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.7
: Corresponding background efficiency : 0.0968001
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1113*[myvar1] + 0.054934*[myvar2] - 0.20558*[var3] - 0.79915*[var4] <= 3.56177
: Cut[ 1]: -1e+30 < + 0.054934*[myvar1] + 0.95764*[myvar2] + 0.13632*[var3] - 0.14903*[var4] <= 2.64808
: Cut[ 2]: -2.79353 < - 0.20558*[myvar1] + 0.13632*[myvar2] + 1.715*[var3] - 0.71283*[var4] <= 1e+30
: Cut[ 3]: 0.619348 < - 0.79915*[myvar1] - 0.14903*[myvar2] - 0.71283*[var3] + 2.0962*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.8
: Corresponding background efficiency : 0.155161
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1113*[myvar1] + 0.054934*[myvar2] - 0.20558*[var3] - 0.79915*[var4] <= 3.97175
: Cut[ 1]: -1e+30 < + 0.054934*[myvar1] + 0.95764*[myvar2] + 0.13632*[var3] - 0.14903*[var4] <= 3.36992
: Cut[ 2]: -3.81224 < - 0.20558*[myvar1] + 0.13632*[myvar2] + 1.715*[var3] - 0.71283*[var4] <= 1e+30
: Cut[ 3]: 0.403725 < - 0.79915*[myvar1] - 0.14903*[myvar2] - 0.71283*[var3] + 2.0962*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.9
: Corresponding background efficiency : 0.31419
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1113*[myvar1] + 0.054934*[myvar2] - 0.20558*[var3] - 0.79915*[var4] <= 3.35782
: Cut[ 1]: -1e+30 < + 0.054934*[myvar1] + 0.95764*[myvar2] + 0.13632*[var3] - 0.14903*[var4] <= 2.86136
: Cut[ 2]: -3.62987 < - 0.20558*[myvar1] + 0.13632*[myvar2] + 1.715*[var3] - 0.71283*[var4] <= 1e+30
: Cut[ 3]: 0.023156 < - 0.79915*[myvar1] - 0.14903*[myvar2] - 0.71283*[var3] + 2.0962*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: Elapsed time for training with 2000 events: 2.58 sec
CutsD : [dataset] : Evaluation of CutsD on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.00143 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_CutsD.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_CutsD.class.C␛[0m
: TMVAC.root:/dataset/Method_Cuts/CutsD
Factory : Training finished
:
Factory : Train method: Likelihood for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ Likelihood ] :␛[0m
:
: ␛[1m--- Short description:␛[0m
:
: The maximum-likelihood classifier models the data with probability
: density functions (PDF) reproducing the signal and background
: distributions of the input variables. Correlations among the
: variables are ignored.
:
: ␛[1m--- Performance optimisation:␛[0m
:
: Required for good performance are decorrelated input variables
: (PCA transformation via the option "VarTransform=Decorrelate"
: may be tried). Irreducible non-linear correlations may be reduced
: by precombining strongly correlated input variables, or by simply
: removing one of the variables.
:
: ␛[1m--- Performance tuning via configuration options:␛[0m
:
: High fidelity PDF estimates are mandatory, i.e., sufficient training
: statistics is required to populate the tails of the distributions
: It would be a surprise if the default Spline or KDE kernel parameters
: provide a satisfying fit to the data. The user is advised to properly
: tune the events per bin and smooth options in the spline cases
: individually per variable. If the KDE kernel is used, the adaptive
: Gaussian kernel may lead to artefacts, so please always also try
: the non-adaptive one.
:
: All tuning parameters must be adjusted individually for each input
: variable!
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
: Filling reference histograms
: Building PDF out of reference histograms
: Elapsed time for training with 2000 events: 0.0155 sec
Likelihood : [dataset] : Evaluation of Likelihood on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.00186 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_Likelihood.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_Likelihood.class.C␛[0m
: TMVAC.root:/dataset/Method_Likelihood/Likelihood
Factory : Training finished
:
Factory : Train method: LikelihoodPCA for Classification
:
: Preparing the Principle Component (PCA) transformation...
TFHandler_LikelihoodPCA : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.018073 2.3492 [ -12.291 8.9889 ]
: myvar2: 0.035051 1.0778 [ -4.0607 3.7534 ]
: var3: 0.0032257 0.59616 [ -2.0543 1.9480 ]
: var4: -0.0086473 0.35251 [ -1.1198 1.0790 ]
: -----------------------------------------------------------
: Filling reference histograms
: Building PDF out of reference histograms
: Elapsed time for training with 2000 events: 0.0181 sec
LikelihoodPCA : [dataset] : Evaluation of LikelihoodPCA on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.0046 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_LikelihoodPCA.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_LikelihoodPCA.class.C␛[0m
: TMVAC.root:/dataset/Method_Likelihood/LikelihoodPCA
Factory : Training finished
:
Factory : Train method: PDERS for Classification
:
: Elapsed time for training with 2000 events: 0.00341 sec
PDERS : [dataset] : Evaluation of PDERS on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.255 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_PDERS.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_PDERS.class.C␛[0m
Factory : Training finished
:
Factory : Train method: PDEFoam for Classification
:
PDEFoam : NormMode=NUMEVENTS chosen. Note that only NormMode=EqualNumEvents ensures that Discriminant values correspond to signal probabilities.
: Build up discriminator foam
: Elapsed time: 0.275 sec
: Elapsed time for training with 2000 events: 0.305 sec
PDEFoam : [dataset] : Evaluation of PDEFoam on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.0145 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_PDEFoam.weights.xml␛[0m
: writing foam DiscrFoam to file
: Foams written to file: ␛[0;36mdataset/weights/TMVAClassification_PDEFoam.weights_foams.root␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_PDEFoam.class.C␛[0m
Factory : Training finished
:
Factory : Train method: KNN for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ KNN ] :␛[0m
:
: ␛[1m--- Short description:␛[0m
:
: The k-nearest neighbor (k-NN) algorithm is a multi-dimensional classification
: and regression algorithm. Similarly to other TMVA algorithms, k-NN uses a set of
: training events for which a classification category/regression target is known.
: The k-NN method compares a test event to all training events using a distance
: function, which is an Euclidean distance in a space defined by the input variables.
: The k-NN method, as implemented in TMVA, uses a kd-tree algorithm to perform a
: quick search for the k events with shortest distance to the test event. The method
: returns a fraction of signal events among the k neighbors. It is recommended
: that a histogram which stores the k-NN decision variable is binned with k+1 bins
: between 0 and 1.
:
: ␛[1m--- Performance tuning via configuration options: ␛[0m
:
: The k-NN method estimates a density of signal and background events in a
: neighborhood around the test event. The method assumes that the density of the
: signal and background events is uniform and constant within the neighborhood.
: k is an adjustable parameter and it determines an average size of the
: neighborhood. Small k values (less than 10) are sensitive to statistical
: fluctuations and large (greater than 100) values might not sufficiently capture
: local differences between events in the training set. The speed of the k-NN
: method also increases with larger values of k.
:
: The k-NN method assigns equal weight to all input variables. Different scales
: among the input variables is compensated using ScaleFrac parameter: the input
: variables are scaled so that the widths for central ScaleFrac*100% events are
: equal among all the input variables.
:
: ␛[1m--- Additional configuration options: ␛[0m
:
: The method inclues an option to use a Gaussian kernel to smooth out the k-NN
: response. The kernel re-weights events using a distance to the test event.
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
KNN : <Train> start...
: Reading 2000 events
: Number of signal events 1000
: Number of background events 1000
: Creating kd-tree with 2000 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 2000 values
: <Fill> Class 1 has 1000 events
: <Fill> Class 2 has 1000 events
: Elapsed time for training with 2000 events: 0.00273 sec
KNN : [dataset] : Evaluation of KNN on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.0396 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_KNN.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_KNN.class.C␛[0m
Factory : Training finished
:
Factory : Train method: LD for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ LD ] :␛[0m
:
: ␛[1m--- Short description:␛[0m
:
: Linear discriminants select events by distinguishing the mean
: values of the signal and background distributions in a trans-
: formed variable space where linear correlations are removed.
: The LD implementation here is equivalent to the "Fisher" discriminant
: for classification, but also provides linear regression.
:
: (More precisely: the "linear discriminator" determines
: an axis in the (correlated) hyperspace of the input
: variables such that, when projecting the output classes
: (signal and background) upon this axis, they are pushed
: as far as possible away from each other, while events
: of a same class are confined in a close vicinity. The
: linearity property of this classifier is reflected in the
: metric with which "far apart" and "close vicinity" are
: determined: the covariance matrix of the discriminating
: variable space.)
:
: ␛[1m--- Performance optimisation:␛[0m
:
: Optimal performance for the linear discriminant is obtained for
: linearly correlated Gaussian-distributed variables. Any deviation
: from this ideal reduces the achievable separation power. In
: particular, no discrimination at all is achieved for a variable
: that has the same sample mean for signal and background, even if
: the shapes of the distributions are very different. Thus, the linear
: discriminant often benefits from a suitable transformation of the
: input variables. For example, if a variable x in [-1,1] has a
: a parabolic signal distributions, and a uniform background
: distributions, their mean value is zero in both cases, leading
: to no separation. The simple transformation x -> |x| renders this
: variable powerful for the use in a linear discriminant.
:
: ␛[1m--- Performance tuning via configuration options:␛[0m
:
: <None>
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
LD : Results for LD coefficients:
: -----------------------
: Variable: Coefficient:
: -----------------------
: myvar1: -0.284
: myvar2: -0.087
: var3: -0.139
: var4: +0.665
: (offset): -0.052
: -----------------------
: Elapsed time for training with 2000 events: 0.000863 sec
LD : [dataset] : Evaluation of LD on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.000361 sec
: <CreateMVAPdfs> Separation from histogram (PDF): 0.517 (0.000)
: Dataset[dataset] : Evaluation of LD on training sample
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_LD.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_LD.class.C␛[0m
Factory : Training finished
:
Factory : Train method: FDA_GA for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ FDA_GA ] :␛[0m
:
: ␛[1m--- Short description:␛[0m
:
: The function discriminant analysis (FDA) is a classifier suitable
: to solve linear or simple nonlinear discrimination problems.
:
: The user provides the desired function with adjustable parameters
: via the configuration option string, and FDA fits the parameters to
: it, requiring the signal (background) function value to be as close
: as possible to 1 (0). Its advantage over the more involved and
: automatic nonlinear discriminators is the simplicity and transparency
: of the discrimination expression. A shortcoming is that FDA will
: underperform for involved problems with complicated, phase space
: dependent nonlinear correlations.
:
: Please consult the Users Guide for the format of the formula string
: and the allowed parameter ranges:
: documentation/tmva/UsersGuide/TMVAUsersGuide.pdf
:
: ␛[1m--- Performance optimisation:␛[0m
:
: The FDA performance depends on the complexity and fidelity of the
: user-defined discriminator function. As a general rule, it should
: be able to reproduce the discrimination power of any linear
: discriminant analysis. To reach into the nonlinear domain, it is
: useful to inspect the correlation profiles of the input variables,
: and add quadratic and higher polynomial terms between variables as
: necessary. Comparison with more involved nonlinear classifiers can
: be used as a guide.
:
: ␛[1m--- Performance tuning via configuration options:␛[0m
:
: Depending on the function used, the choice of "FitMethod" is
: crucial for getting valuable solutions with FDA. As a guideline it
: is recommended to start with "FitMethod=MINUIT". When more complex
: functions are used where MINUIT does not converge to reasonable
: results, the user should switch to non-gradient FitMethods such
: as GeneticAlgorithm (GA) or Monte Carlo (MC). It might prove to be
: useful to combine GA (or MC) with MINUIT by setting the option
: "Converger=MINUIT". GA (MC) will then set the starting parameters
: for MINUIT such that the basic quality of GA (MC) of finding global
: minima is combined with the efficacy of MINUIT of finding local
: minima.
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
FitterBase : <GeneticFitter> Optimisation, please be patient ... (inaccurate progress timing for GA)
: Elapsed time: 1.02 sec
FDA_GA : Results for parameter fit using "GA" fitter:
: -----------------------
: Parameter: Fit result:
: -----------------------
: Par(0): 0.475116
: Par(1): -0.0219605
: Par(2): 0
: Par(3): 0.019354
: Par(4): 0.168653
: -----------------------
: Discriminator expression: "(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3"
: Value of estimator at minimum: 0.361612
: Elapsed time for training with 2000 events: 1.06 sec
FDA_GA : [dataset] : Evaluation of FDA_GA on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.000695 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_FDA_GA.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_FDA_GA.class.C␛[0m
Factory : Training finished
:
Factory : Train method: MLPBNN for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ MLPBNN ] :␛[0m
:
: ␛[1m--- Short description:␛[0m
:
: The MLP artificial neural network (ANN) is a traditional feed-
: forward multilayer perceptron implementation. The MLP has a user-
: defined hidden layer architecture, while the number of input (output)
: nodes is determined by the input variables (output classes, i.e.,
: signal and one background).
:
: ␛[1m--- Performance optimisation:␛[0m
:
: Neural networks are stable and performing for a large variety of
: linear and non-linear classification problems. However, in contrast
: to (e.g.) boosted decision trees, the user is advised to reduce the
: number of input variables that have only little discrimination power.
:
: In the tests we have carried out so far, the MLP and ROOT networks
: (TMlpANN, interfaced via TMVA) performed equally well, with however
: a clear speed advantage for the MLP. The Clermont-Ferrand neural
: net (CFMlpANN) exhibited worse classification performance in these
: tests, which is partly due to the slow convergence of its training
: (at least 10k training cycles are required to achieve approximately
: competitive results).
:
: ␛[1mOvertraining: ␛[0monly the TMlpANN performs an explicit separation of the
: full training sample into independent training and validation samples.
: We have found that in most high-energy physics applications the
: available degrees of freedom (training events) are sufficient to
: constrain the weights of the relatively simple architectures required
: to achieve good performance. Hence no overtraining should occur, and
: the use of validation samples would only reduce the available training
: information. However, if the performance on the training sample is
: found to be significantly better than the one found with the inde-
: pendent test sample, caution is needed. The results for these samples
: are printed to standard output at the end of each training job.
:
: ␛[1m--- Performance tuning via configuration options:␛[0m
:
: The hidden layer architecture for all ANNs is defined by the option
: "HiddenLayers=N+1,N,...", where here the first hidden layer has N+1
: neurons and the second N neurons (and so on), and where N is the number
: of input variables. Excessive numbers of hidden layers should be avoided,
: in favour of more neurons in the first hidden layer.
:
: The number of cycles should be above 500. As said, if the number of
: adjustable weights is small compared to the training sample size,
: using a large number of training samples should not lead to overtraining.
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
TFHandler_MLPBNN : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.12229 0.21864 [ -1.0000 1.0000 ]
: myvar2: -0.056321 0.27578 [ -1.0000 1.0000 ]
: var3: 0.098365 0.23486 [ -1.0000 1.0000 ]
: var4: 0.18509 0.23712 [ -1.0000 1.0000 ]
: -----------------------------------------------------------
: Training Network
:
: Finalizing handling of Regulator terms, trainE=0.757543 testE=0.739106
: Done with handling of Regulator terms
: Elapsed time for training with 2000 events: 2.61 sec
MLPBNN : [dataset] : Evaluation of MLPBNN on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.00335 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_MLPBNN.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_MLPBNN.class.C␛[0m
: Write special histos to file: TMVAC.root:/dataset/Method_MLP/MLPBNN
Factory : Training finished
:
Factory : Train method: DNN_CPU for Classification
:
TFHandler_DNN_CPU : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.12229 0.21864 [ -1.0000 1.0000 ]
: myvar2: -0.056321 0.27578 [ -1.0000 1.0000 ]
: var3: 0.098365 0.23486 [ -1.0000 1.0000 ]
: var4: 0.18509 0.23712 [ -1.0000 1.0000 ]
: -----------------------------------------------------------
: Start of deep neural network training on CPU using MT, nthreads = 1
:
TFHandler_DNN_CPU : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.12229 0.21864 [ -1.0000 1.0000 ]
: myvar2: -0.056321 0.27578 [ -1.0000 1.0000 ]
: var3: 0.098365 0.23486 [ -1.0000 1.0000 ]
: var4: 0.18509 0.23712 [ -1.0000 1.0000 ]
: -----------------------------------------------------------
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 4 Input = ( 1, 1, 4 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 4 , Width = 128 ) Output = ( 1 , 100 , 128 ) Activation Function = Tanh
Layer 1 DENSE Layer: ( Input = 128 , Width = 128 ) Output = ( 1 , 100 , 128 ) Activation Function = Tanh Dropout prob. = 0.5
Layer 2 DENSE Layer: ( Input = 128 , Width = 128 ) Output = ( 1 , 100 , 128 ) Activation Function = Tanh Dropout prob. = 0.5
Layer 3 DENSE Layer: ( Input = 128 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity Dropout prob. = 0.5
: Using 1600 events for training and 400 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.01 regularization 0 minimum error = 0.674063
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.573277 0.645898 0.05054 0.00450743 34758 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.476796 0.444486 0.049893 0.00430317 35095.5 0
: 3 | 0.422249 0.455319 0.0788293 0.00398579 21377.9 1
: 4 | 0.422536 0.467014 0.05155 0.0038901 33571.2 2
: 5 Minimum Test error found - save the configuration
: 5 | 0.43076 0.438165 0.050389 0.00438459 34779.3 0
: 6 | 0.424258 0.440305 0.0498707 0.00395527 34846.7 1
: 7 Minimum Test error found - save the configuration
: 7 | 0.403915 0.437645 0.0506237 0.00439052 34607.2 0
: 8 | 0.395315 0.454165 0.0501616 0.0039858 34650.2 1
: 9 | 0.401082 0.463623 0.0507448 0.00408056 34287.5 2
: 10 | 0.406043 0.475116 0.0508553 0.0040473 34182.2 3
: 11 | 0.415449 0.457641 0.0511083 0.00410193 34037.9 4
: 12 Minimum Test error found - save the configuration
: 12 | 0.412837 0.437133 0.0513723 0.00449712 34133.2 0
: 13 | 0.402977 0.449702 0.0506786 0.00405992 34321 1
: 14 | 0.402799 0.476 0.0507226 0.0041107 34326 2
: 15 | 0.403751 0.495821 0.0510185 0.0041367 34128.4 3
: 16 | 0.412113 0.492557 0.0511727 0.00409581 33987 4
: 17 | 0.408799 0.447479 0.051569 0.00411177 33714.6 5
: 18 | 0.394075 0.440214 0.0513934 0.00408309 33819.2 6
: 19 | 0.407766 0.490957 0.0511945 0.00409609 33971.4 7
: 20 | 0.410931 0.464902 0.0517463 0.00411853 33593.9 8
: 21 | 0.395891 0.449105 0.0516237 0.00412035 33681.8 9
: 22 | 0.394634 0.45437 0.0512794 0.0041422 33943.4 10
: 23 | 0.409986 0.442 0.0518397 0.0041523 33551.8 11
: 24 | 0.395201 0.479293 0.126188 0.0041027 13105.6 12
: 25 | 0.40944 0.439898 0.0517852 0.00411815 33566.2 13
: 26 | 0.407974 0.438627 0.0518304 0.00411924 33535.1 14
: 27 | 0.404695 0.484829 0.0518299 0.00412262 33537.9 15
: 28 | 0.404315 0.468787 0.0522386 0.00417944 33292.3 16
: 29 | 0.40367 0.490654 0.0520182 0.00420496 33463.5 17
: 30 | 0.418615 0.457151 0.05235 0.00422116 33244.1 18
: 31 | 0.435152 0.465963 0.0522732 0.00419185 33276.9 19
: 32 | 0.407612 0.472152 0.0519559 0.0042423 33533.4 20
: 33 | 0.421466 0.48507 0.0519456 0.00424237 33540.7 21
:
: Elapsed time for training with 2000 events: 1.81 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
DNN_CPU : [dataset] : Evaluation of DNN_CPU on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.0202 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: SVM for Classification
:
TFHandler_SVM : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.12229 0.21864 [ -1.0000 1.0000 ]
: myvar2: -0.056321 0.27578 [ -1.0000 1.0000 ]
: var3: 0.098365 0.23486 [ -1.0000 1.0000 ]
: var4: 0.18509 0.23712 [ -1.0000 1.0000 ]
: -----------------------------------------------------------
: Building SVM Working Set...with 2000 event instances
: Elapsed time for Working Set build: 0.0734 sec
: Sorry, no computing time forecast available for SVM, please wait ...
: Elapsed time: 0.498 sec
: Elapsed time for training with 2000 events: 0.576 sec
SVM : [dataset] : Evaluation of SVM on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.0709 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_SVM.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_SVM.class.C␛[0m
Factory : Training finished
:
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 1000 bkg: 1000
: #events: (unweighted) sig: 1000 bkg: 1000
: Training 850 Decision Trees ... patience please
: Elapsed time for training with 2000 events: 0.664 sec
BDT : [dataset] : Evaluation of BDT on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.171 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_BDT.class.C␛[0m
: TMVAC.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: RuleFit for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ RuleFit ] :␛[0m
:
: ␛[1m--- Short description:␛[0m
:
: This method uses a collection of so called rules to create a
: discriminating scoring function. Each rule consists of a series
: of cuts in parameter space. The ensemble of rules are created
: from a forest of decision trees, trained using the training data.
: Each node (apart from the root) corresponds to one rule.
: The scoring function is then obtained by linearly combining
: the rules. A fitting procedure is applied to find the optimum
: set of coefficients. The goal is to find a model with few rules
: but with a strong discriminating power.
:
: ␛[1m--- Performance optimisation:␛[0m
:
: There are two important considerations to make when optimising:
:
: 1. Topology of the decision tree forest
: 2. Fitting of the coefficients
:
: The maximum complexity of the rules is defined by the size of
: the trees. Large trees will yield many complex rules and capture
: higher order correlations. On the other hand, small trees will
: lead to a smaller ensemble with simple rules, only capable of
: modeling simple structures.
: Several parameters exists for controlling the complexity of the
: rule ensemble.
:
: The fitting procedure searches for a minimum using a gradient
: directed path. Apart from step size and number of steps, the
: evolution of the path is defined by a cut-off parameter, tau.
: This parameter is unknown and depends on the training data.
: A large value will tend to give large weights to a few rules.
: Similarly, a small value will lead to a large set of rules
: with similar weights.
:
: A final point is the model used; rules and/or linear terms.
: For a given training sample, the result may improve by adding
: linear terms. If best performance is obtained using only linear
: terms, it is very likely that the Fisher discriminant would be
: a better choice. Ideally the fitting procedure should be able to
: make this choice by giving appropriate weights for either terms.
:
: ␛[1m--- Performance tuning via configuration options:␛[0m
:
: I. TUNING OF RULE ENSEMBLE:
:
: ␛[1mForestType ␛[0m: Recommended is to use the default "AdaBoost".
: ␛[1mnTrees ␛[0m: More trees leads to more rules but also slow
: performance. With too few trees the risk is
: that the rule ensemble becomes too simple.
: ␛[1mfEventsMin ␛[0m
: ␛[1mfEventsMax ␛[0m: With a lower min, more large trees will be generated
: leading to more complex rules.
: With a higher max, more small trees will be
: generated leading to more simple rules.
: By changing this range, the average complexity
: of the rule ensemble can be controlled.
: ␛[1mRuleMinDist ␛[0m: By increasing the minimum distance between
: rules, fewer and more diverse rules will remain.
: Initially it is a good idea to keep this small
: or zero and let the fitting do the selection of
: rules. In order to reduce the ensemble size,
: the value can then be increased.
:
: II. TUNING OF THE FITTING:
:
: ␛[1mGDPathEveFrac ␛[0m: fraction of events in path evaluation
: Increasing this fraction will improve the path
: finding. However, a too high value will give few
: unique events available for error estimation.
: It is recommended to use the default = 0.5.
: ␛[1mGDTau ␛[0m: cutoff parameter tau
: By default this value is set to -1.0.
: This means that the cut off parameter is
: automatically estimated. In most cases
: this should be fine. However, you may want
: to fix this value if you already know it
: and want to reduce on training time.
: ␛[1mGDTauPrec ␛[0m: precision of estimated tau
: Increase this precision to find a more
: optimum cut-off parameter.
: ␛[1mGDNStep ␛[0m: number of steps in path search
: If the number of steps is too small, then
: the program will give a warning message.
:
: III. WARNING MESSAGES
:
: ␛[1mRisk(i+1)>=Risk(i) in path␛[0m
: ␛[1mChaotic behaviour of risk evolution.␛[0m
: The error rate was still decreasing at the end
: By construction the Risk should always decrease.
: However, if the training sample is too small or
: the model is overtrained, such warnings can
: occur.
: The warnings can safely be ignored if only a
: few (<3) occur. If more warnings are generated,
: the fitting fails.
: A remedy may be to increase the value
: ␛[1mGDValidEveFrac␛[0m to 1.0 (or a larger value).
: In addition, if ␛[1mGDPathEveFrac␛[0m is too high
: the same warnings may occur since the events
: used for error estimation are also used for
: path estimation.
: Another possibility is to modify the model -
: See above on tuning the rule ensemble.
:
: ␛[1mThe error rate was still decreasing at the end of the path␛[0m
: Too few steps in path! Increase ␛[1mGDNSteps␛[0m.
:
: ␛[1mReached minimum early in the search␛[0m
: Minimum was found early in the fitting. This
: may indicate that the used step size ␛[1mGDStep␛[0m.
: was too large. Reduce it and rerun.
: If the results still are not OK, modify the
: model either by modifying the rule ensemble
: or add/remove linear terms
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
RuleFit : -------------------RULE ENSEMBLE SUMMARY------------------------
: Tree training method : AdaBoost
: Number of events per tree : 2000
: Number of trees : 20
: Number of generated rules : 182
: Idem, after cleanup : 68
: Average number of cuts per rule : 2.81
: Spread in number of cuts per rules : 1.14
: ----------------------------------------------------------------
:
: GD path scan - the scan stops when the max num. of steps is reached or a min is found
: Estimating the cutoff parameter tau. The estimated time is a pessimistic maximum.
: Best path found with tau = 0.0700 after 1.72 sec
: Fitting model...
<WARNING> : Risk(i+1)>=Risk(i) in path
: Risk(i+1)>=Risk(i) in path
: Risk(i+1)>=Risk(i) in path
: Risk(i+1)>=Risk(i) in path
<WARNING> : Chaotic behaviour of risk evolution
: --- STOPPING MINIMISATION ---
: This may be OK if minimum is already found
:
: Minimisation elapsed time : 0.257 sec
: ----------------------------------------------------------------
: Found minimum at step 800 with error = 0.552444
: Reason for ending loop: chaotic behaviour of risk
: ----------------------------------------------------------------
: Removed 20 out of a total of 68 rules with importance < 0.001
:
: ================================================================
: M o d e l
: ================================================================
RuleFit : Offset (a0) = 3.61944
: ------------------------------------
: Linear model (weights unnormalised)
: ------------------------------------
: Variable : Weights : Importance
: ------------------------------------
: myvar1 : -1.919e-01 : 0.534
: myvar2 : -3.383e-02 : 0.056
: var3 : 1.376e-02 : 0.023
: var4 : 4.973e-01 : 1.000
: ------------------------------------
: Number of rules = 48
: Printing the first 10 rules, ordered in importance.
: Rule 1 : Importance = 0.4463
: Cut 1 : myvar2 < -0.023
: Cut 2 : var4 < -0.123
: Rule 2 : Importance = 0.3602
: Cut 1 : -0.691 < myvar1
: Cut 2 : var4 < 0.963
: Rule 3 : Importance = 0.3405
: Cut 1 : myvar1 < 2.15
: Cut 2 : var4 < -1.16
: Rule 4 : Importance = 0.3341
: Cut 1 : var4 < 1.94
: Rule 5 : Importance = 0.3248
: Cut 1 : 1.25 < myvar1
: Cut 2 : -0.725 < var3
: Rule 6 : Importance = 0.3206
: Cut 1 : myvar1 < 1.62
: Cut 2 : -0.023 < myvar2
: Cut 3 : var4 < 0.245
: Rule 7 : Importance = 0.3113
: Cut 1 : -0.725 < var3
: Rule 8 : Importance = 0.3053
: Cut 1 : -0.023 < myvar2
: Cut 2 : var4 < -0.123
: Rule 9 : Importance = 0.2386
: Cut 1 : var3 < -0.725
: Rule 10 : Importance = 0.2294
: Cut 1 : -2.24 < myvar1
: Skipping the next 38 rules
: ================================================================
:
<WARNING> : No input variable directory found - BUG?
: Elapsed time for training with 2000 events: 2.02 sec
RuleFit : [dataset] : Evaluation of RuleFit on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.00244 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVAClassification_RuleFit.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVAClassification_RuleFit.class.C␛[0m
: TMVAC.root:/dataset/Method_RuleFit/RuleFit
Factory : Training finished
:
: Ranking input variables (method specific)...
: No variable ranking supplied by classifier: Cuts
: No variable ranking supplied by classifier: CutsD
Likelihood : Ranking result (top variable is best ranked)
: -------------------------------------
: Rank : Variable : Delta Separation
: -------------------------------------
: 1 : var4 : 3.046e-02
: 2 : var3 : -2.663e-03
: 3 : myvar2 : -9.512e-03
: 4 : myvar1 : -3.784e-02
: -------------------------------------
LikelihoodPCA : Ranking result (top variable is best ranked)
: -------------------------------------
: Rank : Variable : Delta Separation
: -------------------------------------
: 1 : var4 : 2.951e-01
: 2 : myvar1 : 7.720e-02
: 3 : var3 : 1.995e-02
: 4 : myvar2 : -1.245e-02
: -------------------------------------
: No variable ranking supplied by classifier: PDERS
PDEFoam : Ranking result (top variable is best ranked)
: ----------------------------------------
: Rank : Variable : Variable Importance
: ----------------------------------------
: 1 : var4 : 3.810e-01
: 2 : myvar1 : 2.381e-01
: 3 : var3 : 2.143e-01
: 4 : myvar2 : 1.667e-01
: ----------------------------------------
: No variable ranking supplied by classifier: KNN
LD : Ranking result (top variable is best ranked)
: ---------------------------------
: Rank : Variable : Discr. power
: ---------------------------------
: 1 : var4 : 6.652e-01
: 2 : myvar1 : 2.840e-01
: 3 : var3 : 1.391e-01
: 4 : myvar2 : 8.718e-02
: ---------------------------------
: No variable ranking supplied by classifier: FDA_GA
MLPBNN : Ranking result (top variable is best ranked)
: -------------------------------
: Rank : Variable : Importance
: -------------------------------
: 1 : var4 : 1.242e+00
: 2 : myvar1 : 9.523e-01
: 3 : myvar2 : 4.818e-01
: 4 : var3 : 4.040e-01
: -------------------------------
: No variable ranking supplied by classifier: DNN_CPU
: No variable ranking supplied by classifier: SVM
BDT : Ranking result (top variable is best ranked)
: ----------------------------------------
: Rank : Variable : Variable Importance
: ----------------------------------------
: 1 : var4 : 2.758e-01
: 2 : myvar2 : 2.536e-01
: 3 : myvar1 : 2.507e-01
: 4 : var3 : 2.199e-01
: ----------------------------------------
RuleFit : Ranking result (top variable is best ranked)
: -------------------------------
: Rank : Variable : Importance
: -------------------------------
: 1 : var4 : 1.000e+00
: 2 : myvar1 : 7.442e-01
: 3 : myvar2 : 6.695e-01
: 4 : var3 : 4.612e-01
: -------------------------------
TH1.Print Name = TrainingHistory_DNN_CPU_trainingError, Entries= 0, Total sum= 13.7364
TH1.Print Name = TrainingHistory_DNN_CPU_valError, Entries= 0, Total sum= 15.402
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_Cuts.weights.xml␛[0m
: Read cuts optimised using sample of MC events
: Reading 100 signal efficiency bins for 4 variables
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_CutsD.weights.xml␛[0m
: Read cuts optimised using sample of MC events
: Reading 100 signal efficiency bins for 4 variables
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_Likelihood.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_LikelihoodPCA.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_PDERS.weights.xml␛[0m
: signal and background scales: 0.001 0.001
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_PDEFoam.weights.xml␛[0m
: Read foams from file: ␛[0;36mdataset/weights/TMVAClassification_PDEFoam.weights_foams.root␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_KNN.weights.xml␛[0m
: Creating kd-tree with 2000 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 2000 values
: <Fill> Class 1 has 1000 events
: <Fill> Class 2 has 1000 events
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_LD.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_FDA_GA.weights.xml␛[0m
: User-defined formula string : "(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3"
: TFormula-compatible formula string: "[0]+[1]*[5]+[2]*[6]+[3]*[7]+[4]*[8]"
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_MLPBNN.weights.xml␛[0m
MLPBNN : Building Network.
: Initializing weights
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_SVM.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVAClassification_RuleFit.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: Cuts for Classification performance
:
Cuts : [dataset] : Evaluation of Cuts on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00064 sec
Factory : Test method: CutsD for Classification performance
:
CutsD : [dataset] : Evaluation of CutsD on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00577 sec
Factory : Test method: Likelihood for Classification performance
:
Likelihood : [dataset] : Evaluation of Likelihood on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00785 sec
Factory : Test method: LikelihoodPCA for Classification performance
:
LikelihoodPCA : [dataset] : Evaluation of LikelihoodPCA on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.0182 sec
Factory : Test method: PDERS for Classification performance
:
PDERS : [dataset] : Evaluation of PDERS on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.94 sec
Factory : Test method: PDEFoam for Classification performance
:
PDEFoam : [dataset] : Evaluation of PDEFoam on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.0742 sec
Factory : Test method: KNN for Classification performance
:
KNN : [dataset] : Evaluation of KNN on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.202 sec
Factory : Test method: LD for Classification performance
:
LD : [dataset] : Evaluation of LD on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00108 sec
: Dataset[dataset] : Evaluation of LD on testing sample
Factory : Test method: FDA_GA for Classification performance
:
FDA_GA : [dataset] : Evaluation of FDA_GA on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00135 sec
Factory : Test method: MLPBNN for Classification performance
:
MLPBNN : [dataset] : Evaluation of MLPBNN on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.0157 sec
Factory : Test method: DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
TFHandler_DNN_CPU : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.15875 0.21008 [ -1.0772 1.1019 ]
: myvar2: -0.052512 0.28764 [ -1.0979 0.99917 ]
: var3: 0.14402 0.22647 [ -1.0428 1.1058 ]
: var4: 0.24579 0.22520 [ -1.1202 1.0941 ]
: -----------------------------------------------------------
DNN_CPU : [dataset] : Evaluation of DNN_CPU on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.0942 sec
Factory : Test method: SVM for Classification performance
:
SVM : [dataset] : Evaluation of SVM on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.297 sec
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.608 sec
Factory : Test method: RuleFit for Classification performance
:
RuleFit : [dataset] : Evaluation of RuleFit on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.0115 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: Cuts
:
<WARNING> : You have asked for histogram MVA_EFF_BvsS which does not seem to exist in *Results* .. better don't use it
<WARNING> : You have asked for histogram EFF_BVSS_TR which does not seem to exist in *Results* .. better don't use it
TFHandler_Cuts : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.21443 1.7124 [ -9.8605 7.9024 ]
: myvar2: -0.041911 1.1126 [ -4.0854 4.0259 ]
: var3: 0.16712 1.0539 [ -5.3563 4.6430 ]
: var4: 0.43437 1.2203 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: CutsD
:
<WARNING> : You have asked for histogram MVA_EFF_BvsS which does not seem to exist in *Results* .. better don't use it
TFHandler_CutsD : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.14549 0.97213 [ -5.4077 4.8658 ]
: myvar2: -0.070308 1.0437 [ -3.9101 3.8233 ]
: var3: -0.072822 0.96722 [ -4.3819 4.3335 ]
: var4: 0.62627 0.92018 [ -3.9664 3.6405 ]
: -----------------------------------------------------------
<WARNING> : You have asked for histogram EFF_BVSS_TR which does not seem to exist in *Results* .. better don't use it
TFHandler_CutsD : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.16999 1.0000 [ -4.4163 3.9983 ]
: myvar2: -0.080682 1.0000 [ -3.4441 3.7507 ]
: var3: -0.14363 1.0000 [ -3.7799 3.6146 ]
: var4: 0.32786 1.0000 [ -3.3861 3.3152 ]
: -----------------------------------------------------------
TFHandler_CutsD : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.14549 0.97213 [ -5.4077 4.8658 ]
: myvar2: -0.070308 1.0437 [ -3.9101 3.8233 ]
: var3: -0.072822 0.96722 [ -4.3819 4.3335 ]
: var4: 0.62627 0.92018 [ -3.9664 3.6405 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: Likelihood
:
Likelihood : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_Likelihood : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.21443 1.7124 [ -9.8605 7.9024 ]
: myvar2: -0.041911 1.1126 [ -4.0854 4.0259 ]
: var3: 0.16712 1.0539 [ -5.3563 4.6430 ]
: var4: 0.43437 1.2203 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: LikelihoodPCA
:
TFHandler_LikelihoodPCA : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 1.3857 2.2495 [ -12.232 10.994 ]
: myvar2: -0.16933 1.1235 [ -4.1034 3.9180 ]
: var3: -0.20081 0.58158 [ -2.2789 1.9800 ]
: var4: -0.31202 0.33076 [ -1.3887 0.89743 ]
: -----------------------------------------------------------
LikelihoodPCA : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_LikelihoodPCA : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 1.3857 2.2495 [ -12.232 10.994 ]
: myvar2: -0.16933 1.1235 [ -4.1034 3.9180 ]
: var3: -0.20081 0.58158 [ -2.2789 1.9800 ]
: var4: -0.31202 0.33076 [ -1.3887 0.89743 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: PDERS
:
PDERS : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_PDERS : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.21443 1.7124 [ -9.8605 7.9024 ]
: myvar2: -0.041911 1.1126 [ -4.0854 4.0259 ]
: var3: 0.16712 1.0539 [ -5.3563 4.6430 ]
: var4: 0.43437 1.2203 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: PDEFoam
:
PDEFoam : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_PDEFoam : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.21443 1.7124 [ -9.8605 7.9024 ]
: myvar2: -0.041911 1.1126 [ -4.0854 4.0259 ]
: var3: 0.16712 1.0539 [ -5.3563 4.6430 ]
: var4: 0.43437 1.2203 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: KNN
:
KNN : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.21443 1.7124 [ -9.8605 7.9024 ]
: myvar2: -0.041911 1.1126 [ -4.0854 4.0259 ]
: var3: 0.16712 1.0539 [ -5.3563 4.6430 ]
: var4: 0.43437 1.2203 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: LD
:
LD : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Also filling probability and rarity histograms (on request)...
TFHandler_LD : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.21443 1.7124 [ -9.8605 7.9024 ]
: myvar2: -0.041911 1.1126 [ -4.0854 4.0259 ]
: var3: 0.16712 1.0539 [ -5.3563 4.6430 ]
: var4: 0.43437 1.2203 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: FDA_GA
:
FDA_GA : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_FDA_GA : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.21443 1.7124 [ -9.8605 7.9024 ]
: myvar2: -0.041911 1.1126 [ -4.0854 4.0259 ]
: var3: 0.16712 1.0539 [ -5.3563 4.6430 ]
: var4: 0.43437 1.2203 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: MLPBNN
:
TFHandler_MLPBNN : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.15875 0.21008 [ -1.0772 1.1019 ]
: myvar2: -0.052512 0.28764 [ -1.0979 0.99917 ]
: var3: 0.14402 0.22647 [ -1.0428 1.1058 ]
: var4: 0.24579 0.22520 [ -1.1202 1.0941 ]
: -----------------------------------------------------------
MLPBNN : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_MLPBNN : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.15875 0.21008 [ -1.0772 1.1019 ]
: myvar2: -0.052512 0.28764 [ -1.0979 0.99917 ]
: var3: 0.14402 0.22647 [ -1.0428 1.1058 ]
: var4: 0.24579 0.22520 [ -1.1202 1.0941 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: DNN_CPU
:
DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
TFHandler_DNN_CPU : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.12229 0.21864 [ -1.0000 1.0000 ]
: myvar2: -0.056321 0.27578 [ -1.0000 1.0000 ]
: var3: 0.098365 0.23486 [ -1.0000 1.0000 ]
: var4: 0.18509 0.23712 [ -1.0000 1.0000 ]
: -----------------------------------------------------------
TFHandler_DNN_CPU : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.15875 0.21008 [ -1.0772 1.1019 ]
: myvar2: -0.052512 0.28764 [ -1.0979 0.99917 ]
: var3: 0.14402 0.22647 [ -1.0428 1.1058 ]
: var4: 0.24579 0.22520 [ -1.1202 1.0941 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: SVM
:
TFHandler_SVM : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.15875 0.21008 [ -1.0772 1.1019 ]
: myvar2: -0.052512 0.28764 [ -1.0979 0.99917 ]
: var3: 0.14402 0.22647 [ -1.0428 1.1058 ]
: var4: 0.24579 0.22520 [ -1.1202 1.0941 ]
: -----------------------------------------------------------
SVM : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_SVM : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.15875 0.21008 [ -1.0772 1.1019 ]
: myvar2: -0.052512 0.28764 [ -1.0979 0.99917 ]
: var3: 0.14402 0.22647 [ -1.0428 1.1058 ]
: var4: 0.24579 0.22520 [ -1.1202 1.0941 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_BDT : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.21443 1.7124 [ -9.8605 7.9024 ]
: myvar2: -0.041911 1.1126 [ -4.0854 4.0259 ]
: var3: 0.16712 1.0539 [ -5.3563 4.6430 ]
: var4: 0.43437 1.2203 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: RuleFit
:
RuleFit : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_RuleFit : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.21443 1.7124 [ -9.8605 7.9024 ]
: myvar2: -0.041911 1.1126 [ -4.0854 4.0259 ]
: var3: 0.16712 1.0539 [ -5.3563 4.6430 ]
: var4: 0.43437 1.2203 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset LD : 0.923
: dataset MLPBNN : 0.921
: dataset LikelihoodPCA : 0.917
: dataset DNN_CPU : 0.913
: dataset CutsD : 0.912
: dataset SVM : 0.901
: dataset RuleFit : 0.880
: dataset BDT : 0.873
: dataset KNN : 0.828
: dataset FDA_GA : 0.811
: dataset PDEFoam : 0.812
: dataset PDERS : 0.798
: dataset Cuts : 0.791
: dataset Likelihood : 0.762
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset LD : 0.372 (0.335) 0.779 (0.708) 0.929 (0.927)
: dataset MLPBNN : 0.378 (0.353) 0.773 (0.712) 0.926 (0.922)
: dataset LikelihoodPCA : 0.327 (0.275) 0.766 (0.677) 0.922 (0.912)
: dataset DNN_CPU : 0.360 (0.301) 0.751 (0.689) 0.917 (0.910)
: dataset CutsD : 0.297 (0.327) 0.748 (0.708) 0.914 (0.894)
: dataset SVM : 0.336 (0.307) 0.724 (0.675) 0.894 (0.901)
: dataset RuleFit : 0.197 (0.204) 0.655 (0.681) 0.878 (0.897)
: dataset BDT : 0.274 (0.472) 0.644 (0.707) 0.855 (0.897)
: dataset KNN : 0.127 (0.184) 0.535 (0.570) 0.794 (0.850)
: dataset FDA_GA : 0.135 (0.123) 0.491 (0.486) 0.770 (0.788)
: dataset PDEFoam : 0.138 (0.178) 0.491 (0.519) 0.758 (0.767)
: dataset PDERS : 0.179 (0.172) 0.462 (0.449) 0.747 (0.755)
: dataset Cuts : 0.116 (0.128) 0.458 (0.458) 0.735 (0.785)
: dataset Likelihood : 0.094 (0.084) 0.389 (0.377) 0.699 (0.709)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 10000 events
:
Dataset:dataset : Created tree 'TrainTree' with 2000 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m
==> Wrote root file: TMVAC.root
==> TMVAClassification is done!
(int) 0