Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
TMVA_CNN_Classification.py File Reference

Detailed Description

View in nbviewer Open in SWAN
TMVA Classification Example Using a Convolutional Neural Network

This is an example of using a CNN in TMVA. We do classification using a toy image data set that is generated when running the example macro

Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mPyTorch␛[0m
:
: Using PyTorch - setting special configuration options
: Using PyTorch version 2
: Setup PyTorch Model for training
: Executing user initialization code from /github/home/ROOT-CI/build/tutorials/tmva/PyTorch_Generate_CNN_Model.py
running Torch code defining the model....
The PyTorch CNN model is created and saved as PyTorchModelCNN.pt
custom objects for loading model : {'optimizer': <class 'torch.optim.adam.Adam'>, 'criterion': BCELoss(), 'train_func': <function fit at 0x7f7c9197dc10>, 'predict_func': <function predict at 0x7f7c9197dca0>}
: Loaded pytorch train function:
: Loaded pytorch optimizer:
: Loaded pytorch loss function:
: Loaded pytorch predict function:
: Loaded model from file: PyTorchModelCNN.pt
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape (Reshape) (None, 16, 16, 1) 0
conv2d (Conv2D) (None, 16, 16, 10) 100
conv2d_1 (Conv2D) (None, 16, 16, 10) 910
max_pooling2d (MaxPooling2 (None, 8, 8, 10) 0
D)
flatten (Flatten) (None, 640) 0
dense (Dense) (None, 64) 41024
dense_1 (Dense) (None, 2) 130
=================================================================
Total params: 42164 (164.70 KB)
Trainable params: 42164 (164.70 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________
Factory : Booking method: ␛[1mPyKeras␛[0m
:
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Loading Keras Model
: Loaded model from file: model_cnn.h5
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.08 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0212 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 67.2414
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.932961 0.987739 0.0153412 0.00147726 86555.6 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.691006 0.79243 0.0146424 0.00126357 89693.9 0
: 3 | 0.584978 0.81111 0.0141046 0.00085899 90595.8 1
: 4 Minimum Test error found - save the configuration
: 4 | 0.555368 0.764971 0.0148236 0.00132072 88870.2 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.479558 0.737146 0.0143688 0.00124763 91455.6 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.426167 0.733161 0.0143112 0.00125141 91885.1 0
: 7 | 0.378928 0.735208 0.0139465 0.00086885 91759.8 1
: 8 | 0.338047 0.798506 0.0140842 0.000864941 90777 2
: 9 | 0.302337 0.810653 0.0140977 0.000872591 90736.4 3
: 10 | 0.285094 0.815333 0.0141279 0.000864929 90477.1 4
:
: Elapsed time for training with 1600 events: 0.206 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.00444 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 26.8982
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 1.25386 0.855859 0.578727 0.0650286 2336 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.744452 0.715824 0.839687 0.0778856 1575.21 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.694122 0.689253 0.881037 0.0876641 1512.53 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.677346 0.682189 1.03731 0.153773 1358.17 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.669203 0.678282 1.68095 0.142681 780.099 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.662107 0.673576 1.73393 0.139136 752.449 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.652069 0.667838 0.989607 0.0672349 1300.99 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.631988 0.666489 0.726973 0.0671713 1818.73 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.620558 0.640335 0.985918 0.0394849 1267.92 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.590377 0.625663 0.754997 0.0524185 1707.99 0
:
: Elapsed time for training with 1600 events: 10.3 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.422 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: PyTorch for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ PyTorch ] :␛[0m
:
: PyTorch is a scientific computing package supporting
: automatic differentiation. This method wraps the training
: and predictions steps of the PyTorch Python package for
: TMVA, so that dataloading, preprocessing and evaluation
: can be done within the TMVA system. To use this PyTorch
: interface, you need to generatea model with PyTorch first.
: Then, this model can be loaded and trained in TMVA.
:
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
: Split TMVA training data in 1280 training events and 320 validation events
: Print Training Model Architecture
RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Reshape)
(1): RecursiveScriptModule(original_name=Conv2d)
(2): RecursiveScriptModule(original_name=ReLU)
(3): RecursiveScriptModule(original_name=BatchNorm2d)
(4): RecursiveScriptModule(original_name=Conv2d)
(5): RecursiveScriptModule(original_name=ReLU)
(6): RecursiveScriptModule(original_name=MaxPool2d)
(7): RecursiveScriptModule(original_name=Flatten)
(8): RecursiveScriptModule(original_name=Linear)
(9): RecursiveScriptModule(original_name=ReLU)
(10): RecursiveScriptModule(original_name=Linear)
(11): RecursiveScriptModule(original_name=Sigmoid)
)
: Option SaveBestOnly: Only model weights with smallest validation loss will be stored
[1, 4] train loss: 1.327
[1, 8] train loss: 0.723
[1, 12] train loss: 0.698
[1] val loss: 0.692
[2, 4] train loss: 0.693
[2, 8] train loss: 0.693
[2, 12] train loss: 0.695
[2] val loss: 0.690
[3, 4] train loss: 0.692
[3, 8] train loss: 0.691
[3, 12] train loss: 0.694
[3] val loss: 0.691
[4, 4] train loss: 0.689
[4, 8] train loss: 0.686
[4, 12] train loss: 0.694
[4] val loss: 0.690
[5, 4] train loss: 0.684
[5, 8] train loss: 0.678
[5, 12] train loss: 0.685
[5] val loss: 0.690
[6, 4] train loss: 0.673
[6, 8] train loss: 0.659
[6, 12] train loss: 0.658
[6] val loss: 0.693
[7, 4] train loss: 0.634
[7, 8] train loss: 0.605
[7, 12] train loss: 0.632
[7] val loss: 0.842
[8, 4] train loss: 0.604
[8, 8] train loss: 0.561
[8, 12] train loss: 0.562
[8] val loss: 0.734
[9, 4] train loss: 0.560
[9, 8] train loss: 0.502
[9, 12] train loss: 0.523
[9] val loss: 0.736
[10, 4] train loss: 0.527
[10, 8] train loss: 0.505
[10, 12] train loss: 0.557
[10] val loss: 0.862
Finished Training on 10 Epochs!
: Elapsed time for training with 1600 events: 1.53 sec
PyTorch : [dataset] : Evaluation of PyTorch on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0198 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyTorch.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyTorch.class.C␛[0m
Factory : Training finished
:
Factory : Train method: PyKeras for Classification
:
:
: ␛[1m================================================================␛[0m
: ␛[1mH e l p f o r M V A m e t h o d [ PyKeras ] :␛[0m
:
: Keras is a high-level API for the Theano and Tensorflow packages.
: This method wraps the training and predictions steps of the Keras
: Python package for TMVA, so that dataloading, preprocessing and
: evaluation can be done within the TMVA system. To use this Keras
: interface, you have to generate a model with Keras first. Then,
: this model can be loaded and trained in TMVA.
:
:
: <Suppress this message by specifying "!H" in the booking option>
: ␛[1m================================================================␛[0m
:
: Split TMVA training data in 1280 training events and 320 validation events
: Training Model Summary
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
reshape (Reshape) (None, 16, 16, 1) 0
conv2d (Conv2D) (None, 16, 16, 10) 100
conv2d_1 (Conv2D) (None, 16, 16, 10) 910
max_pooling2d (MaxPooling2 (None, 8, 8, 10) 0
D)
flatten (Flatten) (None, 640) 0
dense (Dense) (None, 64) 41024
dense_1 (Dense) (None, 2) 130
=================================================================
Total params: 42164 (164.70 KB)
Trainable params: 42164 (164.70 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________
: Option SaveBestOnly: Only model weights with smallest validation loss will be stored
Epoch 1/10
1/13 [=>............................] - ETA: 5s - loss: 0.8398 - accuracy: 0.5400
Epoch 1: val_loss improved from inf to 0.71463, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 1s 22ms/step - loss: 0.7369 - accuracy: 0.5078 - val_loss: 0.7146 - val_accuracy: 0.5094
Epoch 2/10
1/13 [=>............................] - ETA: 0s - loss: 0.6999 - accuracy: 0.5500
Epoch 2: val_loss improved from 0.71463 to 0.69174, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 7ms/step - loss: 0.7003 - accuracy: 0.5273 - val_loss: 0.6917 - val_accuracy: 0.5594
Epoch 3/10
1/13 [=>............................] - ETA: 0s - loss: 0.6946 - accuracy: 0.5300
Epoch 3: val_loss improved from 0.69174 to 0.68286, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 7ms/step - loss: 0.6878 - accuracy: 0.5453 - val_loss: 0.6829 - val_accuracy: 0.5875
Epoch 4/10
1/13 [=>............................] - ETA: 0s - loss: 0.6806 - accuracy: 0.5800
Epoch 4: val_loss improved from 0.68286 to 0.68050, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 7ms/step - loss: 0.6764 - accuracy: 0.5875 - val_loss: 0.6805 - val_accuracy: 0.5906
Epoch 5/10
1/13 [=>............................] - ETA: 0s - loss: 0.6709 - accuracy: 0.6000
Epoch 5: val_loss improved from 0.68050 to 0.67243, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 6ms/step - loss: 0.6659 - accuracy: 0.6266 - val_loss: 0.6724 - val_accuracy: 0.6250
Epoch 6/10
1/13 [=>............................] - ETA: 0s - loss: 0.6546 - accuracy: 0.6900
Epoch 6: val_loss improved from 0.67243 to 0.67143, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 6ms/step - loss: 0.6560 - accuracy: 0.6258 - val_loss: 0.6714 - val_accuracy: 0.6125
Epoch 7/10
1/13 [=>............................] - ETA: 0s - loss: 0.6404 - accuracy: 0.6800
Epoch 7: val_loss improved from 0.67143 to 0.66185, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 6ms/step - loss: 0.6372 - accuracy: 0.6609 - val_loss: 0.6618 - val_accuracy: 0.6062
Epoch 8/10
1/13 [=>............................] - ETA: 0s - loss: 0.6282 - accuracy: 0.6600
Epoch 8: val_loss improved from 0.66185 to 0.65150, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 6ms/step - loss: 0.6170 - accuracy: 0.6820 - val_loss: 0.6515 - val_accuracy: 0.5938
Epoch 9/10
1/13 [=>............................] - ETA: 0s - loss: 0.6024 - accuracy: 0.7000
Epoch 9: val_loss improved from 0.65150 to 0.63089, saving model to trained_model_cnn.h5
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 6ms/step - loss: 0.5975 - accuracy: 0.6836 - val_loss: 0.6309 - val_accuracy: 0.6781
Epoch 10/10
1/13 [=>............................] - ETA: 0s - loss: 0.5707 - accuracy: 0.7600
Epoch 10: val_loss did not improve from 0.63089
␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈␈
13/13 [==============================] - 0s 5ms/step - loss: 0.5835 - accuracy: 0.7016 - val_loss: 0.6746 - val_accuracy: 0.5656
: Getting training history for item:0 name = 'loss'
: Getting training history for item:1 name = 'accuracy'
: Getting training history for item:2 name = 'val_loss'
: Getting training history for item:3 name = 'val_accuracy'
: Elapsed time for training with 1600 events: 1.52 sec
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Disabled TF eager execution when evaluating model
: Loading Keras Model
: Loaded model from file: trained_model_cnn.h5
PyKeras : [dataset] : Evaluation of PyKeras on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0816 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyKeras.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyKeras.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 8.359e-03
: 2 : vars : 8.329e-03
: 3 : vars : 8.290e-03
: 4 : vars : 7.936e-03
: 5 : vars : 7.585e-03
: 6 : vars : 7.494e-03
: 7 : vars : 7.225e-03
: 8 : vars : 7.123e-03
: 9 : vars : 7.033e-03
: 10 : vars : 7.002e-03
: 11 : vars : 6.772e-03
: 12 : vars : 6.703e-03
: 13 : vars : 6.668e-03
: 14 : vars : 6.551e-03
: 15 : vars : 6.545e-03
: 16 : vars : 6.544e-03
: 17 : vars : 6.534e-03
: 18 : vars : 6.493e-03
: 19 : vars : 6.462e-03
: 20 : vars : 6.454e-03
: 21 : vars : 6.325e-03
: 22 : vars : 6.310e-03
: 23 : vars : 6.298e-03
: 24 : vars : 6.293e-03
: 25 : vars : 6.213e-03
: 26 : vars : 6.164e-03
: 27 : vars : 6.123e-03
: 28 : vars : 6.110e-03
: 29 : vars : 5.885e-03
: 30 : vars : 5.883e-03
: 31 : vars : 5.833e-03
: 32 : vars : 5.828e-03
: 33 : vars : 5.779e-03
: 34 : vars : 5.740e-03
: 35 : vars : 5.682e-03
: 36 : vars : 5.652e-03
: 37 : vars : 5.633e-03
: 38 : vars : 5.621e-03
: 39 : vars : 5.615e-03
: 40 : vars : 5.592e-03
: 41 : vars : 5.589e-03
: 42 : vars : 5.572e-03
: 43 : vars : 5.571e-03
: 44 : vars : 5.523e-03
: 45 : vars : 5.506e-03
: 46 : vars : 5.489e-03
: 47 : vars : 5.467e-03
: 48 : vars : 5.463e-03
: 49 : vars : 5.453e-03
: 50 : vars : 5.418e-03
: 51 : vars : 5.399e-03
: 52 : vars : 5.379e-03
: 53 : vars : 5.356e-03
: 54 : vars : 5.334e-03
: 55 : vars : 5.281e-03
: 56 : vars : 5.245e-03
: 57 : vars : 5.218e-03
: 58 : vars : 5.129e-03
: 59 : vars : 5.123e-03
: 60 : vars : 5.107e-03
: 61 : vars : 5.036e-03
: 62 : vars : 4.985e-03
: 63 : vars : 4.983e-03
: 64 : vars : 4.971e-03
: 65 : vars : 4.947e-03
: 66 : vars : 4.938e-03
: 67 : vars : 4.931e-03
: 68 : vars : 4.919e-03
: 69 : vars : 4.909e-03
: 70 : vars : 4.889e-03
: 71 : vars : 4.880e-03
: 72 : vars : 4.878e-03
: 73 : vars : 4.855e-03
: 74 : vars : 4.852e-03
: 75 : vars : 4.848e-03
: 76 : vars : 4.838e-03
: 77 : vars : 4.802e-03
: 78 : vars : 4.796e-03
: 79 : vars : 4.794e-03
: 80 : vars : 4.778e-03
: 81 : vars : 4.770e-03
: 82 : vars : 4.736e-03
: 83 : vars : 4.722e-03
: 84 : vars : 4.682e-03
: 85 : vars : 4.650e-03
: 86 : vars : 4.635e-03
: 87 : vars : 4.633e-03
: 88 : vars : 4.610e-03
: 89 : vars : 4.584e-03
: 90 : vars : 4.555e-03
: 91 : vars : 4.548e-03
: 92 : vars : 4.545e-03
: 93 : vars : 4.521e-03
: 94 : vars : 4.486e-03
: 95 : vars : 4.438e-03
: 96 : vars : 4.435e-03
: 97 : vars : 4.433e-03
: 98 : vars : 4.401e-03
: 99 : vars : 4.400e-03
: 100 : vars : 4.357e-03
: 101 : vars : 4.330e-03
: 102 : vars : 4.322e-03
: 103 : vars : 4.293e-03
: 104 : vars : 4.267e-03
: 105 : vars : 4.266e-03
: 106 : vars : 4.258e-03
: 107 : vars : 4.227e-03
: 108 : vars : 4.223e-03
: 109 : vars : 4.211e-03
: 110 : vars : 4.210e-03
: 111 : vars : 4.157e-03
: 112 : vars : 4.147e-03
: 113 : vars : 4.131e-03
: 114 : vars : 4.112e-03
: 115 : vars : 4.083e-03
: 116 : vars : 4.073e-03
: 117 : vars : 4.055e-03
: 118 : vars : 4.002e-03
: 119 : vars : 3.986e-03
: 120 : vars : 3.985e-03
: 121 : vars : 3.977e-03
: 122 : vars : 3.975e-03
: 123 : vars : 3.955e-03
: 124 : vars : 3.946e-03
: 125 : vars : 3.901e-03
: 126 : vars : 3.888e-03
: 127 : vars : 3.859e-03
: 128 : vars : 3.854e-03
: 129 : vars : 3.836e-03
: 130 : vars : 3.824e-03
: 131 : vars : 3.820e-03
: 132 : vars : 3.819e-03
: 133 : vars : 3.795e-03
: 134 : vars : 3.791e-03
: 135 : vars : 3.771e-03
: 136 : vars : 3.764e-03
: 137 : vars : 3.759e-03
: 138 : vars : 3.752e-03
: 139 : vars : 3.735e-03
: 140 : vars : 3.707e-03
: 141 : vars : 3.691e-03
: 142 : vars : 3.667e-03
: 143 : vars : 3.657e-03
: 144 : vars : 3.633e-03
: 145 : vars : 3.625e-03
: 146 : vars : 3.616e-03
: 147 : vars : 3.603e-03
: 148 : vars : 3.558e-03
: 149 : vars : 3.541e-03
: 150 : vars : 3.528e-03
: 151 : vars : 3.527e-03
: 152 : vars : 3.526e-03
: 153 : vars : 3.504e-03
: 154 : vars : 3.504e-03
: 155 : vars : 3.465e-03
: 156 : vars : 3.430e-03
: 157 : vars : 3.405e-03
: 158 : vars : 3.386e-03
: 159 : vars : 3.379e-03
: 160 : vars : 3.375e-03
: 161 : vars : 3.309e-03
: 162 : vars : 3.307e-03
: 163 : vars : 3.298e-03
: 164 : vars : 3.291e-03
: 165 : vars : 3.290e-03
: 166 : vars : 3.268e-03
: 167 : vars : 3.246e-03
: 168 : vars : 3.244e-03
: 169 : vars : 3.222e-03
: 170 : vars : 3.216e-03
: 171 : vars : 3.198e-03
: 172 : vars : 3.198e-03
: 173 : vars : 3.188e-03
: 174 : vars : 3.177e-03
: 175 : vars : 3.172e-03
: 176 : vars : 3.169e-03
: 177 : vars : 3.157e-03
: 178 : vars : 3.111e-03
: 179 : vars : 3.104e-03
: 180 : vars : 3.094e-03
: 181 : vars : 3.077e-03
: 182 : vars : 3.065e-03
: 183 : vars : 3.035e-03
: 184 : vars : 2.980e-03
: 185 : vars : 2.975e-03
: 186 : vars : 2.964e-03
: 187 : vars : 2.949e-03
: 188 : vars : 2.924e-03
: 189 : vars : 2.924e-03
: 190 : vars : 2.912e-03
: 191 : vars : 2.896e-03
: 192 : vars : 2.892e-03
: 193 : vars : 2.885e-03
: 194 : vars : 2.880e-03
: 195 : vars : 2.820e-03
: 196 : vars : 2.815e-03
: 197 : vars : 2.805e-03
: 198 : vars : 2.797e-03
: 199 : vars : 2.786e-03
: 200 : vars : 2.733e-03
: 201 : vars : 2.733e-03
: 202 : vars : 2.696e-03
: 203 : vars : 2.674e-03
: 204 : vars : 2.658e-03
: 205 : vars : 2.635e-03
: 206 : vars : 2.495e-03
: 207 : vars : 2.476e-03
: 208 : vars : 2.444e-03
: 209 : vars : 2.408e-03
: 210 : vars : 2.408e-03
: 211 : vars : 2.396e-03
: 212 : vars : 2.309e-03
: 213 : vars : 2.269e-03
: 214 : vars : 2.212e-03
: 215 : vars : 2.203e-03
: 216 : vars : 2.202e-03
: 217 : vars : 2.201e-03
: 218 : vars : 2.195e-03
: 219 : vars : 2.175e-03
: 220 : vars : 2.144e-03
: 221 : vars : 2.137e-03
: 222 : vars : 2.132e-03
: 223 : vars : 2.082e-03
: 224 : vars : 2.072e-03
: 225 : vars : 2.057e-03
: 226 : vars : 1.959e-03
: 227 : vars : 1.913e-03
: 228 : vars : 1.894e-03
: 229 : vars : 1.863e-03
: 230 : vars : 1.812e-03
: 231 : vars : 1.797e-03
: 232 : vars : 1.761e-03
: 233 : vars : 1.724e-03
: 234 : vars : 1.710e-03
: 235 : vars : 1.667e-03
: 236 : vars : 1.651e-03
: 237 : vars : 1.632e-03
: 238 : vars : 1.582e-03
: 239 : vars : 1.485e-03
: 240 : vars : 1.421e-03
: 241 : vars : 1.416e-03
: 242 : vars : 1.309e-03
: 243 : vars : 1.196e-03
: 244 : vars : 1.127e-03
: 245 : vars : 3.340e-04
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
: No variable ranking supplied by classifier: PyTorch
: No variable ranking supplied by classifier: PyKeras
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.97444
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.98626
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 7.19608
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 6.89531
TH1.Print Name = TrainingHistory_PyKeras_'accuracy', Entries= 0, Total sum= 6.14844
TH1.Print Name = TrainingHistory_PyKeras_'loss', Entries= 0, Total sum= 6.55841
TH1.Print Name = TrainingHistory_PyKeras_'val_accuracy', Entries= 0, Total sum= 5.92812
TH1.Print Name = TrainingHistory_PyKeras_'val_loss', Entries= 0, Total sum= 6.73242
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyTorch.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_PyKeras.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00555 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0092 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0418 sec
Factory : Test method: PyTorch for Classification performance
:
: Setup PyTorch Model for training
: Executing user initialization code from /github/home/ROOT-CI/build/tutorials/tmva/PyTorch_Generate_CNN_Model.py
running Torch code defining the model....
The PyTorch CNN model is created and saved as PyTorchModelCNN.pt
custom objects for loading model : {'optimizer': <class 'torch.optim.adam.Adam'>, 'criterion': BCELoss(), 'train_func': <function fit at 0x7f7dcf2e0b80>, 'predict_func': <function predict at 0x7f7b84cc55e0>}
: Loaded pytorch train function:
: Loaded pytorch optimizer:
: Loaded pytorch loss function:
: Loaded pytorch predict function:
: Loaded model from file: PyTorchTrainedModelCNN.pt
PyTorch : [dataset] : Evaluation of PyTorch on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0998 sec
Factory : Test method: PyKeras for Classification performance
:
: Setting up tf.keras
: Using TensorFlow version 2
: Use Keras version from TensorFlow : tf.keras
: Applying GPU option: gpu_options.allow_growth=True
: Disabled TF eager execution when evaluating model
: Loading Keras Model
: Loaded model from file: trained_model_cnn.h5
PyKeras : [dataset] : Evaluation of PyKeras on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0555 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: PyTorch
:
PyTorch : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: PyKeras
:
PyKeras : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.766
: dataset TMVA_CNN_CPU : 0.758
: dataset TMVA_DNN_CPU : 0.708
: dataset PyKeras : 0.678
: dataset PyTorch : 0.502
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.055 (0.402) 0.425 (0.714) 0.725 (0.869)
: dataset TMVA_CNN_CPU : 0.065 (0.125) 0.415 (0.468) 0.680 (0.710)
: dataset TMVA_DNN_CPU : 0.025 (0.170) 0.255 (0.465) 0.598 (0.750)
: dataset PyKeras : 0.015 (0.063) 0.295 (0.379) 0.568 (0.661)
: dataset PyTorch : 0.028 (0.017) 0.085 (0.072) 0.281 (0.223)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m
# TMVA Classification Example Using a Convolutional Neural Network
## Helper function to create input images data
## we create a signal and background 2D histograms from 2d gaussians
## with a location (means in X and Y) different for each event
## The difference between signal and background is in the gaussian width.
## The width for the background gaussian is slightly larger than the signal width by few % values
import os
opt = [1, 1, 1, 1, 1]
useTMVACNN = opt[0] if len(opt) > 0 else False
useKerasCNN = opt[1] if len(opt) > 1 else False
useTMVADNN = opt[2] if len(opt) > 2 else False
useTMVABDT = opt[3] if len(opt) > 3 else False
usePyTorchCNN = opt[4] if len(opt) > 4 else False
tf_spec = importlib.util.find_spec("tensorflow")
if tf_spec is None:
useKerasCNN = False
print("TMVA_CNN_Classificaton","Skip using Keras since tensorflow is not installed")
else:
import tensorflow
# PyTorch has to be imported before ROOT to avoid crashes because of clashing
# std::regexp symbols that are exported by cppyy.
# See also: https://github.com/wlav/cppyy/issues/227
torch_spec = importlib.util.find_spec("torch")
if torch_spec is None:
usePyTorchCNN = False
print("TMVA_CNN_Classificaton","Skip using PyTorch since torch is not installed")
else:
import torch
import ROOT
TMVA = ROOT.TMVA
TFile = ROOT.TFile
def MakeImagesTree(n, nh, nw):
# image size (nh x nw)
ntot = nh * nw
fileOutName = "images_data_16x16.root"
nRndmEvts = 10000 # number of events we use to fill each image
delta_sigma = 0.1 # 5% difference in the sigma
pixelNoise = 5
sX1 = 3
sY1 = 3
sX2 = sX1 + delta_sigma
sY2 = sY1 - delta_sigma
h1 = ROOT.TH2D("h1", "h1", nh, 0, 10, nw, 0, 10)
h2 = ROOT.TH2D("h2", "h2", nh, 0, 10, nw, 0, 10)
f1 = ROOT.TF2("f1", "xygaus")
f2 = ROOT.TF2("f2", "xygaus")
sgn = ROOT.TTree("sig_tree", "signal_tree")
bkg = ROOT.TTree("bkg_tree", "background_tree")
f = TFile(fileOutName, "RECREATE")
x1 = ROOT.std.vector["float"](ntot)
x2 = ROOT.std.vector["float"](ntot)
# create signal and background trees with a single branch
# an std::vector<float> of size nh x nw containing the image data
bkg.Branch("vars", "std::vector<float>", x1)
sgn.Branch("vars", "std::vector<float>", x2)
f1.SetParameters(1, 5, sX1, 5, sY1)
f2.SetParameters(1, 5, sX2, 5, sY2)
ROOT.Info("TMVA_CNN_Classification", "Filling ROOT tree \n")
for i in range(n):
if i % 1000 == 0:
print("Generating image event ...", i)
# generate random means in range [3,7] to be not too much on the border
h1.FillRandom("f1", nRndmEvts)
h2.FillRandom("f2", nRndmEvts)
for k in range(nh):
for l in range(nw):
m = k * nw + l
# add some noise in each bin
x1[m] = h1.GetBinContent(k + 1, l + 1) + ROOT.gRandom.Gaus(0, pixelNoise)
x2[m] = h2.GetBinContent(k + 1, l + 1) + ROOT.gRandom.Gaus(0, pixelNoise)
print("Signal and background tree with images data written to the file %s", f.GetName())
hasGPU = "tmva-gpu" in ROOT.gROOT.GetConfigFeatures()
hasCPU = "tmva-cpu" in ROOT.gROOT.GetConfigFeatures()
nevt = 1000 # use a larger value to get better results
if (not hasCPU and not hasGPU) :
ROOT.Warning("TMVA_CNN_Classificaton","ROOT is not supporting tmva-cpu and tmva-gpu skip using TMVA-DNN and TMVA-CNN")
useTMVACNN = False
useTMVADNN = False
if not "tmva-pymva" in ROOT.gROOT.GetConfigFeatures():
useKerasCNN = False
usePyTorchCNN = False
else:
if not useTMVACNN:
"TMVA_CNN_Classificaton",
"TMVA is not build with GPU or CPU multi-thread support. Cannot use TMVA Deep Learning for CNN",
)
writeOutputFile = True
num_threads = 4 # use max 4 threads
max_epochs = 10 # maximum number of epochs used for training
# do enable MT running
ROOT.EnableImplicitMT(num_threads)
ROOT.gSystem.Setenv("OMP_NUM_THREADS", "1") # switch OFF MT in OpenBLAS
print("Running with nthreads = {}".format(ROOT.GetThreadPoolSize()))
else:
print("Running in serial mode since ROOT does not support MT")
outputFile = None
if writeOutputFile:
outputFile = TFile.Open("TMVA_CNN_ClassificationOutput.root", "RECREATE")
## Create TMVA Factory
# Create the Factory class. Later you can choose the methods
# whose performance you'd like to investigate.
# The factory is the major TMVA object you have to interact with. Here is the list of parameters you need to pass
# - The first argument is the base of the name of all the output
# weight files in the directory weight/ that will be created with the
# method parameters
# - The second argument is the output file for the training results
# - The third argument is a string option defining some general configuration for the TMVA session.
# For example all TMVA output can be suppressed by removing the "!" (not) in front of the "Silent" argument in the
# option string
# - note that we disable any pre-transformation of the input variables and we avoid computing correlations between
# input variables
factory = TMVA.Factory(
"TMVA_CNN_Classification",
outputFile,
V=False,
ROC=True,
Silent=False,
Color=True,
AnalysisType="Classification",
Transformations=None,
Correlations=False,
)
## Declare DataLoader(s)
# The next step is to declare the DataLoader class that deals with input variables
# Define the input variables that shall be used for the MVA training
# note that you may also use variable expressions, which can be parsed by TTree::Draw( "expression" )]
# In this case the input data consists of an image of 16x16 pixels. Each single pixel is a branch in a ROOT TTree
loader = TMVA.DataLoader("dataset")
## Setup Dataset(s)
# Define input data file and signal and background trees
imgSize = 16 * 16
inputFileName = "images_data_16x16.root"
# if the input file does not exist create it
if ROOT.gSystem.AccessPathName(inputFileName):
MakeImagesTree(nevt, 16, 16)
inputFile = TFile.Open(inputFileName)
if inputFile is None:
ROOT.Warning("TMVA_CNN_Classification", "Error opening input file %s - exit", inputFileName.Data())
# inputFileName = "tmva_class_example.root"
# --- Register the training and test trees
signalTree = inputFile.Get("sig_tree")
backgroundTree = inputFile.Get("bkg_tree")
nEventsSig = signalTree.GetEntries()
# global event weights per tree (see below for setting event-wise weights)
signalWeight = 1.0
backgroundWeight = 1.0
# You can add an arbitrary number of signal or background trees
loader.AddSignalTree(signalTree, signalWeight)
loader.AddBackgroundTree(backgroundTree, backgroundWeight)
## add event variables (image)
## use new method (from ROOT 6.20 to add a variable array for all image data)
loader.AddVariablesArray("vars", imgSize)
# Set individual event weights (the variables must exist in the original TTree)
# for signal : factory->SetSignalWeightExpression ("weight1*weight2");
# for background: factory->SetBackgroundWeightExpression("weight1*weight2");
# loader->SetBackgroundWeightExpression( "weight" );
# Apply additional cuts on the signal and background samples (can be different)
mycuts = "" # for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
mycutb = "" # for example: TCut mycutb = "abs(var1)<0.5";
# Tell the factory how to use the training and testing events
# If no numbers of events are given, half of the events in the tree are used
# for training, and the other half for testing:
# loader.PrepareTrainingAndTestTree( mycut, "SplitMode=random:!V" );
# It is possible also to specify the number of training and testing events,
# note we disable the computation of the correlation matrix of the input variables
nTrainSig = 0.8 * nEventsSig
nTrainBkg = 0.8 * nEventsBkg
# build the string options for DataLoader::PrepareTrainingAndTestTree
mycuts,
mycutb,
nTrain_Signal=nTrainSig,
nTrain_Background=nTrainBkg,
SplitMode="Random",
SplitSeed=100,
NormMode="NumEvents",
V=False,
CalcCorrelations=False,
)
# DataSetInfo : [dataset] : Added class "Signal"
# : Add Tree sig_tree of type Signal with 10000 events
# DataSetInfo : [dataset] : Added class "Background"
# : Add Tree bkg_tree of type Background with 10000 events
# signalTree.Print();
# Booking Methods
# Here we book the TMVA methods. We book a Boosted Decision Tree method (BDT)
# Boosted Decision Trees
if useTMVABDT:
loader,
"BDT",
V=False,
NTrees=400,
MinNodeSize="2.5%",
MaxDepth=2,
BoostType="AdaBoost",
AdaBoostBeta=0.5,
UseBaggedBoost=True,
BaggedSampleFraction=0.5,
SeparationType="GiniIndex",
nCuts=20,
)
#### Booking Deep Neural Network
# Here we book the DNN of TMVA. See the example TMVA_Higgs_Classification.C for a detailed description of the
# options
if useTMVADNN:
layoutString = ROOT.TString(
"DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR"
)
# Training strategies
# one can catenate several training strings with different parameters (e.g. learning rates or regularizations
# parameters) The training string must be concatenated with the `|` delimiter
trainingString1 = ROOT.TString(
"LearningRate=1e-3,Momentum=0.9,Repetitions=1,"
"ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,"
"WeightDecay=1e-4,Regularization=None,"
"Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0."
) # + "|" + trainingString2 + ...
trainingString1 += ",MaxEpochs=" + str(max_epochs)
# Build now the full DNN Option string
dnnMethodName = "TMVA_DNN_CPU"
# use GPU if available
dnnOptions = "CPU"
if hasGPU :
dnnOptions = "GPU"
dnnMethodName = "TMVA_DNN_GPU"
loader,
dnnMethodName,
H=False,
V=True,
ErrorStrategy="CROSSENTROPY",
VarTransform=None,
WeightInitialization="XAVIER",
Layout=layoutString,
TrainingStrategy=trainingString1,
Architecture=dnnOptions
)
### Book Convolutional Neural Network in TMVA
# For building a CNN one needs to define
# - Input Layout : number of channels (in this case = 1) | image height | image width
# - Batch Layout : batch size | number of channels | image size = (height*width)
# Then one add Convolutional layers and MaxPool layers.
# - For Convolutional layer the option string has to be:
# - CONV | number of units | filter height | filter width | stride height | stride width | padding height | paddig
# width | activation function
# - note in this case we are using a filer 3x3 and padding=1 and stride=1 so we get the output dimension of the
# conv layer equal to the input
# - note we use after the first convolutional layer a batch normalization layer. This seems to help significantly the
# convergence
# - For the MaxPool layer:
# - MAXPOOL | pool height | pool width | stride height | stride width
# The RESHAPE layer is needed to flatten the output before the Dense layer
# Note that to run the CNN is required to have CPU or GPU support
if useTMVACNN:
# Training strategies.
trainingString1 = ROOT.TString(
"LearningRate=1e-3,Momentum=0.9,Repetitions=1,"
"ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,"
"WeightDecay=1e-4,Regularization=None,"
"Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0"
)
trainingString1 += ",MaxEpochs=" + str(max_epochs)
## New DL (CNN)
cnnMethodName = "TMVA_CNN_CPU"
cnnOptions = "CPU"
# use GPU if available
if hasGPU:
cnnOptions = "GPU"
cnnMethodName = "TMVA_CNN_GPU"
loader,
cnnMethodName,
H=False,
V=True,
ErrorStrategy="CROSSENTROPY",
VarTransform=None,
WeightInitialization="XAVIER",
InputLayout="1|16|16",
Layout="CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR",
TrainingStrategy=trainingString1,
Architecture=cnnOptions,
)
### Book Convolutional Neural Network in Keras using a generated model
if usePyTorchCNN:
ROOT.Info("TMVA_CNN_Classification", "Using Convolutional PyTorch Model")
pyTorchFileName = str(ROOT.gROOT.GetTutorialDir())
pyTorchFileName += "/tmva/PyTorch_Generate_CNN_Model.py"
# check that pytorch can be imported and file defining the model exists
torch_spec = importlib.util.find_spec("torch")
if torch_spec is not None and os.path.exists(pyTorchFileName):
#cmd = str(ROOT.TMVA.Python_Executable()) + " " + pyTorchFileName
#os.system(cmd)
#import PyTorch_Generate_CNN_Model
ROOT.Info("TMVA_CNN_Classification", "Booking PyTorch CNN model")
loader,
"PyTorch",
H=True,
V=False,
VarTransform=None,
FilenameModel="PyTorchModelCNN.pt",
FilenameTrainedModel="PyTorchTrainedModelCNN.pt",
NumEpochs=max_epochs,
BatchSize=100,
UserCode=str(pyTorchFileName)
)
else:
"TMVA_CNN_Classification",
"PyTorch is not installed or model building file is not existing - skip using PyTorch",
)
if useKerasCNN:
ROOT.Info("TMVA_CNN_Classification", "Building convolutional keras model")
# create python script which can be executed
# create 2 conv2d layer + maxpool + dense
import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam
# from keras.initializers import TruncatedNormal
# from keras import initializations
from tensorflow.keras.layers import Input, Dense, Dropout, Flatten, Conv2D, MaxPooling2D, Reshape
# from keras.callbacks import ReduceLROnPlateau
model = Sequential()
model.add(Reshape((16, 16, 1), input_shape=(256,)))
model.add(Conv2D(10, kernel_size=(3, 3), kernel_initializer="TruncatedNormal", activation="relu", padding="same"))
model.add(Conv2D(10, kernel_size=(3, 3), kernel_initializer="TruncatedNormal", activation="relu", padding="same"))
# stride for maxpool is equal to pool size
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64, activation="tanh"))
# model.add(Dropout(0.2))
model.add(Dense(2, activation="sigmoid"))
model.compile(loss="binary_crossentropy", optimizer=Adam(learning_rate=0.001), weighted_metrics=["accuracy"])
model.save("model_cnn.h5")
if not os.path.exists("model_cnn.h5"):
raise FileNotFoundError("Error creating Keras model file - skip using Keras")
else:
# book PyKeras method only if Keras model could be created
ROOT.Info("TMVA_CNN_Classification", "Booking convolutional keras model")
loader,
"PyKeras",
H=True,
V=False,
VarTransform=None,
FilenameModel="model_cnn.h5",
FilenameTrainedModel="trained_model_cnn.h5",
NumEpochs=max_epochs,
BatchSize=100,
GpuOptions="allow_growth=True",
) # needed for RTX NVidia card and to avoid TF allocates all GPU memory
## Train Methods
## Test and Evaluate Methods
## Plot ROC Curve
c1 = factory.GetROCCurve(loader)
# close outputfile to save output file
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
Definition TFile.h:53
This is the main MVA steering class.
Definition Factory.h:80
Author
Harshal Shende

Definition in file TMVA_CNN_Classification.py.