#include "TMatrixTBase.h"

TMatrixTBase<double>


class description - header file - source file - inheritance tree (.pdf)

class TMatrixTBase<double> : public TObject

Inheritance Chart:
TObject
<-
TMatrixTBase<double>
<-
TMatrixT<double>
TMatrixTSparse<double>
TMatrixTSym<double>
 
    This is an abstract class, constructors will not be documented.
    Look at the header to check for available constructors.

    private:
double* GetElements() protected:
static void DoubleLexSort(Int_t n, Int_t* first, Int_t* second, double* data) static void IndexedLexSort(Int_t n, Int_t* first, Int_t swapFirst, Int_t* second, Int_t swapSecond, Int_t* index) public:
virtual ~TMatrixTBase<double>() virtual TMatrixTBase<double>& Abs() virtual TMatrixTBase<double>& Apply(const TElementActionT<double>& action) virtual TMatrixTBase<double>& Apply(const TElementPosActionT<double>& action) static TClass* Class() virtual void Clear(Option_t* option = "") virtual double ColNorm() const virtual Double_t Determinant() const virtual void Determinant(Double_t& d1, Double_t& d2) const virtual void Draw(Option_t* option = "") virtual double E2Norm() const virtual void ExtractRow(Int_t row, Int_t col, double* v, Int_t n = -1) const virtual const Int_t* GetColIndexArray() const virtual Int_t* GetColIndexArray() Int_t GetColLwb() const Int_t GetColUpb() const virtual void GetMatrix2Array(double* data, Option_t* option = "") const virtual const double* GetMatrixArray() const virtual double* GetMatrixArray() Int_t GetNcols() const Int_t GetNoElements() const Int_t GetNrows() const virtual const Int_t* GetRowIndexArray() const virtual Int_t* GetRowIndexArray() Int_t GetRowLwb() const Int_t GetRowUpb() const virtual TMatrixTBase<double>& GetSub(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, TMatrixTBase<double>& target, Option_t* option = "S") const double GetTol() const virtual TMatrixTBase<double>& InsertRow(Int_t row, Int_t col, const double* v, Int_t n = -1) void Invalidate() virtual TClass* IsA() const Bool_t IsOwner() const virtual Bool_t IsSymmetric() const Bool_t IsValid() const void MakeValid() virtual double Max() const virtual double Min() const virtual Int_t NonZeros() const double Norm1() const virtual TMatrixTBase<double>& NormByDiag(const TVectorT<double>& v, Option_t* option = "D") double NormInf() const Bool_t operator!=(double val) const virtual double operator()(Int_t rown, Int_t coln) const virtual double& operator()(Int_t rown, Int_t coln) Bool_t operator<(double val) const Bool_t operator<=(double val) const TMatrixTBase<double>& operator=(const TMatrixTBase<double>&) Bool_t operator==(double val) const Bool_t operator>(double val) const Bool_t operator>=(double val) const virtual void Print(Option_t* name = "") const virtual TMatrixTBase<double>& Randomize(double alpha, double beta, Double_t& seed) virtual TMatrixTBase<double>& ResizeTo(Int_t nrows, Int_t ncols, Int_t nr_nonzeros = -1) virtual TMatrixTBase<double>& ResizeTo(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Int_t nr_nonzeros = -1) virtual double RowNorm() const virtual TMatrixTBase<double>& SetColIndexArray(Int_t* data) virtual TMatrixTBase<double>& SetMatrixArray(const double* data, Option_t* option = "") virtual TMatrixTBase<double>& SetRowIndexArray(Int_t* data) virtual TMatrixTBase<double>& SetSub(Int_t row_lwb, Int_t col_lwb, const TMatrixTBase<double>& source) double SetTol(double newTol) virtual TMatrixTBase<double>& Shift(Int_t row_shift, Int_t col_shift) virtual void ShowMembers(TMemberInspector& insp, char* parent) virtual TMatrixTBase<double>& Sqr() virtual TMatrixTBase<double>& Sqrt() virtual void Streamer(TBuffer& b) void StreamerNVirtual(TBuffer& b) virtual double Sum() const virtual TMatrixTBase<double>& UnitMatrix() virtual TMatrixTBase<double>& Zero()

Data Members


    protected:
Int_t fNrows number of rows Int_t fNcols number of columns Int_t fRowLwb lower bound of the row index Int_t fColLwb lower bound of the col index Int_t fNelems number of elements in matrix Int_t fNrowIndex length of row index array (= fNrows+1) wich is only used for sparse matrices double fTol sqrt(epsilon); epsilon is smallest number number so that 1+epsilon > 1 Bool_t fIsOwner !default kTRUE, when Use array kFALSE public:
static const enum TMatrixTBase<double>:: kSizeMax static const enum TMatrixTBase<double>:: kWorkMax static const TMatrixTBase<double>::EMatrixStatusBits kStatus

Class Description

                                                                      
 Linear Algebra Package                                               
 ----------------------                                               
                                                                      
 The present package implements all the basic algorithms dealing      
 with vectors, matrices, matrix columns, rows, diagonals, etc.        
 In addition eigen-Vector analysis and several matrix decomposition   
 have been added (LU,QRH,Cholesky,Bunch-Kaufman and SVD) .            
 The decompositions are used in matrix inversion, equation solving.   
                                                                      
 For a dense matrix, elements are arranged in memory in a ROW-wise    
 fashion . For (n x m) matrices where n*m <=kSizeMax (=25 currently)  
 storage space is available on the stack, thus avoiding expensive     
 allocation/deallocation of heap space . However, this introduces of  
 course kSizeMax overhead for each matrix object . If this is an      
 issue recompile with a new appropriate value (>=0) for kSizeMax      
                                                                      
 Sparse matrices are also stored in row-wise fashion but additional   
 row/column information is stored, see TMatrixTSparse source for      
 additional details .                                                 
                                                                      
 Another way to assign and store matrix data is through Use           
 see for instance stressLinear.cxx file .                             
                                                                      
 Unless otherwise specified, matrix and vector indices always start   
 with 0, spanning up to the specified limit-1. However, there are     
 constructors to which one can specify aribtrary lower and upper      
 bounds, e.g. TMatrixD m(1,10,1,5) defines a matrix that ranges       
 from 1..10, 1..5 (a(1,1)..a(10,5)).                                  
                                                                      
 The present package provides all facilities to completely AVOID      
 returning matrices. Use "TMatrixD A(TMatrixD::kTransposed,B);"       
 and other fancy constructors as much as possible. If one really needs
 to return a matrix, return a TMatrixTLazy object instead. The        
 conversion is completely transparent to the end user, e.g.           
 "TMatrixT m = THaarMatrixT(5);" and _is_ efficient.                  
                                                                      
 Since TMatrixT et al. are fully integrated in ROOT, they of course   
 can be stored in a ROOT database.                                    
                                                                      
 For usage examples see $ROOTSYS/test/stressLinear.cxx                
                                                                      
 Acknowledgements                                                     
 ----------------                                                     
 1. Oleg E. Kiselyov                                                  
  First implementations were based on the his code . We have diverged 
  quite a bit since then but the ideas/code for lazy matrix and       
  "nested function" are 100% his .                                    
  You can see him and his code in action at http://okmij.org/ftp      
 2. Chris R. Birchenhall,                                             
  We adapted his idea of the implementation for the decomposition     
  classes instead of our messy installation of matrix inversion       
  His installation of matrix condition number, using an iterative     
  scheme using the Hage algorithm is worth looking at !               
  Chris has a nice writeup (matdoc.ps) on his matrix classes at       
   ftp://ftp.mcc.ac.uk/pub/matclass/                                  
 3. Mark Fischler and Steven Haywood of CLHEP                         
  They did the slave labor of spelling out all sub-determinants       
   for Cramer inversion  of (4x4),(5x5) and (6x6) matrices            
  The stack storage for small matrices was also taken from them       
 4. Roldan Pozo of TNT (http://math.nist.gov/tnt/)                    
  He converted the EISPACK routines for the eigen-vector analysis to  
  C++ . We started with his implementation                            
 5. Siegmund Brandt (http://siux00.physik.uni-siegen.de/~brandt/datan 
  We adapted his (very-well) documented SVD routines                  
                                                                      
 How to efficiently use this package                                  
 -----------------------------------                                  
                                                                      
 1. Never return complex objects (matrices or vectors)                
    Danger: For example, when the following snippet:                  
        TMatrixD foo(int n)                                           
        {                                                             
           TMatrixD foom(n,n); fill_in(foom); return foom;            
        }                                                             
        TMatrixD m = foo(5);                                          
    runs, it constructs matrix foo:foom, copies it onto stack as a    
    return value and destroys foo:foom. Return value (a matrix)       
    from foo() is then copied over to m (via a copy constructor),     
    and the return value is destroyed. So, the matrix constructor is  
    called 3 times and the destructor 2 times. For big matrices,      
    the cost of multiple constructing/copying/destroying of objects   
    may be very large. *Some* optimized compilers can cut down on 1   
    copying/destroying, but still it leaves at least two calls to     
    the constructor. Note, TMatrixDLazy (see below) can construct     
    TMatrixD m "inplace", with only a _single_ call to the            
    constructor.                                                      
                                                                      
 2. Use "two-address instructions"                                    
        "void TMatrixD::operator += (const TMatrixD &B);"             
    as much as possible.                                              
    That is, to add two matrices, it's much more efficient to write   
        A += B;                                                       
    than                                                              
        TMatrixD C = A + B;                                           
    (if both operand should be preserved,                             
        TMatrixD C = A; C += B;                                       
    is still better).                                                 
                                                                      
 3. Use glorified constructors when returning of an object seems      
    inevitable:                                                       
        "TMatrixD A(TMatrixD::kTransposed,B);"                        
        "TMatrixD C(A,TMatrixD::kTransposeMult,B);"                   
                                                                      
    like in the following snippet (from $ROOTSYS/test/vmatrix.cxx)    
    that verifies that for an orthogonal matrix T, T'T = TT' = E.     
                                                                      
    TMatrixD haar = THaarMatrixD(5);                                  
    TMatrixD unit(TMatrixD::kUnit,haar);                              
    TMatrixD haar_t(TMatrixD::kTransposed,haar);                      
    TMatrixD hth(haar,TMatrixD::kTransposeMult,haar);                 
    TMatrixD hht(haar,TMatrixD::kMult,haar_t);                        
    TMatrixD hht1 = haar; hht1 *= haar_t;                             
    VerifyMatrixIdentity(unit,hth);                                   
    VerifyMatrixIdentity(unit,hht);                                   
    VerifyMatrixIdentity(unit,hht1);                                  
                                                                      
 4. Accessing row/col/diagonal of a matrix without much fuss          
    (and without moving a lot of stuff around):                       
                                                                      
        TMatrixD m(n,n); TVectorD v(n); TMatrixDDiag(m) += 4;         
        v = TMatrixDRow(m,0);                                         
        TMatrixDColumn m1(m,1); m1(2) = 3; // the same as m(2,1)=3;   
    Note, constructing of, say, TMatrixDDiag does *not* involve any   
    copying of any elements of the source matrix.                     
                                                                      
 5. It's possible (and encouraged) to use "nested" functions          
    For example, creating of a Hilbert matrix can be done as follows: 
                                                                      
    void foo(const TMatrixD &m)                                       
    {                                                                 
       TMatrixD m1(TMatrixD::kZero,m);                                
       struct MakeHilbert : public TElementPosActionD {               
          void Operation(Double_t &element)                           
             { element = 1./(fI+fJ-1); }                              
       };                                                             
       m1.Apply(MakeHilbert());                                       
    }                                                                 
                                                                      
    of course, using a special method THilbertMatrixD() is            
    still more optimal, but not by a whole lot. And that's right,     
    class MakeHilbert is declared *within* a function and local to    
    that function. It means one can define another MakeHilbert class  
    (within another function or outside of any function, that is, in  
    the global scope), and it still will be OK. Note, this currently  
    is not yet supported by the interpreter CINT.                     
                                                                      
    Another example is applying of a simple function to each matrix   
    element:                                                          
                                                                      
    void foo(TMatrixD &m,TMatrixD &m1)                                
    {                                                                 
       typedef  double (*dfunc_t)(double);                            
       class ApplyFunction : public TElementActionD {                 
          dfunc_t fFunc;                                              
          void Operation(Double_t &element)                           
               { element=fFunc(element); }                            
        public:                                                       
          ApplyFunction(dfunc_t func):fFunc(func) {}                  
       };                                                             
       ApplyFunction x(TMath::Sin);                                   
       m.Apply(x);                                                    
    }                                                                 
                                                                      
    Validation code $ROOTSYS/test/vmatrix.cxx and vvector.cxx contain 
    a few more examples of that kind.                                 
                                                                      
 6. Lazy matrices: instead of returning an object return a "recipe"   
    how to make it. The full matrix would be rolled out only when     
    and where it's needed:                                            
       TMatrixD haar = THaarMatrixD(5);                               
    THaarMatrixD() is a *class*, not a simple function. However       
    similar this looks to a returning of an object (see note #1       
    above), it's dramatically different. THaarMatrixD() constructs a  
    TMatrixDLazy, an object of just a few bytes long. A special       
    "TMatrixD(const TMatrixDLazy &recipe)" constructor follows the    
    recipe and makes the matrix haar() right in place. No matrix      
    element is moved whatsoever!                                      
                                                                      

void IndexedLexSort(Int_t n,Int_t *first,Int_t swapFirst, Int_t *second,Int_t swapSecond,Int_t *index)
Bool_t IsSymmetric()
void GetMatrix2Array(Element *data,Option_t *option="")
Double_t Determinant()
void Determinant(Double_t &d1,Double_t &d2)
void Print(Option_t *name ="")
Element operator()(Int_t rown,Int_t coln)
Bool_t operator==(Element val)
Bool_t operator!=(Element val)
Bool_t operator<=(Element val)
Bool_t operator>=(Element val)

Last update: root/matrix:$Name: $:$Id: TMatrixTBase.cxx,v 1.9 2006/06/06 05:16:09 brun Exp $
Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.