library: libGraf #include "TSpline.h" |
TSpline5
class description - header file - source file - inheritance tree (.pdf)
private:
void BoundaryConditions(const char* opt, Int_t& beg, Int_t& end, const char*& cb1, const char*& ce1, const char*& cb2, const char*& ce2)
virtual void BuildCoeff()
void SetBoundaries(Double_t b1, Double_t e1, Double_t b2, Double_t e2, const char* cb1, const char* ce1, const char* cb2, const char* ce2)
protected:
TSpline5(const TSpline5&)
TSpline5& operator=(const TSpline5&)
public:
TSpline5()
TSpline5(const char* title, Double_t* x, Double_t* y, Int_t n, const char* opt = "0", Double_t b1 = 0, Double_t e1 = 0, Double_t b2 = 0, Double_t e2 = 0)
TSpline5(const char* title, Double_t xmin, Double_t xmax, Double_t* y, Int_t n, const char* opt = "0", Double_t b1 = 0, Double_t e1 = 0, Double_t b2 = 0, Double_t e2 = 0)
TSpline5(const char* title, Double_t* x, const TF1* func, Int_t n, const char* opt = "0", Double_t b1 = 0, Double_t e1 = 0, Double_t b2 = 0, Double_t e2 = 0)
TSpline5(const char* title, Double_t xmin, Double_t xmax, const TF1* func, Int_t n, const char* opt = "0", Double_t b1 = 0, Double_t e1 = 0, Double_t b2 = 0, Double_t e2 = 0)
TSpline5(const char* title, const TGraph* g, const char* opt = "0", Double_t b1 = 0, Double_t e1 = 0, Double_t b2 = 0, Double_t e2 = 0)
~TSpline5()
static TClass* Class()
Double_t Derivative(Double_t x) const
virtual Double_t Eval(Double_t x) const
Int_t FindX(Double_t x) const
void GetCoeff(Int_t i, Double_t& x, Double_t& y, Double_t& b, Double_t& c, Double_t& d, Double_t& e, Double_t& f)
virtual void GetKnot(Int_t i, Double_t& x, Double_t& y) const
virtual TClass* IsA() const
virtual void SaveAs(const char* filename) const
virtual void ShowMembers(TMemberInspector& insp, char* parent)
virtual void Streamer(TBuffer& b)
void StreamerNVirtual(TBuffer& b)
static void Test()
private:
TSplinePoly5* fPoly [fNp] Array of polynomial terms
TSpline5(const char *title, Double_t x[], const TF1 *func, Int_t n, const char *opt, Double_t b1, Double_t e1, Double_t b2, Double_t e2)
Quintic natural spline creator given an array of
arbitrary abscissas in increasing order and a function
to interpolate and possibly end point conditions
void BoundaryConditions(const char *opt,Int_t &beg,Int_t &end, const char *&cb1,const char *&ce1, const char *&cb2,const char *&ce2)
Check the boundary conditions and the
amount of extra double knots needed
void SaveAs(const char *filename)
write this spline as a C++ function that can be executed without ROOT
the name of the function is the name of the file up to the "." if any
void BuildCoeff()
algorithm 600, collected algorithms from acm.
algorithm appeared in acm-trans. math. software, vol.9, no. 2,
jun., 1983, p. 258-259.
TSpline5 computes the coefficients of a quintic natural quintic spli
s(x) with knots x(i) interpolating there to given function values:
s(x(i)) = y(i) for i = 1,2, ..., n.
in each interval (x(i),x(i+1)) the spline function s(xx) is a
polynomial of fifth degree:
s(xx) = ((((f(i)*p+e(i))*p+d(i))*p+c(i))*p+b(i))*p+y(i) (*)
= ((((-f(i)*q+e(i+1))*q-d(i+1))*q+c(i+1))*q-b(i+1))*q+y(i+1)
where p = xx - x(i) and q = x(i+1) - xx.
(note the first subscript in the second expression.)
the different polynomials are pieced together so that s(x) and
its derivatives up to s"" are continuous.
input:
n number of data points, (at least three, i.e. n > 2)
x(1:n) the strictly increasing or decreasing sequence of
knots. the spacing must be such that the fifth power
of x(i+1) - x(i) can be formed without overflow or
underflow of exponents.
y(1:n) the prescribed function values at the knots.
output:
b,c,d,e,f the computed spline coefficients as in (*).
(1:n) specifically
b(i) = s'(x(i)), c(i) = s"(x(i))/2, d(i) = s"'(x(i))/6,
e(i) = s""(x(i))/24, f(i) = s""'(x(i))/120.
f(n) is neither used nor altered. the five arrays
b,c,d,e,f must always be distinct.
option:
it is possible to specify values for the first and second
derivatives of the spline function at arbitrarily many knots.
this is done by relaxing the requirement that the sequence of
knots be strictly increasing or decreasing. specifically:
if x(j) = x(j+1) then s(x(j)) = y(j) and s'(x(j)) = y(j+1),
if x(j) = x(j+1) = x(j+2) then in addition s"(x(j)) = y(j+2).
note that s""(x) is discontinuous at a double knot and, in
addition, s"'(x) is discontinuous at a triple knot. the
subroutine assigns y(i) to y(i+1) in these cases and also to
y(i+2) at a triple knot. the representation (*) remains
valid in each open interval (x(i),x(i+1)). at a double knot,
x(j) = x(j+1), the output coefficients have the following values:
y(j) = s(x(j)) = y(j+1)
b(j) = s'(x(j)) = b(j+1)
c(j) = s"(x(j))/2 = c(j+1)
d(j) = s"'(x(j))/6 = d(j+1)
e(j) = s""(x(j)-0)/24 e(j+1) = s""(x(j)+0)/24
f(j) = s""'(x(j)-0)/120 f(j+1) = s""'(x(j)+0)/120
at a triple knot, x(j) = x(j+1) = x(j+2), the output
coefficients have the following values:
y(j) = s(x(j)) = y(j+1) = y(j+2)
b(j) = s'(x(j)) = b(j+1) = b(j+2)
c(j) = s"(x(j))/2 = c(j+1) = c(j+2)
d(j) = s"'((x(j)-0)/6 d(j+1) = 0 d(j+2) = s"'(x(j)+0)/6
e(j) = s""(x(j)-0)/24 e(j+1) = 0 e(j+2) = s""(x(j)+0)/24
f(j) = s""'(x(j)-0)/120 f(j+1) = 0 f(j+2) = s""'(x(j)+0)/120
void Test()
Test method for TSpline5
n number of data points.
m 2*m-1 is order of spline.
m = 3 always for quintic spline.
nn,nm1,mm,
mm1,i,k,
j,jj temporary integer variables.
z,p temporary double precision variables.
x[n] the sequence of knots.
y[n] the prescribed function values at the knots.
a[200][6] two dimensional array whose columns are
the computed spline coefficients
diff[5] maximum values of differences of values and
derivatives to right and left of knots.
com[5] maximum values of coefficients.
test of TSpline5 with nonequidistant knots and
equidistant knots follows.
Author: Federico Carminati 28/02/2000
Last update: root/graf:$Name: $:$Id: TSpline.cxx,v 1.17 2006/07/09 05:27:54 brun Exp $
Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.