56   predict(
"predict.C5.0"),
 
   59   C50Control(
"C5.0Control"),
 
   60   asfactor(
"as.factor"),
 
 
   86     predict(
"predict.C5.0"),
 
   88     C50Control(
"C5.0Control"),
 
   89     asfactor(
"as.factor"),
 
 
  126      Error(
"Init", 
"R's package C50 can not be loaded.");
 
  127      Log() << kFATAL << 
" R's package C50 can not be loaded." 
 
  135   if (
Data()->GetNTrainingEvents() == 0) 
Log() << kFATAL << 
"<Train> Data() has zero events" << 
Endl;
 
  150        r << 
"save(C50Model,file='" + path + 
"')";
 
 
  163                                      predictors for splits? Note: the C5.0 command line version defaults this \ 
  164                                      parameter to ‘FALSE’, meaning no attempted gropings will be evaluated \ 
  165                                      during the tree growing stage.");
 
  167                                     the rules by their affect on the error rate and groups the \ 
  168                                     rules into the specified number of bands. This modifies the \ 
  169                                     output so that the effect on the error rate can be seen for \ 
  170                                     the groups of rules within a band. If this options is \ 
  171                                     selected and ‘rules = kFALSE’, a warning is issued and ‘rules’ \ 
  172                                     is changed to ‘kTRUE’.");
 
  175                                                                         step to simplify the tree.");
 
  178                                                           put in at least two of the splits.");
 
  181                                                                      of the data. See Quinlan (1993) for details and examples.");
 
  183                                                       proportion of the data should be used to train the model. By \ 
  184                                                       default, all the samples are used for model training. Samples \ 
  185                                                       not used for training are used to evaluate the accuracy of \ 
  186                                                       the model in the printed output.");
 
  189                                                                      stopping boosting should be used.");
 
 
  198      Log() << kERROR << 
" fNTrials <=0... that does not work !! " 
  199            << 
" I set it to 1 .. just so that the program does not crash" 
 
  218   Log() << kINFO << 
"Testing Classification C50 METHOD  " << 
Endl;
 
 
  231   for (
UInt_t i = 0; i < nvar; i++) {
 
 
  263   std::vector<std::vector<Float_t> > 
inputData(nvars);
 
  264   for (
UInt_t i = 0; i < nvars; i++) {
 
  265      inputData[i] =  std::vector<Float_t>(nEvents); 
 
  271      assert(nvars == 
e->GetNVariables());
 
  272      for (
UInt_t i = 0; i < nvars; i++) {
 
  280   for (
UInt_t i = 0; i < nvars; i++) {
 
  286   std::vector<Double_t> mvaValues(nEvents);
 
  294      Log() << kINFO <<
Form(
"Dataset[%s] : ",
DataInfo().
GetName())<< 
"Elapsed time for evaluation of " << nEvents <<  
" events: " 
  295            << 
timer.GetElapsedTime() << 
"       " << 
Endl;
 
 
  312   Log() << 
"Decision Trees and Rule-Based Models " << 
Endl;
 
 
  326   TString path = GetWeightFileDir() +  
"/" + GetName() + 
".RData";
 
  330   r << 
"load('" + path + 
"')";
 
 
#define REGISTER_METHOD(CLASS)
for example
 
bool Bool_t
Boolean (0=false, 1=true) (bool)
 
long long Long64_t
Portable signed long integer 8 bytes.
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
void Error(const char *location, const char *msgfmt,...)
Use this function in case an error occurred.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
 
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
 
const_iterator begin() const
 
const_iterator end() const
 
This is a class to create DataFrames from ROOT to R.
 
static TRInterface & Instance()
static method to get an TRInterface instance reference
 
This is a class to get ROOT's objects from R's objects.
 
OptionBase * DeclareOptionRef(T &ref, const TString &name, const TString &desc="")
 
Class that contains all the data information.
 
UInt_t GetNVariables() const
 
std::vector< TString > GetListOfVariables() const
returns list of variables
 
const Event * GetEvent() const
returns event without transformations
 
Types::ETreeType GetCurrentType() const
 
Long64_t GetNEvents(Types::ETreeType type=Types::kMaxTreeType) const
 
UInt_t GetNVariables() const
access the number of variables through the datasetinfo
 
void SetCurrentEvent(Long64_t ievt) const
 
const char * GetName() const override
 
Bool_t IsModelPersistence() const
 
const TString & GetWeightFileDir() const
 
const TString & GetMethodName() const
 
const Event * GetEvent() const
 
DataSetInfo & DataInfo() const
 
virtual void TestClassification()
initialization
 
void ReadStateFromFile()
Function to write options and weights to file.
 
void NoErrorCalc(Double_t *const err, Double_t *const errUpper)
 
void GetHelpMessage() const
 
Double_t GetMvaValue(Double_t *errLower=nullptr, Double_t *errUpper=nullptr)
 
static Bool_t IsModuleLoaded
 
virtual void TestClassification()
initialization
 
ROOT::R::TRFunctionImport asfactor
 
ROOT::R::TRObject * fModel
 
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
 
virtual void MakeClass(const TString &classFileName=TString("")) const
create reader class for method (classification only at present)
 
Bool_t fControlNoGlobalPruning
 
Bool_t fControlFuzzyThreshold
 
std::vector< TString > ListOfVariables
 
Bool_t fControlEarlyStopping
 
ROOT::R::TRFunctionImport C50Control
 
virtual std::vector< Double_t > GetMvaValues(Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false)
get all the MVA values for the events of the current Data type
 
ROOT::R::TRObject fModelControl
 
ROOT::R::TRFunctionImport predict
 
ROOT::R::TRFunctionImport C50
 
MethodC50(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
 
std::vector< std::string > fFactorTrain
 
ROOT::R::TRDataFrame fDfTrain
 
Timing information for training and evaluation of MVA methods.
 
Singleton class for Global types used by TMVA.
 
const Rcpp::internal::NamedPlaceHolder & Label
 
create variable transformations
 
MsgLogger & Endl(MsgLogger &ml)