Definition at line 27 of file FcnAdapter.h.
|
| | FcnAdapter (void(*fcn)(int &, double *, double &, double *, int), int dim=0) |
| |
| | ~FcnAdapter () override |
| |
| ROOT::Math::IMultiGenFunction * | Clone () const override |
| | Clone a function.
|
| |
| unsigned int | NDim () const override |
| | Retrieve the dimension of the function.
|
| |
| void | SetDimension (int dim) |
| |
| virtual | ~IBaseFunctionMultiDimTempl ()=default |
| |
| T | Derivative (const T *x, unsigned int icoord, T *previous_grad, T *previous_g2, T *previous_gstep) const |
| | In some cases, the derivative algorithm will use information from the previous step, these can be passed in with this overload.
|
| |
| T | Derivative (const T *x, unsigned int icoord=0) const |
| | Return the partial derivative with respect to the passed coordinate.
|
| |
| virtual void | FdF (const T *x, T &f, T *df) const |
| | Optimized method to evaluate at the same time the function value and derivative at a point x.
|
| |
| virtual void | Gradient (const T *x, T *grad) const |
| | Evaluate all the vector of function derivatives (gradient) at a point x.
|
| |
| virtual bool | HasGradient () const |
| |
| T | operator() (const T *x) const |
| | Evaluate the function at a point x[].
|
| |
#include <Fit/FcnAdapter.h>
◆ FcnAdapter()
◆ ~FcnAdapter()
| ROOT::Fit::FcnAdapter::~FcnAdapter |
( |
| ) |
|
|
inlineoverride |
◆ Clone()
◆ DoEval()
◆ NDim()
| unsigned int ROOT::Fit::FcnAdapter::NDim |
( |
| ) |
const |
|
inlineoverridevirtual |
◆ SetDimension()
| void ROOT::Fit::FcnAdapter::SetDimension |
( |
int | dim | ) |
|
|
inline |
◆ fDim
| unsigned int ROOT::Fit::FcnAdapter::fDim |
|
private |
◆ fFCN
The documentation for this class was generated from the following file: