Logo ROOT  
Reference Guide
ROOT::Math::LorentzRotation Class Reference

Lorentz transformation class with the (4D) transformation represented by a 4x4 orthosymplectic matrix.

See also Boost, BoostX, BoostY and BoostZ for classes representing specialized Lorentz transformations. Also, the 3-D rotation classes can be considered to be special Lorentz transformations which do not mix space and time components.

Definition at line 64 of file LorentzRotation.h.

Public Types

enum  ELorentzRotationMatrixIndex {
  kXX = 0, kXY = 1, kXZ = 2, kXT = 3,
  kYX = 4, kYY = 5, kYZ = 6, kYT = 7,
  kZX = 8, kZY = 9, kZZ = 10, kZT = 11,
  kTX = 12, kTY = 13, kTZ = 14, kTT = 15
}
 
typedef double Scalar
 

Public Member Functions

 LorentzRotation ()
 Default constructor (identity transformation) More...
 
 LorentzRotation (AxisAngle const &a)
 
 LorentzRotation (Boost const &b)
 Construct from a pure boost. More...
 
 LorentzRotation (BoostX const &bx)
 
 LorentzRotation (BoostY const &by)
 
 LorentzRotation (BoostZ const &bz)
 
template<class Foreign4Vector >
 LorentzRotation (const Foreign4Vector &v1, const Foreign4Vector &v2, const Foreign4Vector &v3, const Foreign4Vector &v4)
 Construct from four orthosymplectic vectors (which must have methods x(), y(), z() and t()) which will be used as the columns of the Lorentz rotation matrix. More...
 
template<class ForeignMatrix >
 LorentzRotation (const ForeignMatrix &m)
 Construct from a linear algebra matrix of size at least 4x4, which must support operator()(i,j) to obtain elements (0,3) thru (3,3). More...
 
 LorentzRotation (EulerAngles const &e)
 
template<class IT >
 LorentzRotation (IT begin, IT end)
 Construct given a pair of pointers or iterators defining the beginning and end of an array of sixteen Scalars. More...
 
 LorentzRotation (LorentzRotation const &r)
 Copy constructor. More...
 
 LorentzRotation (Quaternion const &q)
 
 LorentzRotation (Rotation3D const &r)
 Construct from a 3-D rotation (no space-time mixing) More...
 
 LorentzRotation (RotationX const &r)
 
 LorentzRotation (RotationY const &r)
 
 LorentzRotation (RotationZ const &r)
 
 LorentzRotation (Scalar xx, Scalar xy, Scalar xz, Scalar xt, Scalar yx, Scalar yy, Scalar yz, Scalar yt, Scalar zx, Scalar zy, Scalar zz, Scalar zt, Scalar tx, Scalar ty, Scalar tz, Scalar tt)
 Raw constructor from sixteen Scalar components (without any checking) More...
 
template<class Foreign4Vector >
void GetComponents (Foreign4Vector &v1, Foreign4Vector &v2, Foreign4Vector &v3, Foreign4Vector &v4) const
 Get components into four 4-vectors which will be the (orthosymplectic) columns of the rotation matrix. More...
 
template<class IT >
void GetComponents (IT begin) const
 Get the 16 matrix components into data specified by an iterator begin. More...
 
template<class IT >
void GetComponents (IT begin, IT end) const
 Get the 16 matrix components into data specified by an iterator begin and another to the end of the desired data (16 past start). More...
 
void GetComponents (Scalar &xx, Scalar &xy, Scalar &xz, Scalar &xt, Scalar &yx, Scalar &yy, Scalar &yz, Scalar &yt, Scalar &zx, Scalar &zy, Scalar &zz, Scalar &zt, Scalar &tx, Scalar &ty, Scalar &tz, Scalar &tt) const
 Get the sixteen components into sixteen scalars. More...
 
template<class ForeignMatrix >
void GetRotationMatrix (ForeignMatrix &m) const
 Get components into a linear algebra matrix of size at least 4x4, which must support operator()(i,j) for write access to elements (0,0) thru (3,3). More...
 
LorentzRotation Inverse () const
 Return inverse of a rotation. More...
 
void Invert ()
 Invert a Lorentz rotation in place. More...
 
bool operator!= (const LorentzRotation &rhs) const
 
template<class Foreign4Vector >
Foreign4Vector operator() (const Foreign4Vector &v) const
 Lorentz transformation operation on an arbitrary 4-vector v. More...
 
template<class CoordSystem >
LorentzVector< CoordSystem > operator() (const LorentzVector< CoordSystem > &v) const
 Lorentz transformation operation on a LorentzVector in any coordinate system. More...
 
LorentzVector< ROOT::Math::PxPyPzE4D< double > > operator() (const LorentzVector< ROOT::Math::PxPyPzE4D< double > > &v) const
 Lorentz transformation operation on a Minkowski ('Cartesian') LorentzVector. More...
 
template<class A4Vector >
A4Vector operator* (const A4Vector &v) const
 Overload operator * for rotation on a vector. More...
 
LorentzRotation operator* (const AxisAngle &a) const
 
LorentzRotation operator* (const Boost &b) const
 Multiply (combine) this Lorentz rotation by a pure Lorentz boost. More...
 
LorentzRotation operator* (const BoostX &b) const
 
LorentzRotation operator* (const BoostY &b) const
 
LorentzRotation operator* (const BoostZ &b) const
 
LorentzRotation operator* (const EulerAngles &e) const
 
LorentzRotation operator* (const LorentzRotation &r) const
 Multiply (combine) this Lorentz rotation by another LorentzRotation. More...
 
LorentzRotation operator* (const Quaternion &q) const
 
LorentzRotation operator* (const Rotation3D &r) const
 Multiply (combine) this Lorentz rotation by a 3-D Rotation. More...
 
LorentzRotation operator* (const RotationX &rx) const
 
LorentzRotation operator* (const RotationY &ry) const
 
LorentzRotation operator* (const RotationZ &rz) const
 
template<class R >
LorentzRotationoperator*= (const R &r)
 Post-Multiply (on right) by another LorentzRotation, Boost, or rotation : T = T*R. More...
 
LorentzRotationoperator= (AxisAngle const &a)
 
LorentzRotationoperator= (Boost const &b)
 Assign from a pure boost. More...
 
LorentzRotationoperator= (BoostX const &b)
 
LorentzRotationoperator= (BoostY const &b)
 
LorentzRotationoperator= (BoostZ const &b)
 
template<class ForeignMatrix >
LorentzRotationoperator= (const ForeignMatrix &m)
 Assign from a linear algebra matrix of size at least 4x4, which must support operator()(i,j) to obtain elements (0,3) thru (3,3). More...
 
LorentzRotationoperator= (EulerAngles const &e)
 
LorentzRotationoperator= (LorentzRotation const &rhs)
 Assign from another LorentzRotation. More...
 
LorentzRotationoperator= (Quaternion const &q)
 
LorentzRotationoperator= (Rotation3D const &r)
 Assign from a 3-D rotation. More...
 
LorentzRotationoperator= (RotationX const &r)
 
LorentzRotationoperator= (RotationY const &r)
 
LorentzRotationoperator= (RotationZ const &r)
 
bool operator== (const LorentzRotation &rhs) const
 Equality/inequality operators. More...
 
void Rectify ()
 Re-adjust components to eliminate small deviations from a perfect orthosyplectic matrix. More...
 
template<class Foreign4Vector >
void SetComponents (const Foreign4Vector &v1, const Foreign4Vector &v2, const Foreign4Vector &v3, const Foreign4Vector &v4)
 Set components from four orthosymplectic vectors (which must have methods x(), y(), z(), and t()) which will be used as the columns of the Lorentz rotation matrix. More...
 
template<class IT >
void SetComponents (IT begin, IT end)
 Set the 16 matrix components given an iterator to the start of the desired data, and another to the end (16 past start). More...
 
void SetComponents (Scalar xx, Scalar xy, Scalar xz, Scalar xt, Scalar yx, Scalar yy, Scalar yz, Scalar yt, Scalar zx, Scalar zy, Scalar zz, Scalar zt, Scalar tx, Scalar ty, Scalar tz, Scalar tt)
 Set the components from sixteen scalars – UNCHECKED for orthosymplectic. More...
 
template<class ForeignMatrix >
void SetRotationMatrix (const ForeignMatrix &m)
 Set components from a linear algebra matrix of size at least 4x4, which must support operator()(i,j) to obtain elements (0,0) thru (3,3). More...
 

Private Attributes

Scalar fM [16]
 

#include <Math/GenVector/LorentzRotation.h>

Member Typedef Documentation

◆ Scalar

Definition at line 73 of file LorentzRotation.h.

Member Enumeration Documentation

◆ ELorentzRotationMatrixIndex

Enumerator
kXX 
kXY 
kXZ 
kXT 
kYX 
kYY 
kYZ 
kYT 
kZX 
kZY 
kZZ 
kZT 
kTX 
kTY 
kTZ 
kTT 

Definition at line 75 of file LorentzRotation.h.

Constructor & Destructor Documentation

◆ LorentzRotation() [1/17]

ROOT::Math::LorentzRotation::LorentzRotation ( )

Default constructor (identity transformation)

Definition at line 46 of file LorentzRotation.cxx.

◆ LorentzRotation() [2/17]

template<class IT >
ROOT::Math::LorentzRotation::LorentzRotation ( IT  begin,
IT  end 
)
inline

Construct given a pair of pointers or iterators defining the beginning and end of an array of sixteen Scalars.

Definition at line 94 of file LorentzRotation.h.

◆ LorentzRotation() [3/17]

ROOT::Math::LorentzRotation::LorentzRotation ( LorentzRotation const &  r)
inline

Copy constructor.

Definition at line 102 of file LorentzRotation.h.

◆ LorentzRotation() [4/17]

ROOT::Math::LorentzRotation::LorentzRotation ( Boost const &  b)
inlineexplicit

Construct from a pure boost.

Definition at line 109 of file LorentzRotation.h.

◆ LorentzRotation() [5/17]

ROOT::Math::LorentzRotation::LorentzRotation ( BoostX const &  bx)
inlineexplicit

Definition at line 110 of file LorentzRotation.h.

◆ LorentzRotation() [6/17]

ROOT::Math::LorentzRotation::LorentzRotation ( BoostY const &  by)
inlineexplicit

Definition at line 111 of file LorentzRotation.h.

◆ LorentzRotation() [7/17]

ROOT::Math::LorentzRotation::LorentzRotation ( BoostZ const &  bz)
inlineexplicit

Definition at line 112 of file LorentzRotation.h.

◆ LorentzRotation() [8/17]

ROOT::Math::LorentzRotation::LorentzRotation ( Rotation3D const &  r)
explicit

Construct from a 3-D rotation (no space-time mixing)

Definition at line 54 of file LorentzRotation.cxx.

◆ LorentzRotation() [9/17]

ROOT::Math::LorentzRotation::LorentzRotation ( AxisAngle const &  a)
explicit

Definition at line 65 of file LorentzRotation.cxx.

◆ LorentzRotation() [10/17]

ROOT::Math::LorentzRotation::LorentzRotation ( EulerAngles const &  e)
explicit

Definition at line 77 of file LorentzRotation.cxx.

◆ LorentzRotation() [11/17]

ROOT::Math::LorentzRotation::LorentzRotation ( Quaternion const &  q)
explicit

Definition at line 89 of file LorentzRotation.cxx.

◆ LorentzRotation() [12/17]

ROOT::Math::LorentzRotation::LorentzRotation ( RotationX const &  r)
explicit

Definition at line 101 of file LorentzRotation.cxx.

◆ LorentzRotation() [13/17]

ROOT::Math::LorentzRotation::LorentzRotation ( RotationY const &  r)
explicit

Definition at line 111 of file LorentzRotation.cxx.

◆ LorentzRotation() [14/17]

ROOT::Math::LorentzRotation::LorentzRotation ( RotationZ const &  r)
explicit

Definition at line 121 of file LorentzRotation.cxx.

◆ LorentzRotation() [15/17]

template<class ForeignMatrix >
ROOT::Math::LorentzRotation::LorentzRotation ( const ForeignMatrix &  m)
inlineexplicit

Construct from a linear algebra matrix of size at least 4x4, which must support operator()(i,j) to obtain elements (0,3) thru (3,3).

Precondition: The matrix is assumed to be orthosymplectic. NO checking or re-adjusting is performed. Note: (0,0) refers to the XX component; (3,3) refers to the TT component.

Definition at line 133 of file LorentzRotation.h.

◆ LorentzRotation() [16/17]

template<class Foreign4Vector >
ROOT::Math::LorentzRotation::LorentzRotation ( const Foreign4Vector &  v1,
const Foreign4Vector &  v2,
const Foreign4Vector &  v3,
const Foreign4Vector &  v4 
)
inline

Construct from four orthosymplectic vectors (which must have methods x(), y(), z() and t()) which will be used as the columns of the Lorentz rotation matrix.

The orthosymplectic conditions will be checked, and values adjusted so that the result will always be a good Lorentz rotation matrix.

Definition at line 143 of file LorentzRotation.h.

◆ LorentzRotation() [17/17]

ROOT::Math::LorentzRotation::LorentzRotation ( Scalar  xx,
Scalar  xy,
Scalar  xz,
Scalar  xt,
Scalar  yx,
Scalar  yy,
Scalar  yz,
Scalar  yt,
Scalar  zx,
Scalar  zy,
Scalar  zz,
Scalar  zt,
Scalar  tx,
Scalar  ty,
Scalar  tz,
Scalar  tt 
)
inline

Raw constructor from sixteen Scalar components (without any checking)

Definition at line 152 of file LorentzRotation.h.

Member Function Documentation

◆ GetComponents() [1/4]

template<class Foreign4Vector >
void ROOT::Math::LorentzRotation::GetComponents ( Foreign4Vector &  v1,
Foreign4Vector &  v2,
Foreign4Vector &  v3,
Foreign4Vector &  v4 
) const
inline

Get components into four 4-vectors which will be the (orthosymplectic) columns of the rotation matrix.

(The 4-vector class must have a constructor from 4 Scalars used as x, y, z, t)

Definition at line 255 of file LorentzRotation.h.

◆ GetComponents() [2/4]

template<class IT >
void ROOT::Math::LorentzRotation::GetComponents ( IT  begin) const
inline

Get the 16 matrix components into data specified by an iterator begin.

Definition at line 297 of file LorentzRotation.h.

◆ GetComponents() [3/4]

template<class IT >
void ROOT::Math::LorentzRotation::GetComponents ( IT  begin,
IT  end 
) const
inline

Get the 16 matrix components into data specified by an iterator begin and another to the end of the desired data (16 past start).

Definition at line 284 of file LorentzRotation.h.

◆ GetComponents() [4/4]

void ROOT::Math::LorentzRotation::GetComponents ( Scalar xx,
Scalar xy,
Scalar xz,
Scalar xt,
Scalar yx,
Scalar yy,
Scalar yz,
Scalar yt,
Scalar zx,
Scalar zy,
Scalar zz,
Scalar zt,
Scalar tx,
Scalar ty,
Scalar tz,
Scalar tt 
) const
inline

Get the sixteen components into sixteen scalars.

Definition at line 348 of file LorentzRotation.h.

◆ GetRotationMatrix()

template<class ForeignMatrix >
void ROOT::Math::LorentzRotation::GetRotationMatrix ( ForeignMatrix &  m) const
inline

Get components into a linear algebra matrix of size at least 4x4, which must support operator()(i,j) for write access to elements (0,0) thru (3,3).

Definition at line 323 of file LorentzRotation.h.

◆ Inverse()

LorentzRotation ROOT::Math::LorentzRotation::Inverse ( ) const

Return inverse of a rotation.

Definition at line 196 of file LorentzRotation.cxx.

◆ Invert()

void ROOT::Math::LorentzRotation::Invert ( )

Invert a Lorentz rotation in place.

Definition at line 185 of file LorentzRotation.cxx.

◆ operator!=()

Definition at line 468 of file LorentzRotation.h.

◆ operator()() [1/3]

template<class Foreign4Vector >
Foreign4Vector ROOT::Math::LorentzRotation::operator() ( const Foreign4Vector &  v) const
inline

Lorentz transformation operation on an arbitrary 4-vector v.

Preconditions: v must implement methods x(), y(), z(), and t() and the arbitrary vector type must have a constructor taking (x,y,z,t)

Definition at line 396 of file LorentzRotation.h.

◆ operator()() [2/3]

template<class CoordSystem >
LorentzVector<CoordSystem> ROOT::Math::LorentzRotation::operator() ( const LorentzVector< CoordSystem > &  v) const
inline

Lorentz transformation operation on a LorentzVector in any coordinate system.

Definition at line 383 of file LorentzRotation.h.

◆ operator()() [3/3]

LorentzVector< ROOT::Math::PxPyPzE4D<double> > ROOT::Math::LorentzRotation::operator() ( const LorentzVector< ROOT::Math::PxPyPzE4D< double > > &  v) const
inline

Lorentz transformation operation on a Minkowski ('Cartesian') LorentzVector.

Definition at line 365 of file LorentzRotation.h.

◆ operator*() [1/13]

template<class A4Vector >
A4Vector ROOT::Math::LorentzRotation::operator* ( const A4Vector &  v) const
inline

Overload operator * for rotation on a vector.

Definition at line 407 of file LorentzRotation.h.

◆ operator*() [2/13]

LorentzRotation ROOT::Math::LorentzRotation::operator* ( const AxisAngle a) const
inline

Definition at line 444 of file LorentzRotation.h.

◆ operator*() [3/13]

LorentzRotation ROOT::Math::LorentzRotation::operator* ( const Boost b) const
inline

Multiply (combine) this Lorentz rotation by a pure Lorentz boost.

Definition at line 435 of file LorentzRotation.h.

◆ operator*() [4/13]

LorentzRotation ROOT::Math::LorentzRotation::operator* ( const BoostX b) const
inline

Definition at line 436 of file LorentzRotation.h.

◆ operator*() [5/13]

LorentzRotation ROOT::Math::LorentzRotation::operator* ( const BoostY b) const
inline

Definition at line 437 of file LorentzRotation.h.

◆ operator*() [6/13]

LorentzRotation ROOT::Math::LorentzRotation::operator* ( const BoostZ b) const
inline

Definition at line 438 of file LorentzRotation.h.

◆ operator*() [7/13]

LorentzRotation ROOT::Math::LorentzRotation::operator* ( const EulerAngles e) const
inline

Definition at line 445 of file LorentzRotation.h.

◆ operator*() [8/13]

LorentzRotation ROOT::Math::LorentzRotation::operator* ( const LorentzRotation r) const

Multiply (combine) this Lorentz rotation by another LorentzRotation.

Definition at line 206 of file LorentzRotation.cxx.

◆ operator*() [9/13]

LorentzRotation ROOT::Math::LorentzRotation::operator* ( const Quaternion q) const
inline

Definition at line 446 of file LorentzRotation.h.

◆ operator*() [10/13]

LorentzRotation ROOT::Math::LorentzRotation::operator* ( const Rotation3D r) const
inline

Multiply (combine) this Lorentz rotation by a 3-D Rotation.

Definition at line 443 of file LorentzRotation.h.

◆ operator*() [11/13]

LorentzRotation ROOT::Math::LorentzRotation::operator* ( const RotationX rx) const
inline

Definition at line 447 of file LorentzRotation.h.

◆ operator*() [12/13]

LorentzRotation ROOT::Math::LorentzRotation::operator* ( const RotationY ry) const
inline

Definition at line 448 of file LorentzRotation.h.

◆ operator*() [13/13]

LorentzRotation ROOT::Math::LorentzRotation::operator* ( const RotationZ rz) const
inline

Definition at line 449 of file LorentzRotation.h.

◆ operator*=()

template<class R >
LorentzRotation& ROOT::Math::LorentzRotation::operator*= ( const R r)
inline

Post-Multiply (on right) by another LorentzRotation, Boost, or rotation : T = T*R.

Definition at line 457 of file LorentzRotation.h.

◆ operator=() [1/13]

LorentzRotation& ROOT::Math::LorentzRotation::operator= ( AxisAngle const &  a)
inline

Definition at line 193 of file LorentzRotation.h.

◆ operator=() [2/13]

LorentzRotation& ROOT::Math::LorentzRotation::operator= ( Boost const &  b)
inline

Assign from a pure boost.

Definition at line 179 of file LorentzRotation.h.

◆ operator=() [3/13]

LorentzRotation& ROOT::Math::LorentzRotation::operator= ( BoostX const &  b)
inline

Definition at line 181 of file LorentzRotation.h.

◆ operator=() [4/13]

LorentzRotation& ROOT::Math::LorentzRotation::operator= ( BoostY const &  b)
inline

Definition at line 183 of file LorentzRotation.h.

◆ operator=() [5/13]

LorentzRotation& ROOT::Math::LorentzRotation::operator= ( BoostZ const &  b)
inline

Definition at line 185 of file LorentzRotation.h.

◆ operator=() [6/13]

template<class ForeignMatrix >
LorentzRotation& ROOT::Math::LorentzRotation::operator= ( const ForeignMatrix &  m)
inline

Assign from a linear algebra matrix of size at least 4x4, which must support operator()(i,j) to obtain elements (0,3) thru (3,3).

Precondition: The matrix is assumed to be orthosymplectic. NO checking or re-adjusting is performed.

Definition at line 213 of file LorentzRotation.h.

◆ operator=() [7/13]

LorentzRotation& ROOT::Math::LorentzRotation::operator= ( EulerAngles const &  e)
inline

Definition at line 195 of file LorentzRotation.h.

◆ operator=() [8/13]

LorentzRotation& ROOT::Math::LorentzRotation::operator= ( LorentzRotation const &  rhs)
inline

Assign from another LorentzRotation.

Definition at line 167 of file LorentzRotation.h.

◆ operator=() [9/13]

LorentzRotation& ROOT::Math::LorentzRotation::operator= ( Quaternion const &  q)
inline

Definition at line 197 of file LorentzRotation.h.

◆ operator=() [10/13]

LorentzRotation& ROOT::Math::LorentzRotation::operator= ( Rotation3D const &  r)
inline

Assign from a 3-D rotation.

Definition at line 191 of file LorentzRotation.h.

◆ operator=() [11/13]

LorentzRotation& ROOT::Math::LorentzRotation::operator= ( RotationX const &  r)
inline

Definition at line 203 of file LorentzRotation.h.

◆ operator=() [12/13]

LorentzRotation& ROOT::Math::LorentzRotation::operator= ( RotationY const &  r)
inline

Definition at line 201 of file LorentzRotation.h.

◆ operator=() [13/13]

LorentzRotation& ROOT::Math::LorentzRotation::operator= ( RotationZ const &  r)
inline

Definition at line 199 of file LorentzRotation.h.

◆ operator==()

bool ROOT::Math::LorentzRotation::operator== ( const LorentzRotation rhs) const
inline

Equality/inequality operators.

Definition at line 462 of file LorentzRotation.h.

◆ Rectify()

void ROOT::Math::LorentzRotation::Rectify ( )

Re-adjust components to eliminate small deviations from a perfect orthosyplectic matrix.

Definition at line 132 of file LorentzRotation.cxx.

◆ SetComponents() [1/3]

template<class Foreign4Vector >
void ROOT::Math::LorentzRotation::SetComponents ( const Foreign4Vector &  v1,
const Foreign4Vector &  v2,
const Foreign4Vector &  v3,
const Foreign4Vector &  v4 
)
inline

Set components from four orthosymplectic vectors (which must have methods x(), y(), z(), and t()) which will be used as the columns of the Lorentz rotation matrix.

The values will be adjusted so that the result will always be a good Lorentz rotation matrix.

Definition at line 237 of file LorentzRotation.h.

◆ SetComponents() [2/3]

template<class IT >
void ROOT::Math::LorentzRotation::SetComponents ( IT  begin,
IT  end 
)
inline

Set the 16 matrix components given an iterator to the start of the desired data, and another to the end (16 past start).

Definition at line 270 of file LorentzRotation.h.

◆ SetComponents() [3/3]

void ROOT::Math::LorentzRotation::SetComponents ( Scalar  xx,
Scalar  xy,
Scalar  xz,
Scalar  xt,
Scalar  yx,
Scalar  yy,
Scalar  yz,
Scalar  yt,
Scalar  zx,
Scalar  zy,
Scalar  zz,
Scalar  zt,
Scalar  tx,
Scalar  ty,
Scalar  tz,
Scalar  tt 
)
inline

Set the components from sixteen scalars – UNCHECKED for orthosymplectic.

Definition at line 334 of file LorentzRotation.h.

◆ SetRotationMatrix()

template<class ForeignMatrix >
void ROOT::Math::LorentzRotation::SetRotationMatrix ( const ForeignMatrix &  m)
inline

Set components from a linear algebra matrix of size at least 4x4, which must support operator()(i,j) to obtain elements (0,0) thru (3,3).

Precondition: The matrix is assumed to be orthosymplectic. NO checking or re-adjusting is performed.

Definition at line 309 of file LorentzRotation.h.

Member Data Documentation

◆ fM

Scalar ROOT::Math::LorentzRotation::fM[16]
private

Definition at line 474 of file LorentzRotation.h.

Libraries for ROOT::Math::LorentzRotation:
[legend]

The documentation for this class was generated from the following files: