ROOT   Reference Guide
Searching...
No Matches
ROOT::Math::Quaternion Class Reference

Rotation class with the (3D) rotation represented by a unit quaternion (u, i, j, k).

This is the optimal representation for multiplication of multiple rotations, and for computation of group-manifold-invariant distance between two rotations. See also ROOT::Math::AxisAngle, ROOT::Math::EulerAngles, and ROOT::Math::Rotation3D.

Overview of the physics vector library

Definition at line 49 of file Quaternion.h.

## Public Types

typedef double Scalar

typedef DisplacementVector3D< Cartesian3D< double >, DefaultCoordinateSystemTagXYZVector
Rotation operation on a cartesian vector.

## Public Member Functions

Quaternion ()
Default constructor (identity rotation)

template<class OtherRotation >
constexpr Quaternion (const OtherRotation &r)
Construct from another supported rotation type (see gv_detail::convert )

template<class IT >
Quaternion (IT begin, IT end)
Construct given a pair of pointers or iterators defining the beginning and end of an array of four Scalars.

Quaternion (Scalar u, Scalar i, Scalar j, Scalar k)
Construct from four Scalars representing the coefficients of u, i, j, k.

Scalar Distance (const Quaternion &q) const
Distance between two rotations in Quaternion form Note: The rotation group is isomorphic to a 3-sphere with diametrically opposite points identified.

template<class IT >
void GetComponents (IT begin) const
Get the components into data specified by an iterator begin.

template<class IT >
void GetComponents (IT begin, IT end) const
Get the components into data specified by an iterator begin and another to the end of the desired data (4 past start).

void GetComponents (Scalar &u, Scalar &i, Scalar &j, Scalar &k) const
Get the components into four Scalars.

Scalar I () const

Quaternion Inverse () const
Return inverse of a rotation.

void Invert ()
Invert a rotation in place.

Scalar J () const

Scalar K () const

bool operator!= (const Quaternion &rhs) const

template<class CoordSystem , class Tag >
DisplacementVector3D< CoordSystem, Tag > operator() (const DisplacementVector3D< CoordSystem, Tag > &v) const
Rotation operation on a displacement vector in any coordinate system.

template<class ForeignVector >
ForeignVector operator() (const ForeignVector &v) const
Rotation operation on an arbitrary vector v.

template<class CoordSystem >
LorentzVector< CoordSystem > operator() (const LorentzVector< CoordSystem > &v) const
Rotation operation on a Lorentz vector in any 4D coordinate system.

template<class CoordSystem , class Tag >
PositionVector3D< CoordSystem, Tag > operator() (const PositionVector3D< CoordSystem, Tag > &p) const
Rotation operation on a position vector in any coordinate system.

XYZVector operator() (const XYZVector &v) const

template<class AVector >
AVector operator* (const AVector &v) const
Overload operator * for rotation on a vector.

Quaternion operator* (const AxisAngle &a) const

Quaternion operator* (const EulerAngles &e) const

Quaternion operator* (const Quaternion &q) const
Multiply (combine) two rotations.

Quaternion operator* (const Rotation3D &r) const

Quaternion operator* (const RotationX &rx) const

Quaternion operator* (const RotationY &ry) const

Quaternion operator* (const RotationZ &rz) const

Quaternion operator* (const RotationZYX &r) const

template<class R >
Quaternionoperator*= (const R &r)
Post-Multiply (on right) by another rotation : T = T*R.

template<class OtherRotation >
Quaternionoperator= (OtherRotation const &r)
Assign from another supported rotation type (see gv_detail::convert )

bool operator== (const Quaternion &rhs) const
Equality/inequality operators.

void Rectify ()
Re-adjust components to eliminate small deviations from |Q| = 1 orthonormality.

template<class IT >
void SetComponents (IT begin, IT end)
Set the four components given an iterator to the start of the desired data, and another to the end (4 past start).

void SetComponents (Scalar u, Scalar i, Scalar j, Scalar k)
Set the components based on four Scalars.

Scalar U () const
Access to the four quaternion components: U() is the coefficient of the identity Pauli matrix, I(), J() and K() are the coefficients of sigma_x, sigma_y, sigma_z.

## Private Attributes

Scalar fI

Scalar fJ

Scalar fK

Scalar fU

#include <Math/GenVector/Quaternion.h>

## ◆ Scalar

 typedef double ROOT::Math::Quaternion::Scalar

Definition at line 53 of file Quaternion.h.

## ◆ XYZVector

Rotation operation on a cartesian vector.

Definition at line 177 of file Quaternion.h.

## ◆ Quaternion() [1/4]

 ROOT::Math::Quaternion::Quaternion ( )
inline

Default constructor (identity rotation)

Definition at line 60 of file Quaternion.h.

## ◆ Quaternion() [2/4]

template<class IT >
 ROOT::Math::Quaternion::Quaternion ( IT begin, IT end )
inline

Construct given a pair of pointers or iterators defining the beginning and end of an array of four Scalars.

Definition at line 72 of file Quaternion.h.

## ◆ Quaternion() [3/4]

template<class OtherRotation >
 constexpr ROOT::Math::Quaternion::Quaternion ( const OtherRotation & r )
inlineexplicitconstexpr

Construct from another supported rotation type (see gv_detail::convert )

Definition at line 80 of file Quaternion.h.

## ◆ Quaternion() [4/4]

 ROOT::Math::Quaternion::Quaternion ( Scalar u, Scalar i, Scalar j, Scalar k )
inline

Construct from four Scalars representing the coefficients of u, i, j, k.

Definition at line 86 of file Quaternion.h.

## ◆ Distance()

 Quaternion::Scalar ROOT::Math::Quaternion::Distance ( const Quaternion & q ) const

Distance between two rotations in Quaternion form Note: The rotation group is isomorphic to a 3-sphere with diametrically opposite points identified.

The (rotation group-invariant) is the smaller of the two possible angles between the images of the two totations on that sphere. Thus the distance is never greater than pi/2.

Definition at line 91 of file Quaternion.cxx.

## ◆ GetComponents() [1/3]

template<class IT >
 void ROOT::Math::Quaternion::GetComponents ( IT begin ) const
inline

Get the components into data specified by an iterator begin.

Definition at line 140 of file Quaternion.h.

## ◆ GetComponents() [2/3]

template<class IT >
 void ROOT::Math::Quaternion::GetComponents ( IT begin, IT end ) const
inline

Get the components into data specified by an iterator begin and another to the end of the desired data (4 past start).

Definition at line 127 of file Quaternion.h.

## ◆ GetComponents() [3/3]

 void ROOT::Math::Quaternion::GetComponents ( Scalar & u, Scalar & i, Scalar & j, Scalar & k ) const
inline

Get the components into four Scalars.

Definition at line 158 of file Quaternion.h.

## ◆ I()

 Scalar ROOT::Math::Quaternion::I ( ) const
inline

Definition at line 168 of file Quaternion.h.

## ◆ Inverse()

 Quaternion ROOT::Math::Quaternion::Inverse ( ) const
inline

Return inverse of a rotation.

Definition at line 255 of file Quaternion.h.

## ◆ Invert()

 void ROOT::Math::Quaternion::Invert ( )
inline

Invert a rotation in place.

Definition at line 250 of file Quaternion.h.

## ◆ J()

 Scalar ROOT::Math::Quaternion::J ( ) const
inline

Definition at line 169 of file Quaternion.h.

## ◆ K()

 Scalar ROOT::Math::Quaternion::K ( ) const
inline

Definition at line 170 of file Quaternion.h.

## ◆ operator!=()

 bool ROOT::Math::Quaternion::operator!= ( const Quaternion & rhs ) const
inline

Definition at line 309 of file Quaternion.h.

## ◆ operator()() [1/5]

template<class CoordSystem , class Tag >
 DisplacementVector3D< CoordSystem, Tag > ROOT::Math::Quaternion::operator() ( const DisplacementVector3D< CoordSystem, Tag > & v ) const
inline

Rotation operation on a displacement vector in any coordinate system.

Definition at line 193 of file Quaternion.h.

## ◆ operator()() [2/5]

template<class ForeignVector >
 ForeignVector ROOT::Math::Quaternion::operator() ( const ForeignVector & v ) const
inline

Rotation operation on an arbitrary vector v.

Preconditions: v must implement methods x(), y(), and z() and the arbitrary vector type must have a constructor taking (x,y,z)

Definition at line 231 of file Quaternion.h.

## ◆ operator()() [3/5]

template<class CoordSystem >
 LorentzVector< CoordSystem > ROOT::Math::Quaternion::operator() ( const LorentzVector< CoordSystem > & v ) const
inline

Rotation operation on a Lorentz vector in any 4D coordinate system.

Definition at line 217 of file Quaternion.h.

## ◆ operator()() [4/5]

template<class CoordSystem , class Tag >
 PositionVector3D< CoordSystem, Tag > ROOT::Math::Quaternion::operator() ( const PositionVector3D< CoordSystem, Tag > & p ) const
inline

Rotation operation on a position vector in any coordinate system.

Definition at line 206 of file Quaternion.h.

## ◆ operator()() [5/5]

 XYZVector ROOT::Math::Quaternion::operator() ( const XYZVector & v ) const
inline

Definition at line 178 of file Quaternion.h.

## ◆ operator*() [1/9]

template<class AVector >
 AVector ROOT::Math::Quaternion::operator* ( const AVector & v ) const
inline

Overload operator * for rotation on a vector.

Definition at line 242 of file Quaternion.h.

## ◆ operator*() [2/9]

 Quaternion ROOT::Math::Quaternion::operator* ( const AxisAngle & a ) const

Definition at line 76 of file Quaternion.cxx.

## ◆ operator*() [3/9]

 Quaternion ROOT::Math::Quaternion::operator* ( const EulerAngles & e ) const

Definition at line 81 of file Quaternion.cxx.

## ◆ operator*() [4/9]

 Quaternion ROOT::Math::Quaternion::operator* ( const Quaternion & q ) const
inline

Multiply (combine) two rotations.

Multiply (combine) two rotations

Definition at line 265 of file Quaternion.h.

## ◆ operator*() [5/9]

 Quaternion ROOT::Math::Quaternion::operator* ( const Rotation3D & r ) const

Definition at line 71 of file Quaternion.cxx.

## ◆ operator*() [6/9]

 Quaternion ROOT::Math::Quaternion::operator* ( const RotationX & rx ) const

Definition at line 29 of file QuaternionXaxial.cxx.

## ◆ operator*() [7/9]

 Quaternion ROOT::Math::Quaternion::operator* ( const RotationY & ry ) const

Definition at line 40 of file QuaternionXaxial.cxx.

## ◆ operator*() [8/9]

 Quaternion ROOT::Math::Quaternion::operator* ( const RotationZ & rz ) const

Definition at line 51 of file QuaternionXaxial.cxx.

## ◆ operator*() [9/9]

 Quaternion ROOT::Math::Quaternion::operator* ( const RotationZYX & r ) const

Definition at line 86 of file Quaternion.cxx.

## ◆ operator*=()

template<class R >
 Quaternion & ROOT::Math::Quaternion::operator*= ( const R & r )
inline

Post-Multiply (on right) by another rotation : T = T*R.

Definition at line 284 of file Quaternion.h.

## ◆ operator=()

template<class OtherRotation >
 Quaternion & ROOT::Math::Quaternion::operator= ( OtherRotation const & r )
inline

Assign from another supported rotation type (see gv_detail::convert )

Definition at line 101 of file Quaternion.h.

## ◆ operator==()

 bool ROOT::Math::Quaternion::operator== ( const Quaternion & rhs ) const
inline

Equality/inequality operators.

Definition at line 302 of file Quaternion.h.

## ◆ Rectify()

 void ROOT::Math::Quaternion::Rectify ( )

Re-adjust components to eliminate small deviations from |Q| = 1 orthonormality.

Definition at line 34 of file Quaternion.cxx.

## ◆ SetComponents() [1/2]

template<class IT >
 void ROOT::Math::Quaternion::SetComponents ( IT begin, IT end )
inline

Set the four components given an iterator to the start of the desired data, and another to the end (4 past start).

Definition at line 113 of file Quaternion.h.

## ◆ SetComponents() [2/2]

 void ROOT::Math::Quaternion::SetComponents ( Scalar u, Scalar i, Scalar j, Scalar k )
inline

Set the components based on four Scalars.

The sum of the squares of these Scalars should be 1; no checking is done.

Definition at line 151 of file Quaternion.h.

## ◆ U()

 Scalar ROOT::Math::Quaternion::U ( ) const
inline

Access to the four quaternion components: U() is the coefficient of the identity Pauli matrix, I(), J() and K() are the coefficients of sigma_x, sigma_y, sigma_z.

Definition at line 167 of file Quaternion.h.

## ◆ fI

 Scalar ROOT::Math::Quaternion::fI
private

Definition at line 316 of file Quaternion.h.

## ◆ fJ

 Scalar ROOT::Math::Quaternion::fJ
private

Definition at line 317 of file Quaternion.h.

## ◆ fK

 Scalar ROOT::Math::Quaternion::fK
private

Definition at line 318 of file Quaternion.h.

## ◆ fU

 Scalar ROOT::Math::Quaternion::fU
private

Definition at line 315 of file Quaternion.h.

Libraries for ROOT::Math::Quaternion:

The documentation for this class was generated from the following files: