 ROOT   Reference Guide Quaternion.h
Go to the documentation of this file.
1 // @(#)root/mathcore:$Id$
2 // Authors: W. Brown, M. Fischler, L. Moneta 2005
3
4  /**********************************************************************
5  * *
6  * Copyright (c) 2005 , LCG ROOT FNAL MathLib Team *
7  * *
8  * *
9  **********************************************************************/
10
11 // Header file for rotation in 3 dimensions, represented by a quaternion
12 // Created by: Mark Fischler Thurs June 9 2005
13 //
14 // Last update: $Id$
15 //
16 #ifndef ROOT_Math_GenVector_Quaternion
17 #define ROOT_Math_GenVector_Quaternion 1
18
19
26
27 #include <algorithm>
28 #include <cassert>
29
30
31 namespace ROOT {
32 namespace Math {
33
34
35 //__________________________________________________________________________________________
36  /**
37  Rotation class with the (3D) rotation represented by
38  a unit quaternion (u, i, j, k).
39  This is the optimal representation for multiplication of multiple
40  rotations, and for computation of group-manifold-invariant distance
41  between two rotations.
43
44  @ingroup GenVector
45  */
46
47 class Quaternion {
48
49 public:
50
51  typedef double Scalar;
52
53  // ========== Constructors and Assignment =====================
54
55  /**
56  Default constructor (identity rotation)
57  */
59  : fU(1.0)
60  , fI(0.0)
61  , fJ(0.0)
62  , fK(0.0)
63  { }
64
65  /**
66  Construct given a pair of pointers or iterators defining the
67  beginning and end of an array of four Scalars
68  */
69  template<class IT>
70  Quaternion(IT begin, IT end) { SetComponents(begin,end); }
71
72  // ======== Construction From other Rotation Forms ==================
73
74  /**
75  Construct from another supported rotation type (see gv_detail::convert )
76  */
77  template <class OtherRotation>
78  explicit Quaternion(const OtherRotation & r) {gv_detail::convert(r,*this);}
79
80
81  /**
82  Construct from four Scalars representing the coefficients of u, i, j, k
83  */
85  fU(u), fI(i), fJ(j), fK(k) { }
86
87  // The compiler-generated copy ctor, copy assignment, and dtor are OK.
88
89  /**
90  Re-adjust components to eliminate small deviations from |Q| = 1
91  orthonormality.
92  */
93  void Rectify();
94
95  /**
96  Assign from another supported rotation type (see gv_detail::convert )
97  */
98  template <class OtherRotation>
99  Quaternion & operator=( OtherRotation const & r ) {
100  gv_detail::convert(r,*this);
101  return *this;
102  }
103
104  // ======== Components ==============
105
106  /**
107  Set the four components given an iterator to the start of
108  the desired data, and another to the end (4 past start).
109  */
110  template<class IT>
111  void SetComponents(IT begin, IT end) {
112  fU = *begin++;
113  fI = *begin++;
114  fJ = *begin++;
115  fK = *begin++;
116  (void)end;
117  assert (end==begin);
118  }
119
120  /**
121  Get the components into data specified by an iterator begin
122  and another to the end of the desired data (4 past start).
123  */
124  template<class IT>
125  void GetComponents(IT begin, IT end) const {
126  *begin++ = fU;
127  *begin++ = fI;
128  *begin++ = fJ;
129  *begin++ = fK;
130  (void)end;
131  assert (end==begin);
132  }
133
134  /**
135  Get the components into data specified by an iterator begin
136  */
137  template<class IT>
138  void GetComponents(IT begin ) const {
139  *begin++ = fU;
140  *begin++ = fI;
141  *begin++ = fJ;
142  *begin = fK;
143  }
144
145  /**
146  Set the components based on four Scalars. The sum of the squares of
147  these Scalars should be 1; no checking is done.
148  */
150  fU=u; fI=i; fJ=j; fK=k;
151  }
152
153  /**
154  Get the components into four Scalars.
155  */
156  void GetComponents(Scalar & u, Scalar & i, Scalar & j, Scalar & k) const {
157  u=fU; i=fI; j=fJ; k=fK;
158  }
159
160  /**
162  U() is the coefficient of the identity Pauli matrix,
163  I(), J() and K() are the coefficients of sigma_x, sigma_y, sigma_z
164  */
165  Scalar U() const { return fU; }
166  Scalar I() const { return fI; }
167  Scalar J() const { return fJ; }
168  Scalar K() const { return fK; }
169
170  // =========== operations ==============
171
172  /**
173  Rotation operation on a cartesian vector
174  */
176  XYZVector operator() (const XYZVector & v) const {
177
178  const Scalar alpha = fU*fU - fI*fI - fJ*fJ - fK*fK;
179  const Scalar twoQv = 2*(fI*v.X() + fJ*v.Y() + fK*v.Z());
180  const Scalar twoU = 2 * fU;
181  return XYZVector ( alpha * v.X() + twoU * (fJ*v.Z() - fK*v.Y()) + twoQv * fI ,
182  alpha * v.Y() + twoU * (fK*v.X() - fI*v.Z()) + twoQv * fJ ,
183  alpha * v.Z() + twoU * (fI*v.Y() - fJ*v.X()) + twoQv * fK );
184  }
185
186  /**
187  Rotation operation on a displacement vector in any coordinate system
188  */
189  template <class CoordSystem,class Tag>
192  DisplacementVector3D< Cartesian3D<double> > xyz(v.X(), v.Y(), v.Z());
195  vNew.SetXYZ( rxyz.X(), rxyz.Y(), rxyz.Z() );
196  return vNew;
197  }
198
199  /**
200  Rotation operation on a position vector in any coordinate system
201  */
202  template <class CoordSystem, class Tag>
207  return PositionVector3D<CoordSystem,Tag> ( rxyz );
208  }
209
210  /**
211  Rotation operation on a Lorentz vector in any 4D coordinate system
212  */
213  template <class CoordSystem>
217  xyz = operator()(xyz);
218  LorentzVector< PxPyPzE4D<double> > xyzt (xyz.X(), xyz.Y(), xyz.Z(), v.E());
219  return LorentzVector<CoordSystem> ( xyzt );
220  }
221
222  /**
223  Rotation operation on an arbitrary vector v.
224  Preconditions: v must implement methods x(), y(), and z()
225  and the arbitrary vector type must have a constructor taking (x,y,z)
226  */
227  template <class ForeignVector>
228  ForeignVector
229  operator() (const ForeignVector & v) const {
232  return ForeignVector ( rxyz.X(), rxyz.Y(), rxyz.Z() );
233  }
234
235  /**
236  Overload operator * for rotation on a vector
237  */
238  template <class AVector>
239  inline
240  AVector operator* (const AVector & v) const
241  {
242  return operator()(v);
243  }
244
245  /**
246  Invert a rotation in place
247  */
248  void Invert() { fI = -fI; fJ = -fJ; fK = -fK; }
249
250  /**
251  Return inverse of a rotation
252  */
253  Quaternion Inverse() const { return Quaternion(fU, -fI, -fJ, -fK); }
254
255  // ========= Multi-Rotation Operations ===============
256
257  /**
258  Multiply (combine) two rotations
259  */
260  /**
261  Multiply (combine) two rotations
262  */
264  return Quaternion ( fU*q.fU - fI*q.fI - fJ*q.fJ - fK*q.fK ,
265  fU*q.fI + fI*q.fU + fJ*q.fK - fK*q.fJ ,
266  fU*q.fJ - fI*q.fK + fJ*q.fU + fK*q.fI ,
267  fU*q.fK + fI*q.fJ - fJ*q.fI + fK*q.fU );
268  }
269
270  Quaternion operator * (const Rotation3D & r) const;
271  Quaternion operator * (const AxisAngle & a) const;
272  Quaternion operator * (const EulerAngles & e) const;
273  Quaternion operator * (const RotationZYX & r) const;
274  Quaternion operator * (const RotationX & rx) const;
275  Quaternion operator * (const RotationY & ry) const;
276  Quaternion operator * (const RotationZ & rz) const;
277
278  /**
279  Post-Multiply (on right) by another rotation : T = T*R
280  */
281  template <class R>
282  Quaternion & operator *= (const R & r) { return *this = (*this)*r; }
283
284
285  /**
286  Distance between two rotations in Quaternion form
287  Note: The rotation group is isomorphic to a 3-sphere
288  with diametrically opposite points identified.
289  The (rotation group-invariant) is the smaller
290  of the two possible angles between the images of
291  the two totations on that sphere. Thus the distance
292  is never greater than pi/2.
293  */
294
295  Scalar Distance(const Quaternion & q) const ;
296
297  /**
298  Equality/inequality operators
299  */
300  bool operator == (const Quaternion & rhs) const {
301  if( fU != rhs.fU ) return false;
302  if( fI != rhs.fI ) return false;
303  if( fJ != rhs.fJ ) return false;
304  if( fK != rhs.fK ) return false;
305  return true;
306  }
307  bool operator != (const Quaternion & rhs) const {
308  return ! operator==(rhs);
309  }
310
311 private:
312
317
318 }; // Quaternion
319
320 // ============ Class Quaternion ends here ============
321
322 /**
323  Distance between two rotations
324  */
325 template <class R>
326 inline
327 typename Quaternion::Scalar
328 Distance ( const Quaternion& r1, const R & r2) {return gv_detail::dist(r1,r2);}
329
330 /**
331  Multiplication of an axial rotation by an AxisAngle
332  */
333 Quaternion operator* (RotationX const & r1, Quaternion const & r2);
334 Quaternion operator* (RotationY const & r1, Quaternion const & r2);
335 Quaternion operator* (RotationZ const & r1, Quaternion const & r2);
336
337 /**
338  Stream Output and Input
339  */
340  // TODO - I/O should be put in the manipulator form
341
342 std::ostream & operator<< (std::ostream & os, const Quaternion & q);
343
344
345 } // namespace Math
346 } // namespace ROOT
347
348 #endif // ROOT_Math_GenVector_Quaternion
ROOT::Math::Quaternion::SetComponents
void SetComponents(Scalar u, Scalar i, Scalar j, Scalar k)
Set the components based on four Scalars.
Definition: Quaternion.h:149
ROOT::Math::Quaternion::GetComponents
void GetComponents(Scalar &u, Scalar &i, Scalar &j, Scalar &k) const
Get the components into four Scalars.
Definition: Quaternion.h:156
ROOT::Math::AxisAngle
AxisAngle class describing rotation represented with direction axis (3D Vector) and an angle of rotat...
Definition: AxisAngle.h:41
e
#define e(i)
Definition: RSha256.hxx:103
ROOT::Math::Quaternion::fJ
Scalar fJ
Definition: Quaternion.h:315
ROOT::Math::Quaternion::operator==
bool operator==(const Quaternion &rhs) const
Equality/inequality operators.
Definition: Quaternion.h:300
ROOT::Math::Quaternion::I
Scalar I() const
Definition: Quaternion.h:166
ROOT::Math::Quaternion::Distance
Scalar Distance(const Quaternion &q) const
Distance between two rotations in Quaternion form Note: The rotation group is isomorphic to a 3-spher...
Definition: Quaternion.cxx:91
ROOT::Math::RotationZYX
Rotation class with the (3D) rotation represented by angles describing first a rotation of an angle p...
Definition: RotationZYX.h:61
ROOT::Math::PositionVector3D
Class describing a generic position vector (point) in 3 dimensions.
Definition: PositionVector3D.h:53
r
ROOT::R::TRInterface & r
Definition: Object.C:4
ROOT::Math::RotationZ
Rotation class representing a 3D rotation about the Z axis by the angle of rotation.
Definition: RotationZ.h:43
ROOT::Math::Rotation3D
Rotation class with the (3D) rotation represented by a 3x3 orthogonal matrix.
Definition: Rotation3D.h:65
ROOT::Math::Quaternion::operator*
AVector operator*(const AVector &v) const
Overload operator * for rotation on a vector.
Definition: Quaternion.h:240
ROOT::Math::operator<<
std::ostream & operator<<(std::ostream &os, const AxisAngle &a)
Stream Output and Input.
Definition: AxisAngle.cxx:91
ROOT::Math::Quaternion::Rectify
void Rectify()
Re-adjust components to eliminate small deviations from |Q| = 1 orthonormality.
Definition: Quaternion.cxx:34
3DDistances.h
ROOT::Math::Quaternion::Quaternion
Quaternion(const OtherRotation &r)
Construct from another supported rotation type (see gv_detail::convert )
Definition: Quaternion.h:78
ROOT::Math::DisplacementVector3D::Y
Scalar Y() const
Cartesian Y, converting if necessary from internal coordinate system.
Definition: DisplacementVector3D.h:287
v
@ v
Definition: rootcling_impl.cxx:3635
ROOT::Math::Quaternion::GetComponents
void GetComponents(IT begin, IT end) const
Get the components into data specified by an iterator begin and another to the end of the desired dat...
Definition: Quaternion.h:125
ROOT::Math::Quaternion::Quaternion
Quaternion()
Default constructor (identity rotation)
Definition: Quaternion.h:58
ROOT::Math::Quaternion::operator*=
Quaternion & operator*=(const R &r)
Post-Multiply (on right) by another rotation : T = T*R.
Definition: Quaternion.h:282
q
float * q
Definition: THbookFile.cxx:89
ROOT::Math::Quaternion::K
Scalar K() const
Definition: Quaternion.h:168
R
#define R(a, b, c, d, e, f, g, h, i)
Definition: RSha256.hxx:110
ROOT::Math::gv_detail::dist
double dist(Rotation3D const &r1, Rotation3D const &r2)
Definition: 3DDistances.cxx:48
Cartesian3D.h
ROOT::Math::Quaternion::operator()
XYZVector operator()(const XYZVector &v) const
Definition: Quaternion.h:176
ROOT::Math::Quaternion::SetComponents
void SetComponents(IT begin, IT end)
Set the four components given an iterator to the start of the desired data, and another to the end (4...
Definition: Quaternion.h:111
ROOT::Math::Quaternion::U
Scalar U() const
Access to the four quaternion components: U() is the coefficient of the identity Pauli matrix,...
Definition: Quaternion.h:165
ROOT::Math::Quaternion::J
Scalar J() const
Definition: Quaternion.h:167
ROOT::Math::Quaternion::XYZVector
DisplacementVector3D< Cartesian3D< double >, DefaultCoordinateSystemTag > XYZVector
Rotation operation on a cartesian vector.
Definition: Quaternion.h:175
a
auto * a
Definition: textangle.C:12
ROOT::Math::Quaternion::GetComponents
void GetComponents(IT begin) const
Get the components into data specified by an iterator begin.
Definition: Quaternion.h:138
ROOT::Math::EulerAngles
EulerAngles class describing rotation as three angles (Euler Angles).
Definition: EulerAngles.h:43
ROOT::Math::DisplacementVector3D::X
Scalar X() const
Cartesian X, converting if necessary from internal coordinate system.
Definition: DisplacementVector3D.h:282
ROOT::Math::RotationX
Rotation class representing a 3D rotation about the X axis by the angle of rotation.
Definition: RotationX.h:43
ROOT::Math::Quaternion::fU
Scalar fU
Definition: Quaternion.h:313
PositionVector3D.h
void
typedef void((*Func_t)())
ROOT::Math::DisplacementVector3D::Z
Scalar Z() const
Cartesian Z, converting if necessary from internal coordinate system.
Definition: DisplacementVector3D.h:292
ROOT::Math::Quaternion::Invert
void Invert()
Invert a rotation in place.
Definition: Quaternion.h:248
3DConversions.h
ROOT::Math::operator*
AxisAngle operator*(RotationX const &r1, AxisAngle const &r2)
Multiplication of an axial rotation by an AxisAngle.
Definition: AxisAngleXother.cxx:181
ROOT::Math::Quaternion::operator!=
bool operator!=(const Quaternion &rhs) const
Definition: Quaternion.h:307
DisplacementVector3D.h
ROOT::Math::DefaultCoordinateSystemTag
DefaultCoordinateSystemTag Default tag for identifying any coordinate system.
Definition: CoordinateSystemTags.h:36
ROOT::Math::Scalar
Rotation3D::Scalar Scalar
Definition: Rotation3DxAxial.cxx:69
ROOT::Math::gv_detail::convert
void convert(R1 const &, R2 const)
Definition: 3DConversions.h:41
ROOT::Math::DisplacementVector3D::SetXYZ
DisplacementVector3D< CoordSystem, Tag > & SetXYZ(Scalar a, Scalar b, Scalar c)
set the values of the vector from the cartesian components (x,y,z) (if the vector is held in polar or...
Definition: DisplacementVector3D.h:260
ROOT::Math::Quaternion::Scalar
double Scalar
Definition: Quaternion.h:51
ROOT::Math::Quaternion::fK
Scalar fK
Definition: Quaternion.h:316
ROOT::Math::DisplacementVector3D
Class describing a generic displacement vector in 3 dimensions.
Definition: DisplacementVector3D.h:67
LorentzVector.h
ROOT::Math::Quaternion::fI
Scalar fI
Definition: Quaternion.h:314
ROOT::Math::Quaternion
Rotation class with the (3D) rotation represented by a unit quaternion (u, i, j, k).
Definition: Quaternion.h:47
ROOT::Math::Distance
AxisAngle::Scalar Distance(const AxisAngle &r1, const R &r2)
Distance between two rotations.
Definition: AxisAngle.h:320
ROOT::Math::Quaternion::Quaternion
Quaternion(Scalar u, Scalar i, Scalar j, Scalar k)
Construct from four Scalars representing the coefficients of u, i, j, k.
Definition: Quaternion.h:84
ROOT::Math::Quaternion::Inverse
Quaternion Inverse() const
Return inverse of a rotation.
Definition: Quaternion.h:253
ROOT
VSD Structures.
Definition: StringConv.hxx:21
Math
Namespace for new Math classes and functions.
ROOT::Math::LorentzVector
Definition: LorentzVector.h:60
ROOT::Math::Quaternion::Quaternion
Quaternion(IT begin, IT end)
Construct given a pair of pointers or iterators defining the beginning and end of an array of four Sc...
Definition: Quaternion.h:70
ROOT::Math::Quaternion::operator=
Quaternion & operator=(OtherRotation const &r)
Assign from another supported rotation type (see gv_detail::convert )
Definition: Quaternion.h:99
ROOT::Math::RotationY
Rotation class representing a 3D rotation about the Y axis by the angle of rotation.
Definition: RotationY.h:43