100 , fMultiTargetRegression(
kFALSE)
106 , fKernelEstimator(NULL)
107 , fTargetSelectionStr(
"Mean")
108 , fTargetSelection(kMean)
109 , fFillFoamWithOrigWeights(
kFALSE)
112 , fDTSeparation(kFoam)
124 const TString& theWeightFile) :
211 DeclareOptionRef(
fFrac = 0.001,
"TailCut",
"Fraction of outlier events that are excluded from the foam in each dimension" );
212 DeclareOptionRef(
fVolFrac = 1./15.,
"VolFrac",
"Size of sampling box, used for density calculation during foam build-up (maximum value: 1.0 is equivalent to volume of entire foam)");
255 Log() << kWARNING <<
"TailCut not in [0.,1] ==> using 0.001 instead" <<
Endl;
260 Log() << kWARNING <<
"invalid number of active cells specified: " 268 Log() << kFATAL <<
"Decision tree logic works only for a single foam (SigBgSeparate=F)" <<
Endl;
276 else if (
fDTLogic ==
"MisClassificationError")
278 else if (
fDTLogic ==
"CrossEntropy")
280 else if (
fDTLogic ==
"GiniIndexWithLaplace")
282 else if (
fDTLogic ==
"SdivSqrtSplusB")
285 Log() << kWARNING <<
"Unknown separation type: " <<
fDTLogic 286 <<
", setting to None" <<
Endl;
300 Log() << kWARNING <<
"Warning: number of targets > 1" 301 <<
" and MultiTargetRegression=F was set, this makes no sense!" 302 <<
" --> I'm setting MultiTargetRegression=T" <<
Endl;
336 for (
UInt_t dim=0; dim<kDim; dim++) {
343 Int_t rangehistbins = 10000;
349 for (
UInt_t dim=0; dim<kDim; dim++) {
371 for (
UInt_t dim=0; dim<kDim; dim++) {
372 range_h[dim] =
new TH1F(
Form(
"range%i", dim),
"range", rangehistbins, xmin[dim], xmax[dim]);
378 for (
UInt_t dim=0; dim<kDim; dim++) {
391 for (
UInt_t dim=0; dim<kDim; dim++) {
392 for (
Int_t i=1; i<(rangehistbins+1); i++) {
393 if (range_h[dim]->Integral(0, i) > nevoutside) {
398 for (
Int_t i=rangehistbins; i>0; i--) {
399 if (range_h[dim]->Integral(i, (rangehistbins+1)) > nevoutside) {
410 for (
UInt_t dim=0; dim<kDim; dim++) {
411 fXmin.push_back(xmin[dim]);
412 fXmax.push_back(xmax[dim]);
420 for (
UInt_t dim=0; dim<kDim; dim++)
432 Log() << kVERBOSE <<
"Calculate Xmin and Xmax for every dimension" <<
Endl;
449 if (
DataInfo().GetNormalization() !=
"EQUALNUMEVENTS" ) {
451 <<
" chosen. Note that only NormMode=EqualNumEvents" 452 <<
" ensures that Discriminant values correspond to" 453 <<
" signal probabilities." <<
Endl;
470 fFoam.at(i)->DeleteBinarySearchTree();
484 foamcaption[0] =
"SignalFoam";
485 foamcaption[1] =
"BgFoam";
487 for(
int i=0; i<2; i++) {
491 Log() << kVERBOSE <<
"Filling binary search tree of " << foamcaption[i]
492 <<
" with events" <<
Endl;
496 if ((i==0 &&
DataInfo().IsSignal(ev)) || (i==1 && !
DataInfo().IsSignal(ev)))
498 fFoam.back()->FillBinarySearchTree(ev);
501 Log() << kINFO <<
"Build up " << foamcaption[i] <<
Endl;
502 fFoam.back()->Create();
504 Log() << kVERBOSE <<
"Filling foam cells with events" <<
Endl;
509 if ((i==0 &&
DataInfo().IsSignal(ev)) || (i==1 && !
DataInfo().IsSignal(ev)))
511 fFoam.back()->FillFoamCells(ev, weight);
524 Log() << kVERBOSE <<
"Filling binary search tree of discriminator foam with events" <<
Endl;
529 fFoam.back()->FillBinarySearchTree(ev);
532 Log() << kINFO <<
"Build up discriminator foam" <<
Endl;
533 fFoam.back()->Create();
535 Log() << kVERBOSE <<
"Filling foam cells with events" <<
Endl;
541 fFoam.back()->FillFoamCells(ev, weight);
544 Log() << kVERBOSE <<
"Calculate cell discriminator"<<
Endl;
546 fFoam.back()->Finalize();
560 fFoam.push_back(
InitFoam(
Form(
"MultiClassFoam%u",iClass), kMultiClass, iClass) );
562 Log() << kVERBOSE <<
"Filling binary search tree of multiclass foam " 563 << iClass <<
" with events" <<
Endl;
568 fFoam.back()->FillBinarySearchTree(ev);
571 Log() << kINFO <<
"Build up multiclass foam " << iClass <<
Endl;
572 fFoam.back()->Create();
574 Log() << kVERBOSE <<
"Filling foam cells with events" <<
Endl;
581 fFoam.back()->FillFoamCells(ev, weight);
584 Log() << kVERBOSE <<
"Calculate cell discriminator"<<
Endl;
586 fFoam.back()->Finalize();
598 Log() << kFATAL <<
"Can't do mono-target regression with " 604 fFoam.push_back(
InitFoam(
"MonoTargetRegressionFoam", kMonoTarget) );
606 Log() << kVERBOSE <<
"Filling binary search tree with events" <<
Endl;
611 fFoam.back()->FillBinarySearchTree(ev);
614 Log() << kINFO <<
"Build mono target regression foam" <<
Endl;
615 fFoam.back()->Create();
617 Log() << kVERBOSE <<
"Filling foam cells with events" <<
Endl;
623 fFoam.back()->FillFoamCells(ev, weight);
626 Log() << kVERBOSE <<
"Calculate average cell targets"<<
Endl;
628 fFoam.back()->Finalize();
642 Log() << kFATAL <<
"LinNeighbors kernel currently not supported" 643 <<
" for multi target regression" <<
Endl;
645 fFoam.push_back(
InitFoam(
"MultiTargetRegressionFoam", kMultiTarget) );
647 Log() << kVERBOSE <<
"Filling binary search tree of multi target regression foam with events" 654 std::vector<Float_t> targets(ev->
GetTargets());
656 for (
UInt_t i = 0; i < targets.size(); ++i)
657 ev->
SetVal(i+nVariables, targets.at(i));
660 fFoam.back()->FillBinarySearchTree(ev);
666 Log() << kINFO <<
"Build multi target regression foam" <<
Endl;
667 fFoam.back()->Create();
669 Log() << kVERBOSE <<
"Filling foam cells with events" <<
Endl;
675 std::vector<Float_t> targets = ev->
GetTargets();
678 for (
UInt_t i = 0; i < targets.size(); ++i)
679 ev->
SetVal(i+nVariables, targets.at(i));
682 fFoam.back()->FillFoamCells(ev, weight);
715 std::vector<Float_t> xvec = ev->
GetValues();
723 if ( (density_sig+density_bg) > 0 )
724 discr = density_sig/(density_sig+density_bg);
734 if (err || errUpper) {
736 if (err != 0) *err = discr_error;
737 if (errUpper != 0) *errUpper = discr_error;
741 return (discr < 0.5 ? -1 : 1);
761 const std::vector<Float_t>& xvec = ev->
GetValues();
770 if ((neventsS > 1
e-10) || (neventsB > 1
e-10)) {
772 mvaError =
TMath::Sqrt(
Sqr(scaleB * neventsB /
Sqr(neventsS + scaleB * neventsB) * errorS) +
773 Sqr(scaleB * neventsS /
Sqr(neventsS + scaleB * neventsB) * errorB));
792 std::vector<Float_t> xvec = ev->
GetValues();
799 std::vector<Float_t> temp;
801 temp.reserve(nClasses);
802 for (
UInt_t iClass = 0; iClass < nClasses; ++iClass) {
806 for (
UInt_t iClass = 0; iClass < nClasses; ++iClass) {
808 for (
UInt_t j = 0; j < nClasses; ++j) {
810 norm +=
exp(temp[j] - temp[iClass]);
827 std::vector<Float_t> importance(
GetNvar(), 0);
830 for (
UInt_t ifoam = 0; ifoam <
fFoam.size(); ++ifoam) {
833 std::vector<UInt_t> nCuts(
fFoam.at(ifoam)->GetTotDim(), 0);
839 std::vector<Float_t> tmp_importance;
841 sumOfCuts += nCuts.at(ivar);
842 tmp_importance.push_back( nCuts.at(ivar) );
848 tmp_importance.at(ivar) /= sumOfCuts;
850 tmp_importance.at(ivar) = 0;
854 importance.at(ivar) += tmp_importance.at(ivar) /
fFoam.size();
878 if (cell == NULL || cell->
GetStat() == 1)
895 Log() << kFATAL <<
"Null pointer given!" <<
Endl;
903 for (
UInt_t idim=0; idim<num_vars; idim++) {
904 Log()<< kDEBUG <<
"foam: SetXmin[dim="<<idim<<
"]: " <<
fXmin.at(idim) <<
Endl;
905 Log()<< kDEBUG <<
"foam: SetXmax[dim="<<idim<<
"]: " <<
fXmax.at(idim) <<
Endl;
938 if (ft == kMultiTarget)
945 std::vector<Double_t>
box;
946 for (
Int_t idim = 0; idim < dim; ++idim) {
974 Log() << kFATAL <<
"Unknown PDEFoam type!" <<
Endl;
987 case kMisClassificationError:
993 case kGiniIndexWithLaplace:
996 case kSdivSqrtSplusB:
1001 <<
" currently not supported" <<
Endl;
1011 Log() << kFATAL <<
"Decision tree cell split algorithm is only" 1012 <<
" available for (multi) classification with a single" 1013 <<
" PDE-Foam (SigBgSeparate=F)" <<
Endl;
1019 else Log() << kFATAL <<
"PDEFoam pointer not set, exiting.." <<
Endl;
1057 std::vector<Float_t> vals = ev->
GetValues();
1060 Log() << kWARNING <<
"<GetRegressionValues> value vector is empty. " <<
Endl;
1065 std::map<Int_t, Float_t> xvec;
1066 for (
UInt_t i=0; i<vals.size(); ++i)
1067 xvec.insert(std::pair<Int_t, Float_t>(i, vals.at(i)));
1069 std::vector<Float_t> targets =
fFoam.at(0)->GetCellValue( xvec, kValue );
1073 Log() << kFATAL <<
"Something wrong with multi-target regression foam: " 1074 <<
"number of targets does not match the DataSet()" <<
Endl;
1075 for(
UInt_t i=0; i<targets.size(); i++)
1112 Log() << kFATAL <<
"Kernel: " <<
fKernel <<
" not supported!" <<
Endl;
1208 TFile *rootFile = 0;
1209 if (
fCompress) rootFile =
new TFile(rfname,
"RECREATE",
"foamfile", 9);
1210 else rootFile =
new TFile(rfname,
"RECREATE");
1214 Log() <<
"writing foam " <<
fFoam.at(i)->GetFoamName().Data()
1215 <<
" to file" <<
Endl;
1216 fFoam.at(i)->Write(
fFoam.at(i)->GetFoamName().Data());
1220 Log() << kINFO <<
"Foams written to file: " 1243 Bool_t CutNmin, CutRMSmin;
1267 fXmin.assign(kDim, 0);
1268 fXmax.assign(kDim, 0);
1271 for (
UInt_t i=0; i<kDim; i++)
1272 istr >>
fXmin.at(i);
1273 for (
UInt_t i=0; i<kDim; i++)
1274 istr >>
fXmax.at(i);
1309 if (
gTools().HasAttr(wghtnode,
"FillFoamWithOrigWeights"))
1311 if (
gTools().HasAttr(wghtnode,
"UseYesNoCell"))
1320 fXmin.assign(kDim, 0);
1321 fXmax.assign(kDim, 0);
1325 for (
UInt_t counter=0; counter<kDim; counter++) {
1329 Log() << kFATAL <<
"dimension index out of range:" << i <<
Endl;
1334 void *xmax_wrap = xmin_wrap;
1335 for (
UInt_t counter=0; counter<kDim; counter++) {
1339 Log() << kFATAL <<
"dimension index out of range:" << i <<
Endl;
1377 Log() << kWARNING <<
"<ReadClonedFoamFromFile>: NULL pointer given" <<
Endl;
1389 Log() << kWARNING <<
"<ReadClonedFoamFromFile>: " << foamname
1390 <<
" could not be cloned!" <<
Endl;
1410 Log() << kINFO <<
"Read foams from file: " <<
gTools().
Color(
"lightblue")
1412 TFile *rootFile =
new TFile( rfname,
"READ" );
1413 if (rootFile->
IsZombie())
Log() << kFATAL <<
"Cannot open file \"" << rfname <<
"\"" <<
Endl;
1429 fFoam.push_back(foam);
1446 Log() << kFATAL <<
"Could not load foam!" <<
Endl;
1456 case 0:
return kNone;
1457 case 1:
return kGaus;
1458 case 2:
return kLinN;
1460 Log() << kWARNING <<
"<UIntToKernel>: unknown kernel number: " << iker <<
Endl;
1472 case 0:
return kMean;
1473 case 1:
return kMpv;
1475 Log() << kWARNING <<
"<UIntToTargetSelection>: unknown method TargetSelection: " << its <<
Endl;
1486 for (
UInt_t ifoam=0; ifoam<
fFoam.size(); ifoam++) {
1487 for (
Int_t idim=0; idim<
fFoam.at(ifoam)->GetTotDim(); idim++) {
1491 fFoam.at(ifoam)->AddVariableName(
DataInfo().GetVariableInfo(idim).GetExpression().
Data());
1512 Log() <<
"PDE-Foam is a variation of the PDE-RS method using a self-adapting" <<
Endl;
1513 Log() <<
"binning method to divide the multi-dimensional variable space into a" <<
Endl;
1514 Log() <<
"finite number of hyper-rectangles (cells). The binning algorithm " <<
Endl;
1515 Log() <<
"adjusts the size and position of a predefined number of cells such" <<
Endl;
1516 Log() <<
"that the variance of the signal and background densities inside the " <<
Endl;
1517 Log() <<
"cells reaches a minimum" <<
Endl;
1521 Log() <<
"The PDEFoam classifier supports two different algorithms: " <<
Endl;
1523 Log() <<
" (1) Create one foam, which stores the signal over background" <<
Endl;
1524 Log() <<
" probability density. During foam buildup the variance of the" <<
Endl;
1525 Log() <<
" discriminant inside the cells is minimised." <<
Endl;
1527 Log() <<
" Booking option: SigBgSeparated=F" <<
Endl;
1529 Log() <<
" (2) Create two separate foams, one for the signal events and one for" <<
Endl;
1530 Log() <<
" background events. During foam buildup the variance of the" <<
Endl;
1531 Log() <<
" event density inside the cells is minimised separately for" <<
Endl;
1532 Log() <<
" signal and background." <<
Endl;
1534 Log() <<
" Booking option: SigBgSeparated=T" <<
Endl;
1536 Log() <<
"The following options can be set (the listed values are found to be a" <<
Endl;
1537 Log() <<
"good starting point for most applications):" <<
Endl;
1539 Log() <<
" SigBgSeparate False Separate Signal and Background" <<
Endl;
1540 Log() <<
" TailCut 0.001 Fraction of outlier events that excluded" <<
Endl;
1541 Log() <<
" from the foam in each dimension " <<
Endl;
1542 Log() <<
" VolFrac 0.0666 Volume fraction (used for density calculation" <<
Endl;
1543 Log() <<
" during foam build-up) " <<
Endl;
1544 Log() <<
" nActiveCells 500 Maximal number of active cells in final foam " <<
Endl;
1545 Log() <<
" nSampl 2000 Number of MC events per cell in foam build-up " <<
Endl;
1546 Log() <<
" nBin 5 Number of bins used in foam build-up " <<
Endl;
1547 Log() <<
" Nmin 100 Number of events in cell required to split cell" <<
Endl;
1548 Log() <<
" Kernel None Kernel type used (possible values are: None," <<
Endl;
1550 Log() <<
" Compress True Compress foam output file " <<
Endl;
1552 Log() <<
" Additional regression options:" <<
Endl;
1554 Log() <<
"MultiTargetRegression False Do regression with multiple targets " <<
Endl;
1555 Log() <<
" TargetSelection Mean Target selection method (possible values are: " <<
Endl;
1556 Log() <<
" Mean, Mpv)" <<
Endl;
1560 Log() <<
"The performance of the two implementations was found to be similar for" <<
Endl;
1561 Log() <<
"most examples studied. For the same number of cells per foam, the two-" <<
Endl;
1562 Log() <<
"foam option approximately doubles the amount of computer memory needed" <<
Endl;
1563 Log() <<
"during classification. For special cases where the event-density" <<
Endl;
1564 Log() <<
"distribution of signal and background events is very different, the" <<
Endl;
1565 Log() <<
"two-foam option was found to perform significantly better than the" <<
Endl;
1566 Log() <<
"option with only one foam." <<
Endl;
1568 Log() <<
"In order to gain better classification performance we recommend to set" <<
Endl;
1569 Log() <<
"the parameter \"nActiveCells\" to a high value." <<
Endl;
1571 Log() <<
"The parameter \"VolFrac\" specifies the size of the sampling volume" <<
Endl;
1572 Log() <<
"during foam buildup and should be tuned in order to achieve optimal" <<
Endl;
1573 Log() <<
"performance. A larger box leads to a reduced statistical uncertainty" <<
Endl;
1574 Log() <<
"for small training samples and to smoother sampling. A smaller box on" <<
Endl;
1575 Log() <<
"the other hand increases the sensitivity to statistical fluctuations" <<
Endl;
1576 Log() <<
"in the training samples, but for sufficiently large training samples" <<
Endl;
1577 Log() <<
"it will result in a more precise local estimate of the sampled" <<
Endl;
1578 Log() <<
"density. In general, higher dimensional problems require larger box" <<
Endl;
1579 Log() <<
"sizes, due to the reduced average number of events per box volume. The" <<
Endl;
1580 Log() <<
"default value of 0.0666 was optimised for an example with 5" <<
Endl;
1581 Log() <<
"observables and training samples of the order of 50000 signal and" <<
Endl;
1582 Log() <<
"background events each." <<
Endl;
1584 Log() <<
"Furthermore kernel weighting can be activated, which will lead to an" <<
Endl;
1585 Log() <<
"additional performance improvement. Note that Gauss weighting will" <<
Endl;
1586 Log() <<
"significantly increase the response time of the method. LinNeighbors" <<
Endl;
1587 Log() <<
"weighting performs a linear interpolation with direct neighbor cells" <<
Endl;
1588 Log() <<
"for each dimension and is much faster than Gauss weighting." <<
Endl;
1590 Log() <<
"The classification results were found to be rather insensitive to the" <<
Endl;
1591 Log() <<
"values of the parameters \"nSamples\" and \"nBin\"." <<
Endl;
This PDEFoam kernel estimates a cell value for a given event by weighting all cell values with a gaus...
This is a concrete implementation of PDEFoam.
void Train(void)
Train PDE-Foam depending on the set options.
PDEFoamCell * GetDau1() const
std::vector< Float_t > fXmax
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
The PDEFoam method is an extension of the PDERS method, which divides the multi-dimensional phase spa...
UInt_t GetNVariables() const
TString fTargetSelectionStr
virtual void Reset()
reset MethodPDEFoam:
MsgLogger & Endl(MsgLogger &ml)
Singleton class for Global types used by TMVA.
Bool_t fFillFoamWithOrigWeights
This class is the abstract kernel interface for PDEFoam.
UInt_t KernelToUInt(EKernel ker) const
void GetNCuts(PDEFoamCell *cell, std::vector< UInt_t > &nCuts)
Fill in 'nCuts' the number of cuts made in every foam dimension, starting at the root cell 'cell'...
This PDEFoam variant is used to estimate multiple targets by creating an event density foam (PDEFoamE...
PDEFoam * InitFoam(TString, EFoamType, UInt_t cls=0)
Create a new PDEFoam, set the PDEFoam options (nCells, nBin, Xmin, Xmax, etc.) and initialize the PDE...
TString & ReplaceAll(const TString &s1, const TString &s2)
void PrintCoefficients(void)
THist< 1, float, THistStatContent, THistStatUncertainty > TH1F
OptionBase * DeclareOptionRef(T &ref, const TString &name, const TString &desc="")
Bool_t fMultiTargetRegression
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format...
Virtual base Class for all MVA method.
UInt_t GetNVariables() const
access the number of variables through the datasetinfo
virtual TObject * Get(const char *namecycle)
Return pointer to object identified by namecycle.
1-D histogram with a float per channel (see TH1 documentation)}
void SetXmin(Int_t idim, Double_t wmin)
set lower foam bound in dimension idim
TransformationHandler & GetTransformationHandler(Bool_t takeReroutedIfAvailable=true)
Ranking for variables in method (implementation)
void TrainUnifiedClassification(void)
Create only one unified foam (fFoam[0]) whose cells contain the average discriminator (N_sig)/(N_sig ...
void FillVariableNamesToFoam() const
store the variable names in all foams
UInt_t GetNClasses() const
UInt_t GetNTargets() const
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
void box(Int_t pat, Double_t x1, Double_t y1, Double_t x2, Double_t y2)
void GetHelpMessage() const
provide help message
const TString & GetInputLabel(Int_t i) const
Long64_t GetNEvtBkgdTrain()
return number of background training events in dataset
const TString & GetNormalization() const
Implementation of the CrossEntropy as separation criterion.
void ReadWeightsFromStream(std::istream &i)
read options and internal parameters
virtual ~MethodPDEFoam(void)
destructor
const Event * GetEvent() const
DataSetInfo & DataInfo() const
Bool_t DoRegression() const
void SetMinType(EMsgType minType)
void SetVal(UInt_t ivar, Float_t val)
set variable ivar to val
This PDEFoam variant stores in every cell the sum of event weights and the sum of the squared event w...
void DeclareOptions()
Declare MethodPDEFoam options.
Class that contains all the data information.
Implementation of the SdivSqrtSplusB as separation criterion.
Double_t GetWeight() const
return the event weight - depending on whether the flag IgnoreNegWeightsInTraining is or not...
std::vector< Float_t > fXmin
Long64_t GetNTrainingEvents() const
R__ALWAYS_INLINE Bool_t IsZombie() const
void SetXminXmax(TMVA::PDEFoam *)
Set Xmin, Xmax for every dimension in the given pdefoam object.
PDEFoam * ReadClonedFoamFromFile(TFile *, const TString &)
Reads a foam with name 'foamname' from file, and returns a clone of the foam.
void SetMaxDepth(UInt_t maxdepth)
Implementation of the MisClassificationError as separation criterion.
std::vector< Float_t > & GetTargets()
UInt_t GetNEvents() const
temporary event when testing on a different DataSet than the own one
Implementation of PDEFoam.
void SetnSampl(Long_t nSampl)
Bool_t DoMulticlass() const
void AddWeightsXMLTo(void *parent) const
create XML output of PDEFoam method variables
void SetXmax(Int_t idim, Double_t wmax)
set upper foam bound in dimension idim
Float_t GetTarget(UInt_t itgt) const
Double_t CalculateMVAError()
Calculate the error on the Mva value.
void Init(void)
default initialization called by all constructors
const char * GetName() const
void CalcXminXmax()
Determine foam range [fXmin, fXmax] for all dimensions, such that a fraction of 'fFrac' events lie ou...
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
PDEFoam can handle classification with multiple classes and regression with one or more regression-ta...
MethodPDEFoam(const TString &jobName, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="PDEFoam")
init PDEFoam objects
Implementation of the GiniIndex as separation criterion.
PDEFoamKernelBase * fKernelEstimator
EKernel UIntToKernel(UInt_t iker)
convert UInt_t to EKernel (used for reading weight files)
char * Form(const char *fmt,...)
ETargetSelection UIntToTargetSelection(UInt_t its)
convert UInt_t to ETargetSelection (used for reading weight files)
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
Return Mva-Value.
This PDEFoam variant stores in every cell the average target fTarget (see the Constructor) as well as...
void SetTarget(UInt_t itgt, Float_t value)
set the target value (dimension itgt) to value
void TrainMultiTargetRegression(void)
Training one (multi target regression) foam, whose cells contain the average event density...
UInt_t TargetSelectionToUInt(ETargetSelection ts) const
void SetDensity(PDEFoamDensityBase *dens)
void SetDim(Int_t kDim)
Sets dimension of cubical space.
void MakeClassSpecific(std::ostream &, const TString &) const
write PDEFoam-specific classifier response NOT IMPLEMENTED YET!
An interface to calculate the "SeparationGain" for different separation criteria used in various trai...
TString GetWeightFileName() const
retrieve weight file name
void TrainSeparatedClassification(void)
Creation of 2 separated foams: one for signal events, one for background events.
void WriteFoamsToFile() const
Write PDEFoams to file.
This is a concrete implementation of PDEFoam.
Implementation of the GiniIndex With Laplace correction as separation criterion.
UInt_t GetNVariables() const
Float_t GetValue(UInt_t ivar) const
return value of i'th variable
This PDEFoam variant acts like a decision tree and stores in every cell the discriminant.
Bool_t IgnoreEventsWithNegWeightsInTraining() const
void ReadWeightsFromXML(void *wghtnode)
read PDEFoam variables from xml weight file
void TrainMultiClassification()
Create one unified foam (see TrainUnifiedClassification()) for each class, where the cells of foam i ...
void SetnCells(Long_t nCells)
std::vector< Float_t > * fMulticlassReturnVal
Long64_t GetNEvtSigTrain()
return number of signal training events in dataset
std::vector< PDEFoam * > fFoam
PDEFoamCell * GetDau0() const
you should not use this method at all Int_t Int_t Double_t Double_t Double_t e
void AddPreDefVal(const T &)
PDEFoamKernelBase * CreatePDEFoamKernel()
create a pdefoam kernel estimator, depending on the current value of fKernel
This PDEFoam kernel estimates a cell value for a given event by weighting with cell values of the nea...
void TrainMonoTargetRegression(void)
Training one (mono target regression) foam, whose cells contain the average 0th target.
virtual TObject * Clone(const char *newname="") const
Make a clone of an object using the Streamer facility.
const std::vector< Float_t > & GetMulticlassValues()
Get the multiclass MVA response for the PDEFoam classifier.
#define REGISTER_METHOD(CLASS)
for example
const Ranking * CreateRanking()
Compute ranking of input variables from the number of cuts made in each PDEFoam dimension.
void DeleteFoams()
Deletes all trained foams.
std::vector< Float_t > & GetValues()
virtual void AddRank(const Rank &rank)
Add a new rank take ownership of it.
virtual void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
ETargetSelection fTargetSelection
Double_t GetOriginalWeight() const
void SetEvPerBin(Int_t EvPerBin)
This is an abstract class, which provides an interface for a PDEFoam density estimator.
EDTSeparation fDTSeparation
std::vector< Float_t > * fRegressionReturnVal
virtual const std::vector< Float_t > & GetRegressionValues()
Return regression values for both multi- and mono-target regression.
This class is a trivial PDEFoam kernel estimator.
Double_t Sqrt(Double_t x)
void ProcessOptions()
process user options
This is a concrete implementation of PDEFoam.
UInt_t GetNTargets() const
access the number of targets through the datasetinfo
This is a concrete implementation of PDEFoam.
void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility
virtual void SetAnalysisType(Types::EAnalysisType type)
This PDEFoam variant stores in every cell the discriminant.
void ReadFoamsFromFile()
read foams from file
void SetSignalReferenceCut(Double_t cut)
virtual void Close(Option_t *option="")
Close a file.
const char * Data() const