Start Test TMVAGAexample
========================
... event: 0 (200)
======> EVENT:0
var1 = -1.14361
var2 = -0.822373
var3 = -0.395426
var4 = -0.529427
created tree: TreeS
... event: 0 (200)
======> EVENT:0
var1 = -1.54361
var2 = -1.42237
var3 = -1.39543
var4 = -2.02943
created tree: TreeB0
... event: 0 (200)
======> EVENT:0
var1 = -1.54361
var2 = -0.822373
var3 = -0.395426
var4 = -2.02943
created tree: TreeB1
======> EVENT:0
var1 = 0.463304
var2 = 1.37192
var3 = -1.16769
var4 = -1.77551
created tree: TreeB2
created data file: tmva_example_multiple_background.root
========================
--- Training
<HEADER> DataSetInfo : [datasetBkg0] : Added class "Signal"
: Add Tree TreeS of type Signal with 200 events
<HEADER> DataSetInfo : [datasetBkg0] : Added class "Background"
: Add Tree TreeB0 of type Background with 200 events
<HEADER> Factory : Booking method: BDTG
:
: the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
: --> change to new default NegWeightTreatment=Pray
: Rebuilding Dataset datasetBkg0
: Building event vectors for type 2 Signal
: Dataset[datasetBkg0] : create input formulas for tree TreeS
: Building event vectors for type 2 Background
: Dataset[datasetBkg0] : create input formulas for tree TreeB0
<HEADER> DataSetFactory : [datasetBkg0] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 100
: Signal -- testing events : 100
: Signal -- training and testing events: 200
: Background -- training events : 100
: Background -- testing events : 100
: Background -- training and testing events: 200
:
<HEADER> DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.427 +0.620 +0.834
: var2: +0.427 +1.000 +0.756 +0.779
: var3: +0.620 +0.756 +1.000 +0.854
: var4: +0.834 +0.779 +0.854 +1.000
: ----------------------------------------
<HEADER> DataSetInfo : Correlation matrix (Background):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.404 +0.560 +0.803
: var2: +0.404 +1.000 +0.784 +0.784
: var3: +0.560 +0.784 +1.000 +0.836
: var4: +0.803 +0.784 +0.836 +1.000
: ----------------------------------------
<HEADER> DataSetFactory : [datasetBkg0] :
:
<HEADER> Factory : Train all methods
<HEADER> Factory : [datasetBkg0] : Create Transformation "I" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg0] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg0] : Create Transformation "P" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg0] : Create Transformation "G" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg0] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.0088163 1.0188 [ -3.1150 2.2852 ]
: var2: 0.043750 1.1258 [ -3.6952 3.1113 ]
: var3: 0.091345 1.1793 [ -3.3587 3.9796 ]
: var4: 0.20148 1.3300 [ -3.7913 4.1179 ]
: -----------------------------------------------------------
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: -0.12168 1.0000 [ -3.1787 2.4607 ]
: var2: -0.061928 1.0000 [ -2.7282 2.4350 ]
: var3: -0.014488 1.0000 [ -2.6527 3.2319 ]
: var4: 0.28207 1.0000 [ -1.9094 2.3930 ]
: -----------------------------------------------------------
: Preparing the Principle Component (PCA) transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 7.9442e-09 2.0999 [ -6.9285 6.2549 ]
: var2:-9.4762e-10 0.81623 [ -2.1779 1.8409 ]
: var3: 1.3434e-09 0.51228 [ -1.2574 1.2890 ]
: var4: 3.1898e-10 0.35594 [ -0.84818 0.98796 ]
: -----------------------------------------------------------
: Preparing the Gaussian transformation...
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.18535 1.0000 [ -1.2768 5.4654 ]
: var2: 0.14488 1.0000 [ -2.0258 6.0132 ]
: var3: 0.11957 1.0000 [ -1.9925 7.5386 ]
: var4: 0.044545 1.0000 [ -2.6680 5.5691 ]
: -----------------------------------------------------------
: Ranking input variables (method unspecific)...
<HEADER> IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------
: Rank : Variable : Separation
: -----------------------------------
: 1 : Variable 4 : 4.271e-01
: 2 : Variable 3 : 3.270e-01
: 3 : Variable 2 : 1.993e-01
: 4 : Variable 1 : 1.440e-01
: -----------------------------------
<HEADER> Factory : Train method: BDTG for Classification
:
<HEADER> BDTG : #events: (reweighted) sig: 100 bkg: 100
: #events: (unweighted) sig: 100 bkg: 100
: Training 1000 Decision Trees ... patience please
: Elapsed time for training with 200 events: 0.0586 sec
<HEADER> BDTG : [datasetBkg0] : Evaluation of BDTG on training sample (200 events)
: Elapsed time for evaluation of 200 events: 0.00539 sec
: Creating xml weight file: datasetBkg0/weights/TMVAMultiBkg0_BDTG.weights.xml
: Creating standalone class: datasetBkg0/weights/TMVAMultiBkg0_BDTG.class.C
: TMVASignalBackground0.root:/datasetBkg0/Method_BDT/BDTG
<HEADER> Factory : Training finished
:
: Ranking input variables (method specific)...
<HEADER> BDTG : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : var1 : 2.757e-01
: 2 : var2 : 2.610e-01
: 3 : var3 : 2.418e-01
: 4 : var4 : 2.215e-01
: --------------------------------------
<HEADER> Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: datasetBkg0/weights/TMVAMultiBkg0_BDTG.weights.xml
<HEADER> Factory : Test all methods
<HEADER> Factory : Test method: BDTG for Classification performance
:
<HEADER> BDTG : [datasetBkg0] : Evaluation of BDTG on testing sample (200 events)
: Elapsed time for evaluation of 200 events: 0.00494 sec
<HEADER> Factory : Evaluate all methods
<HEADER> Factory : Evaluate classifier: BDTG
:
<HEADER> BDTG : [datasetBkg0] : Loop over test events and fill histograms with classifier response...
:
<HEADER> TFHandler_BDTG : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.12984 0.97510 [ -2.0823 2.9998 ]
: var2: 0.057210 0.86936 [ -1.9349 2.0015 ]
: var3: 0.16183 0.98795 [ -2.4774 3.0223 ]
: var4: 0.32229 1.2452 [ -2.9030 3.3317 ]
: -----------------------------------------------------------
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: datasetBkg0 BDTG : 0.945
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: datasetBkg0 BDTG : 0.000 (0.975) 0.812 (0.986) 0.966 (0.990)
: -------------------------------------------------------------------------------------------------------------------
:
<HEADER> Dataset:datasetBkg0 : Created tree 'TestTree' with 200 events
:
<HEADER> Dataset:datasetBkg0 : Created tree 'TrainTree' with 200 events
:
<HEADER> Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
<HEADER> DataSetInfo : [datasetBkg1] : Added class "Signal"
: Add Tree TreeS of type Signal with 200 events
<HEADER> DataSetInfo : [datasetBkg1] : Added class "Background"
: Add Tree TreeB1 of type Background with 200 events
<HEADER> Factory : Booking method: BDTG
:
: the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
: --> change to new default NegWeightTreatment=Pray
: Rebuilding Dataset datasetBkg1
: Building event vectors for type 2 Signal
: Dataset[datasetBkg1] : create input formulas for tree TreeS
: Building event vectors for type 2 Background
: Dataset[datasetBkg1] : create input formulas for tree TreeB1
<HEADER> DataSetFactory : [datasetBkg1] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 100
: Signal -- testing events : 100
: Signal -- training and testing events: 200
: Background -- training events : 100
: Background -- testing events : 100
: Background -- training and testing events: 200
:
<HEADER> DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.427 +0.620 +0.834
: var2: +0.427 +1.000 +0.756 +0.779
: var3: +0.620 +0.756 +1.000 +0.854
: var4: +0.834 +0.779 +0.854 +1.000
: ----------------------------------------
<HEADER> DataSetInfo : Correlation matrix (Background):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.404 +0.560 +0.803
: var2: +0.404 +1.000 +0.784 +0.784
: var3: +0.560 +0.784 +1.000 +0.836
: var4: +0.803 +0.784 +0.836 +1.000
: ----------------------------------------
<HEADER> DataSetFactory : [datasetBkg1] :
:
<HEADER> Factory : Train all methods
<HEADER> Factory : [datasetBkg1] : Create Transformation "I" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg1] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg1] : Create Transformation "P" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg1] : Create Transformation "G" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg1] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.0088163 1.0188 [ -3.1150 2.2852 ]
: var2: 0.34375 1.0917 [ -3.0952 3.1113 ]
: var3: 0.59134 1.0492 [ -2.3587 3.9796 ]
: var4: 0.20148 1.3300 [ -3.7913 4.1179 ]
: -----------------------------------------------------------
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: -0.18819 1.0000 [ -3.1896 2.5009 ]
: var2: 0.092430 1.0000 [ -2.5681 2.4906 ]
: var3: 0.69993 1.0000 [ -1.8985 3.9795 ]
: var4: -0.0086609 1.0000 [ -2.1826 2.3487 ]
: -----------------------------------------------------------
: Preparing the Principle Component (PCA) transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 4.8243e-09 1.9581 [ -6.5407 5.8288 ]
: var2:-4.0978e-10 0.87524 [ -2.4248 2.2031 ]
: var3:-9.3767e-10 0.53717 [ -1.6289 1.2503 ]
: var4:-1.2718e-09 0.45934 [ -1.1321 1.1889 ]
: -----------------------------------------------------------
: Preparing the Gaussian transformation...
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.17868 1.0000 [ -1.3103 5.4712 ]
: var2: 0.11739 1.0000 [ -1.9872 6.1313 ]
: var3: 0.13673 1.0000 [ -1.6287 5.9055 ]
: var4: 0.068428 1.0000 [ -1.8732 5.5145 ]
: -----------------------------------------------------------
: Ranking input variables (method unspecific)...
<HEADER> IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------
: Rank : Variable : Separation
: -----------------------------------
: 1 : Variable 4 : 4.271e-01
: 2 : Variable 1 : 1.440e-01
: 3 : Variable 3 : 4.644e-02
: 4 : Variable 2 : 2.725e-02
: -----------------------------------
<HEADER> Factory : Train method: BDTG for Classification
:
<HEADER> BDTG : #events: (reweighted) sig: 100 bkg: 100
: #events: (unweighted) sig: 100 bkg: 100
: Training 1000 Decision Trees ... patience please
: Elapsed time for training with 200 events: 0.0559 sec
<HEADER> BDTG : [datasetBkg1] : Evaluation of BDTG on training sample (200 events)
: Elapsed time for evaluation of 200 events: 0.00546 sec
: Creating xml weight file: datasetBkg1/weights/TMVAMultiBkg1_BDTG.weights.xml
: Creating standalone class: datasetBkg1/weights/TMVAMultiBkg1_BDTG.class.C
: TMVASignalBackground1.root:/datasetBkg1/Method_BDT/BDTG
<HEADER> Factory : Training finished
:
: Ranking input variables (method specific)...
<HEADER> BDTG : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : var3 : 2.700e-01
: 2 : var1 : 2.526e-01
: 3 : var4 : 2.433e-01
: 4 : var2 : 2.341e-01
: --------------------------------------
<HEADER> Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: datasetBkg1/weights/TMVAMultiBkg1_BDTG.weights.xml
<HEADER> Factory : Test all methods
<HEADER> Factory : Test method: BDTG for Classification performance
:
<HEADER> BDTG : [datasetBkg1] : Evaluation of BDTG on testing sample (200 events)
: Elapsed time for evaluation of 200 events: 0.00493 sec
<HEADER> Factory : Evaluate all methods
<HEADER> Factory : Evaluate classifier: BDTG
:
<HEADER> BDTG : [datasetBkg1] : Loop over test events and fill histograms with classifier response...
:
<HEADER> TFHandler_BDTG : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.12984 0.97510 [ -2.0823 2.9998 ]
: var2: 0.35721 0.80705 [ -1.3349 2.3468 ]
: var3: 0.66183 0.87515 [ -1.4774 3.9796 ]
: var4: 0.32229 1.2452 [ -2.9030 3.3317 ]
: -----------------------------------------------------------
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: datasetBkg1 BDTG : 0.992
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: datasetBkg1 BDTG : 0.829 (1.000) 0.978 (1.000) 1.000 (1.000)
: -------------------------------------------------------------------------------------------------------------------
:
<HEADER> Dataset:datasetBkg1 : Created tree 'TestTree' with 200 events
:
<HEADER> Dataset:datasetBkg1 : Created tree 'TrainTree' with 200 events
:
<HEADER> Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
<HEADER> DataSetInfo : [datasetBkg2] : Added class "Signal"
: Add Tree TreeS of type Signal with 200 events
<HEADER> DataSetInfo : [datasetBkg2] : Added class "Background"
: Add Tree TreeB2 of type Background with 200 events
<HEADER> Factory : Booking method: BDTG
:
: the option NegWeightTreatment=InverseBoostNegWeights does not exist for BoostType=Grad
: --> change to new default NegWeightTreatment=Pray
: Rebuilding Dataset datasetBkg2
: Building event vectors for type 2 Signal
: Dataset[datasetBkg2] : create input formulas for tree TreeS
: Building event vectors for type 2 Background
: Dataset[datasetBkg2] : create input formulas for tree TreeB2
<HEADER> DataSetFactory : [datasetBkg2] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 100
: Signal -- testing events : 100
: Signal -- training and testing events: 200
: Background -- training events : 100
: Background -- testing events : 100
: Background -- training and testing events: 200
:
<HEADER> DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 +0.427 +0.620 +0.834
: var2: +0.427 +1.000 +0.756 +0.779
: var3: +0.620 +0.756 +1.000 +0.854
: var4: +0.834 +0.779 +0.854 +1.000
: ----------------------------------------
<HEADER> DataSetInfo : Correlation matrix (Background):
: ----------------------------------------
: var1 var2 var3 var4
: var1: +1.000 -0.694 -0.018 +0.189
: var2: -0.694 +1.000 +0.048 -0.106
: var3: -0.018 +0.048 +1.000 -0.033
: var4: +0.189 -0.106 -0.033 +1.000
: ----------------------------------------
<HEADER> DataSetFactory : [datasetBkg2] :
:
<HEADER> Factory : Train all methods
<HEADER> Factory : [datasetBkg2] : Create Transformation "I" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg2] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg2] : Create Transformation "P" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg2] : Create Transformation "G" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> Factory : [datasetBkg2] : Create Transformation "D" with events from all classes.
:
<HEADER> : Transformation, Variable selection :
: Input : variable 'var1' <---> Output : variable 'var1'
: Input : variable 'var2' <---> Output : variable 'var2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.28578 0.91179 [ -2.7150 2.2852 ]
: var2: 0.67483 0.96936 [ -3.0952 3.1113 ]
: var3: 0.31482 1.1483 [ -2.3587 3.9796 ]
: var4: 0.47104 1.1963 [ -2.2913 4.1179 ]
: -----------------------------------------------------------
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.21314 1.0000 [ -2.9018 2.2127 ]
: var2: 0.65434 1.0000 [ -2.8620 2.8045 ]
: var3: 0.097560 1.0000 [ -2.1290 2.6029 ]
: var4: 0.28364 1.0000 [ -2.2148 2.5819 ]
: -----------------------------------------------------------
: Preparing the Principle Component (PCA) transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1:-1.8283e-09 1.5535 [ -5.3869 5.6955 ]
: var2: 8.3819e-10 0.94853 [ -2.3039 2.7397 ]
: var3:-2.2631e-09 0.82510 [ -2.0402 1.8198 ]
: var4: 1.3062e-09 0.72605 [ -1.7460 1.7342 ]
: -----------------------------------------------------------
: Preparing the Gaussian transformation...
: Preparing the Decorrelation transformation...
<HEADER> TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.17765 1.0000 [ -1.4239 4.6740 ]
: var2: 0.15482 1.0000 [ -1.4140 5.3487 ]
: var3: 0.12377 1.0000 [ -1.8596 5.4085 ]
: var4: 0.098067 1.0000 [ -2.1757 4.5835 ]
: -----------------------------------------------------------
: Ranking input variables (method unspecific)...
<HEADER> IdTransformation : Ranking result (top variable is best ranked)
: -----------------------------------
: Rank : Variable : Separation
: -----------------------------------
: 1 : Variable 2 : 4.041e-01
: 2 : Variable 4 : 2.872e-01
: 3 : Variable 3 : 2.701e-01
: 4 : Variable 1 : 1.551e-01
: -----------------------------------
<HEADER> Factory : Train method: BDTG for Classification
:
<HEADER> BDTG : #events: (reweighted) sig: 100 bkg: 100
: #events: (unweighted) sig: 100 bkg: 100
: Training 1000 Decision Trees ... patience please
: Elapsed time for training with 200 events: 0.0567 sec
<HEADER> BDTG : [datasetBkg2] : Evaluation of BDTG on training sample (200 events)
: Elapsed time for evaluation of 200 events: 0.0055 sec
: Creating xml weight file: datasetBkg2/weights/TMVAMultiBkg2_BDTG.weights.xml
: Creating standalone class: datasetBkg2/weights/TMVAMultiBkg2_BDTG.class.C
: TMVASignalBackground2.root:/datasetBkg2/Method_BDT/BDTG
<HEADER> Factory : Training finished
:
: Ranking input variables (method specific)...
<HEADER> BDTG : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : var4 : 3.127e-01
: 2 : var1 : 2.386e-01
: 3 : var2 : 2.274e-01
: 4 : var3 : 2.213e-01
: --------------------------------------
<HEADER> Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: datasetBkg2/weights/TMVAMultiBkg2_BDTG.weights.xml
<HEADER> Factory : Test all methods
<HEADER> Factory : Test method: BDTG for Classification performance
:
<HEADER> BDTG : [datasetBkg2] : Evaluation of BDTG on testing sample (200 events)
: Elapsed time for evaluation of 200 events: 0.00491 sec
<HEADER> Factory : Evaluate all methods
<HEADER> Factory : Evaluate classifier: BDTG
:
<HEADER> BDTG : [datasetBkg2] : Loop over test events and fill histograms with classifier response...
:
<HEADER> TFHandler_BDTG : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: var1: 0.33014 0.87831 [ -1.8821 2.9998 ]
: var2: 0.68086 0.81675 [ -1.2800 2.0015 ]
: var3: 0.27828 1.0286 [ -1.8691 3.0223 ]
: var4: 0.67359 1.1090 [ -1.7755 3.3317 ]
: -----------------------------------------------------------
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: datasetBkg2 BDTG : 0.946
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: datasetBkg2 BDTG : 0.000 (0.975) 0.926 (0.979) 0.978 (0.986)
: -------------------------------------------------------------------------------------------------------------------
:
<HEADER> Dataset:datasetBkg2 : Created tree 'TestTree' with 200 events
:
<HEADER> Dataset:datasetBkg2 : Created tree 'TrainTree' with 200 events
:
<HEADER> Factory : Thank you for using TMVA!
: For citation information, please visit: http://tmva.sf.net/citeTMVA.html
========================
--- Application & create combined tree
: Booking "BDT method" of type "BDT" from datasetBkg0/weights/TMVAMultiBkg0_BDTG.weights.xml.
: Reading weight file: datasetBkg0/weights/TMVAMultiBkg0_BDTG.weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Signal"
<HEADER> DataSetInfo : [Default] : Added class "Background"
: Booked classifier "BDTG" of type: "BDT"
: Booking "BDT method" of type "BDT" from datasetBkg1/weights/TMVAMultiBkg1_BDTG.weights.xml.
: Reading weight file: datasetBkg1/weights/TMVAMultiBkg1_BDTG.weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Signal"
<HEADER> DataSetInfo : [Default] : Added class "Background"
: Booked classifier "BDTG" of type: "BDT"
: Booking "BDT method" of type "BDT" from datasetBkg2/weights/TMVAMultiBkg2_BDTG.weights.xml.
: Reading weight file: datasetBkg2/weights/TMVAMultiBkg2_BDTG.weights.xml
<HEADER> DataSetInfo : [Default] : Added class "Signal"
<HEADER> DataSetInfo : [Default] : Added class "Background"
: Booked classifier "BDTG" of type: "BDT"
--- Select signal sample
: Rebuilding Dataset Default
: Rebuilding Dataset Default
: Rebuilding Dataset Default
--- End of event loop: Real time 0:00:00, CP time 0.020
--- Select background 0 sample
--- End of event loop: Real time 0:00:00, CP time 0.020
--- Select background 1 sample
--- End of event loop: Real time 0:00:00, CP time 0.020
--- Select background 2 sample
--- End of event loop: Real time 0:00:00, CP time 0.020
--- Created root file: "tmva_example_multiple_backgrounds__applied.root" containing the MVA output histograms
==> Application of readers is done! combined tree created
========================
--- maximize significance
Classifier ranges (defined by the user)
range: -1 1
range: -1 1
range: -1 1
<HEADER> FitterBase : <GeneticFitter> Optimisation, please be patient ... (inaccurate progress timing for GA)
: Elapsed time: 7.51 sec
======================
Efficiency : 0.935
Purity : 0.886256
True positive weights : 187
False positive weights: 24
Signal weights : 200
cutValue[0] = -0.760936;
cutValue[1] = 0.992815;
cutValue[2] = 0.732853;