Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
testUnfold1.C File Reference

Detailed Description

View in nbviewer Open in SWAN
Test program for the classes TUnfold and related.

  1. Generate Monte Carlo and Data events The events consist of signal background

    The signal is a resonance. It is generated with a Breit-Wigner, smeared by a Gaussian

  2. Unfold the data. The result is: The background level The shape of the resonance, corrected for detector effects

    Systematic errors from the MC shape variation are included and propagated to the result

  3. fit the unfolded distribution, including the correlation matrix
  4. save six plots to a file testUnfold1.ps
    1 2 3
    4 5 6
    1. 2d-plot of the matrix describing the migrations
    2. generator-level distributions
      • blue: unfolded data, total errors
      • green: unfolded data, statistical errors
      • red: generated data
      • black: fit to green data points
    3. detector level distributions
      • blue: unfolded data, folded back through the matrix
      • black: Monte Carlo (with wrong peal position)
      • blue: data
    4. global correlation coefficients
    5. \( \chi^2 \) as a function of \( log(\tau) \) the star indicates the final choice of \( \tau \)
    6. the L curve
tau=5.56618e-05
chi**2=173.079+9.63005 / 147
chi**2(sys)=147.813
****************************************
Minimizer is Minuit2 / Migrad
MinFCN = 99.8432
NDf = 0
Edm = 2.41679e-07
NCalls = 110
p0 = 289.86 +/- 3.42424 -3.41527 +3.434 (Minos)
p1 = 3.79532 +/- 0.00174788 -0.00174785 +0.00174794 (Minos)
p2 = 0.15009 +/- 0.00146302 -0.00145983 +0.00146658 (Minos)
(int) 0
#include <TError.h>
#include <TMath.h>
#include <TCanvas.h>
#include <TRandom3.h>
#include <TFitter.h>
#include <TF1.h>
#include <TStyle.h>
#include <TVector.h>
#include <TGraph.h>
#include "TUnfoldDensity.h"
// #define VERBOSE_LCURVE_SCAN
TRandom *rnd=nullptr;
void chisquare_corr(Int_t &npar, Double_t * /*gin */, Double_t &f, Double_t *u, Int_t /*flag */) {
// Minimization function for H1s using a Chisquare method
// only one-dimensional histograms are supported
// Correlated errors are taken from an external inverse covariance matrix
// stored in a 2-dimensional histogram
TH1 *hfit = (TH1*)gFitter->GetObjectFit();
TF1 *f1 = (TF1*)gFitter->GetUserFunc();
f1->InitArgs(&x,u);
npar = f1->GetNpar();
f = 0;
Int_t npfit = 0;
Int_t nPoints=hfit->GetNbinsX();
for (Int_t i=0;i<nPoints;i++) {
x = hfit->GetBinCenter(i+1);
df[i] = f1->EvalPar(&x,u)-hfit->GetBinContent(i+1);
if (TF1::RejectedPoint()) df[i]=0.0;
else npfit++;
}
for (Int_t i=0;i<nPoints;i++) {
for (Int_t j=0;j<nPoints;j++) {
f += df[i]*df[j]*gHistInvEMatrix->GetBinContent(i+1,j+1);
}
}
delete[] df;
}
Double_t dm=x[0]-par[1];
return par[0]/(dm*dm+par[2]*par[2]);
}
// generate an event
// output:
// negative mass: background event
// positive mass: signal event
Double_t GenerateEvent(Double_t bgr, // relative fraction of background
Double_t mass, // peak position
Double_t gamma) // peak width
{
if(rnd->Rndm()>bgr) {
// generate signal event
// with positive mass
do {
do {
t=rnd->Rndm();
} while(t>=1.0);
t=TMath::Tan((t-0.5)*TMath::Pi())*gamma+mass;
} while(t<=0.0);
return t;
} else {
// generate background event
// generate events following a power-law distribution
// f(E) = K * TMath::power((E0+E),N0)
static Double_t const E0=2.4;
static Double_t const N0=2.9;
do {
do {
t=rnd->Rndm();
} while(t>=1.0);
// the mass is returned negative
// In our example a convenient way to indicate it is a background event.
t= -(TMath::Power(1.-t,1./(1.-N0))-1.0)*E0;
} while(t>=0.0);
return t;
}
}
// smear the event to detector level
// input:
// mass on generator level (mTrue>0 !)
// output:
// mass on detector level
// smear by double-gaussian
static Double_t frac=0.1;
static Double_t wideBias=0.03;
static Double_t wideSigma=0.5;
static Double_t smallBias=0.0;
static Double_t smallSigma=0.1;
if(rnd->Rndm()>frac) {
return rnd->Gaus(mTrue+smallBias,smallSigma);
} else {
return rnd->Gaus(mTrue+wideBias,wideSigma);
}
}
{
// switch on histogram errors
// show fit result
gStyle->SetOptFit(1111);
// random generator
rnd=new TRandom3();
// data and MC luminosity, cross-section
Double_t const luminosityData=100000;
Double_t const luminosityMC=1000000;
Int_t const nDet=250;
Int_t const nGen=100;
Double_t const xminDet=0.0;
Double_t const xmaxDet=10.0;
Double_t const xminGen=0.0;
Double_t const xmaxGen=10.0;
//============================================
// generate MC distribution
//
TH1D *histMgenMC=new TH1D("MgenMC",";mass(gen)",nGen,xminGen,xmaxGen);
TH1D *histMdetMC=new TH1D("MdetMC",";mass(det)",nDet,xminDet,xmaxDet);
TH2D *histMdetGenMC=new TH2D("MdetgenMC",";mass(det);mass(gen)",
for(Int_t i=0;i<neventMC;i++) {
Double_t mGen=GenerateEvent(0.3, // relative fraction of background
4.0, // peak position in MC
0.2); // peak width in MC
// the generated mass is negative for background
// and positive for signal
// so it will be filled in the underflow bin
// this is very convenient for the unfolding:
// the unfolded result will contain the number of background
// events in the underflow bin
// generated MC distribution (for comparison only)
// reconstructed MC distribution (for comparison only)
// matrix describing how the generator input migrates to the
// reconstructed level. Unfolding input.
// NOTE on underflow/overflow bins:
// (1) the detector level under/overflow bins are used for
// normalisation ("efficiency" correction)
// in our toy example, these bins are populated from tails
// of the initial MC distribution.
// (2) the generator level underflow/overflow bins are
// unfolded. In this example:
// underflow bin: background events reconstructed in the detector
// overflow bin: signal events generated at masses > xmaxDet
// for the unfolded result these bins will be filled
// -> the background normalisation will be contained in the underflow bin
}
//============================================
// generate alternative MC
// this will be used to derive a systematic error due to MC
// parameter uncertainties
TH2D *histMdetGenSysMC=new TH2D("MdetgenSysMC",";mass(det);mass(gen)",
for(Int_t i=0;i<neventMC;i++) {
Double_t mGen=GenerateEvent
(0.5, // relative fraction of background
3.6, // peak position in MC with systematic shift
0.15); // peak width in MC
}
//============================================
// generate data distribution
//
TH1D *histMgenData=new TH1D("MgenData",";mass(gen)",nGen,xminGen,xmaxGen);
TH1D *histMdetData=new TH1D("MdetData",";mass(det)",nDet,xminDet,xmaxDet);
for(Int_t i=0;i<neventData;i++) {
Double_t mGen=GenerateEvent(0.4, // relative fraction of background
3.8, // peak position in data
0.15); // peak width in data
// generated data mass for comparison plots
// for real data, we do not have this histogram
// reconstructed mass, unfolding input
}
//=========================================================================
// divide by bin width to get density distributions
TH1D *histDensityGenData=new TH1D("DensityGenData",";mass(gen)",
TH1D *histDensityGenMC=new TH1D("DensityGenMC",";mass(gen)",
for(Int_t i=1;i<=nGen;i++) {
histDensityGenData->SetBinContent(i,histMgenData->GetBinContent(i)/
histMgenData->GetBinWidth(i));
histDensityGenMC->SetBinContent(i,histMgenMC->GetBinContent(i)/
histMgenMC->GetBinWidth(i));
}
//=========================================================================
// set up the unfolding
// define migration matrix
// define input and bias scheme
// do not use the bias, because MC peak may be at the wrong place
// watch out for error codes returned by the SetInput method
// errors larger or equal 10000 are fatal:
// the data points specified as input are not sufficient to constrain the
// unfolding process
if(unfold.SetInput(histMdetData)>=10000) {
std::cout<<"Unfolding result may be wrong\n";
}
//========================================================================
// the unfolding is done here
//
// scan L curve and find best point
// use automatic L-curve scan: start with taumin=taumax=0.0
// if required, report Info messages (for debugging the L-curve scan)
#ifdef VERBOSE_LCURVE_SCAN
#endif
// this method scans the parameter tau and finds the kink in the L curve
// finally, the unfolding is done for the best choice of tau
// if required, switch to previous log-level
#ifdef VERBOSE_LCURVE_SCAN
#endif
//==========================================================================
// define a correlated systematic error
// for example, assume there is a 10% correlated error for all reconstructed
// masses larger than 7
TH2D *histMdetGenSys1=new TH2D("Mdetgensys1",";mass(det);mass(gen)",
for(Int_t i=0;i<=nDet+1;i++) {
if(histMdetData->GetBinCenter(i)>=SYS_ERROR1_MSTART) {
for(Int_t j=0;j<=nGen+1;j++) {
histMdetGenSys1->SetBinContent(i,j,SYS_ERROR1_SIZE);
}
}
}
//==========================================================================
// print some results
//
std::cout<<"tau="<<unfold.GetTau()<<"\n";
std::cout<<"chi**2="<<unfold.GetChi2A()<<"+"<<unfold.GetChi2L()
<<" / "<<unfold.GetNdf()<<"\n";
std::cout<<"chi**2(sys)="<<unfold.GetChi2Sys()<<"\n";
//==========================================================================
// create graphs with one point to visualize the best choice of tau
//
Double_t t[1],x[1],y[1];
logTauX->GetKnot(iBest,t[0],x[0]);
logTauY->GetKnot(iBest,t[0],y[0]);
//==========================================================================
// retrieve results into histograms
// get unfolded distribution
TH1 *histMunfold=unfold.GetOutput("Unfolded");
// get unfolding result, folded back
TH1 *histMdetFold=unfold.GetFoldedOutput("FoldedBack");
// get error matrix (input distribution [stat] errors only)
// TH2D *histEmatData=unfold.GetEmatrix("EmatData");
// get total error matrix:
// migration matrix uncorrelated and correlated systematic errors
// added in quadrature to the data statistical errors
TH2 *histEmatTotal=unfold.GetEmatrixTotal("EmatTotal");
// create data histogram with the total errors
new TH1D("TotalError",";mass(gen)",nGen,xminGen,xmaxGen);
for(Int_t bin=1;bin<=nGen;bin++) {
histTotalError->SetBinContent(bin,histMunfold->GetBinContent(bin));
histTotalError->SetBinError
(bin,TMath::Sqrt(histEmatTotal->GetBinContent(bin,bin)));
}
// get global correlation coefficients
// for this calculation one has to specify whether the
// underflow/overflow bins are included or not
// default: include all bins
// here: exclude underflow and overflow bins
TH1 *histRhoi=unfold.GetRhoItotal("rho_I",
nullptr, // use default title
nullptr, // all distributions
"*[UO]", // discard underflow and overflow bins on all axes
kTRUE, // use original binning
&gHistInvEMatrix // store inverse of error matrix
);
//======================================================================
// fit Breit-Wigner shape to unfolded data, using the full error matrix
// here we use a "user" chi**2 function to take into account
// the full covariance matrix
TF1 *bw=new TF1("bw",bw_func,xminGen,xmaxGen,3);
bw->SetParameter(0,1000.);
bw->SetParameter(1,3.8);
bw->SetParameter(2,0.2);
// for (wrong!) fitting without correlations, drop the option "U"
// here.
histMunfold->Fit(bw,"UE");
//=====================================================================
// plot some histograms
output.Divide(3,2);
// Show the matrix which connects input and output
// There are overflow bins at the bottom, not shown in the plot
// These contain the background shape.
// The overflow bins to the left and right contain
// events which are not reconstructed. These are necessary for proper MC
// normalisation
output.cd(1);
histMdetGenMC->Draw("BOX");
// draw generator-level distribution:
// data (red) [for real data this is not available]
// MC input (black) [with completely wrong peak position and shape]
// unfolded data (blue)
output.cd(2);
histTotalError->SetLineColor(kBlue);
histTotalError->Draw("E");
histMunfold->SetLineColor(kGreen);
histMunfold->Draw("SAME E1");
histDensityGenData->SetLineColor(kRed);
histDensityGenData->Draw("SAME");
histDensityGenMC->Draw("SAME HIST");
// show detector level distributions
// data (red)
// MC (black) [with completely wrong peak position and shape]
// unfolded data (blue)
output.cd(3);
histMdetFold->SetLineColor(kBlue);
histMdetFold->Draw();
histMdetMC->Draw("SAME HIST");
TH1 *histInput=unfold.GetInput("Minput",";mass(det)");
histInput->SetLineColor(kRed);
histInput->Draw("SAME");
// show correlation coefficients
output.cd(4);
histRhoi->Draw();
// show tau as a function of chi**2
output.cd(5);
logTauX->Draw();
bestLogTauLogChi2->SetMarkerColor(kRed);
bestLogTauLogChi2->Draw("*");
// show the L curve
output.cd(6);
lCurve->Draw("AL");
bestLcurve->SetMarkerColor(kRed);
bestLcurve->Draw("*");
output.SaveAs("testUnfold1.ps");
return 0;
}
#define f(i)
Definition RSha256.hxx:104
int Int_t
Definition RtypesCore.h:45
constexpr Bool_t kFALSE
Definition RtypesCore.h:94
double Double_t
Definition RtypesCore.h:59
constexpr Bool_t kTRUE
Definition RtypesCore.h:93
@ kRed
Definition Rtypes.h:66
@ kGreen
Definition Rtypes.h:66
@ kBlue
Definition Rtypes.h:66
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
constexpr Int_t kInfo
Definition TError.h:45
Int_t gErrorIgnoreLevel
Error handling routines.
Definition TError.cxx:31
R__EXTERN TStyle * gStyle
Definition TStyle.h:436
The Canvas class.
Definition TCanvas.h:23
1-Dim function class
Definition TF1.h:233
static void RejectPoint(Bool_t reject=kTRUE)
Static function to set the global flag to reject points the fgRejectPoint global flag is tested by al...
Definition TF1.cxx:3683
virtual Int_t GetNpar() const
Definition TF1.h:509
virtual void SetNumberFitPoints(Int_t npfits)
Definition TF1.h:652
virtual void InitArgs(const Double_t *x, const Double_t *params)
Initialize parameters addresses.
Definition TF1.cxx:2482
virtual Double_t EvalPar(const Double_t *x, const Double_t *params=nullptr)
Evaluate function with given coordinates and parameters.
Definition TF1.cxx:1468
static Bool_t RejectedPoint()
See TF1::RejectPoint above.
Definition TF1.cxx:3692
A TGraph is an object made of two arrays X and Y with npoints each.
Definition TGraph.h:41
1-D histogram with a double per channel (see TH1 documentation)
Definition TH1.h:693
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:59
static void SetDefaultSumw2(Bool_t sumw2=kTRUE)
When this static function is called with sumw2=kTRUE, all new histograms will automatically activate ...
Definition TH1.cxx:6701
2-D histogram with a double per channel (see TH1 documentation)
Definition TH2.h:351
Service class for 2-D histogram classes.
Definition TH2.h:30
Random number generator class based on M.
Definition TRandom3.h:27
This is the base class for the ROOT Random number generators.
Definition TRandom.h:27
Base class for spline implementation containing the Draw/Paint methods.
Definition TSpline.h:31
void SetOptFit(Int_t fit=1)
The type of information about fit parameters printed in the histogram statistics box can be selected ...
Definition TStyle.cxx:1593
An algorithm to unfold distributions from detector to truth level.
@ kSysErrModeRelative
matrix gives the relative shifts
Definition TUnfoldSys.h:112
@ kSysErrModeMatrix
matrix is an alternative to the default matrix, the errors are the difference to the original matrix
Definition TUnfoldSys.h:108
@ kHistMapOutputVert
truth level on y-axis of the response matrix
Definition TUnfold.h:149
Abstract Base Class for Fitting.
static TVirtualFitter * Fitter(TObject *obj, Int_t maxpar=25)
Static function returning a pointer to the current fitter.
Double_t y[n]
Definition legend1.C:17
Double_t x[n]
Definition legend1.C:17
TF1 * f1
Definition legend1.C:11
double gamma(double x)
Double_t Sqrt(Double_t x)
Returns the square root of x.
Definition TMath.h:666
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
Definition TMath.h:725
constexpr Double_t Pi()
Definition TMath.h:37
Double_t Tan(Double_t)
Returns the tangent of an angle of x radians.
Definition TMath.h:604
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
Definition TMathBase.h:123
static void output()

Version 17.6, in parallel to changes in TUnfold

History:

  • Version 17.5, in parallel to changes in TUnfold
  • Version 17.4, in parallel to changes in TUnfold
  • Version 17.3, in parallel to changes in TUnfold
  • Version 17.2, in parallel to changes in TUnfold
  • Version 17.1, in parallel to changes in TUnfold
  • Version 17.0, updated for using the classes TUnfoldDensity, TUnfoldBinning
  • Version 16.1, parallel to changes in TUnfold
  • Version 16.0, parallel to changes in TUnfold
  • Version 15, with automated L-curve scan
  • Version 14, with changes in TUnfoldSys.cxx
  • Version 13, include test of systematic errors
  • Version 12, catch error when defining the input
  • Version 11, print chi**2 and number of degrees of freedom
  • Version 10, with bug-fix in TUnfold.cxx
  • Version 9, with bug-fix in TUnfold.cxx and TUnfold.h
  • Version 8, with bug-fix in TUnfold.cxx and TUnfold.h
  • Version 7, with bug-fix in TUnfold.cxx and TUnfold.h
  • Version 6a, fix problem with dynamic array allocation under windows
  • Version 6, bug-fixes in TUnfold.C
  • Version 5, replace main() by testUnfold1()
  • Version 4, with bug-fix in TUnfold.C
  • Version 3, with bug-fix in TUnfold.C
  • Version 2, with changed ScanLcurve() arguments
  • Version 1, remove L curve analysis, use ScanLcurve() method instead
  • Version 0, L curve analysis included here

This file is part of TUnfold.

TUnfold is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

TUnfold is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with TUnfold. If not, see http://www.gnu.org/licenses/.

Author
Stefan Schmitt DESY, 14.10.2008

Definition in file testUnfold1.C.