Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TH1.cxx
Go to the documentation of this file.
1// @(#)root/hist:$Id$
2// Author: Rene Brun 26/12/94
3
4/*************************************************************************
5 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12#include <array>
13#include <cctype>
14#include <climits>
15#include <cmath>
16#include <cstdio>
17#include <cstdlib>
18#include <cstring>
19#include <iostream>
20#include <sstream>
21#include <fstream>
22#include <limits>
23#include <iomanip>
24
25#include "TROOT.h"
26#include "TBuffer.h"
27#include "TEnv.h"
28#include "TClass.h"
29#include "TMath.h"
30#include "THashList.h"
31#include "TH1.h"
32#include "TH2.h"
33#include "TH3.h"
34#include "TF2.h"
35#include "TF3.h"
36#include "TPluginManager.h"
37#include "TVirtualPad.h"
38#include "TRandom.h"
39#include "TVirtualFitter.h"
40#include "THLimitsFinder.h"
41#include "TProfile.h"
42#include "TStyle.h"
43#include "TVectorF.h"
44#include "TVectorD.h"
45#include "TBrowser.h"
46#include "TError.h"
47#include "TVirtualHistPainter.h"
48#include "TVirtualFFT.h"
49#include "TVirtualPaveStats.h"
50
51#include "HFitInterface.h"
52#include "Fit/DataRange.h"
53#include "Fit/BinData.h"
54#include "Math/GoFTest.h"
57
58#include "TH1Merger.h"
59
60/** \addtogroup Histograms
61@{
62\class TH1C
63\brief 1-D histogram with a byte per channel (see TH1 documentation)
64\class TH1S
65\brief 1-D histogram with a short per channel (see TH1 documentation)
66\class TH1I
67\brief 1-D histogram with an int per channel (see TH1 documentation)
68\class TH1L
69\brief 1-D histogram with a long64 per channel (see TH1 documentation)
70\class TH1F
71\brief 1-D histogram with a float per channel (see TH1 documentation)
72\class TH1D
73\brief 1-D histogram with a double per channel (see TH1 documentation)
74@}
75*/
76
77/** \class TH1
78 \ingroup Histograms
79TH1 is the base class of all histogram classes in %ROOT.
80
81It provides the common interface for operations such as binning, filling, drawing, which
82will be detailed below.
83
84-# [Creating histograms](\ref creating-histograms)
85 - [Labelling axes](\ref labelling-axis)
86-# [Binning](\ref binning)
87 - [Fix or variable bin size](\ref fix-var)
88 - [Convention for numbering bins](\ref convention)
89 - [Alphanumeric Bin Labels](\ref alpha)
90 - [Histograms with automatic bins](\ref auto-bin)
91 - [Rebinning](\ref rebinning)
92-# [Filling histograms](\ref filling-histograms)
93 - [Associated errors](\ref associated-errors)
94 - [Associated functions](\ref associated-functions)
95 - [Projections of histograms](\ref prof-hist)
96 - [Random Numbers and histograms](\ref random-numbers)
97 - [Making a copy of a histogram](\ref making-a-copy)
98 - [Normalizing histograms](\ref normalizing)
99-# [Drawing histograms](\ref drawing-histograms)
100 - [Setting Drawing histogram contour levels (2-D hists only)](\ref cont-level)
101 - [Setting histogram graphics attributes](\ref graph-att)
102 - [Customising how axes are drawn](\ref axis-drawing)
103-# [Fitting histograms](\ref fitting-histograms)
104-# [Saving/reading histograms to/from a ROOT file](\ref saving-histograms)
105-# [Operations on histograms](\ref operations-on-histograms)
106-# [Miscellaneous operations](\ref misc)
107
108ROOT supports the following histogram types:
109
110 - 1-D histograms:
111 - TH1C : histograms with one byte per channel. Maximum bin content = 127
112 - TH1S : histograms with one short per channel. Maximum bin content = 32767
113 - TH1I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
114 - TH1L : histograms with one long64 per channel. Maximum bin content = LLONG_MAX (\ref llongmax "**")
115 - TH1F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216 (\ref floatmax "***")
116 - TH1D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992 (\ref doublemax "****")
117 - 2-D histograms:
118 - TH2C : histograms with one byte per channel. Maximum bin content = 127
119 - TH2S : histograms with one short per channel. Maximum bin content = 32767
120 - TH2I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
121 - TH2L : histograms with one long64 per channel. Maximum bin content = LLONG_MAX (\ref llongmax "**")
122 - TH2F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216 (\ref floatmax "***")
123 - TH2D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992 (\ref doublemax "****")
124 - 3-D histograms:
125 - TH3C : histograms with one byte per channel. Maximum bin content = 127
126 - TH3S : histograms with one short per channel. Maximum bin content = 32767
127 - TH3I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
128 - TH3L : histograms with one long64 per channel. Maximum bin content = LLONG_MAX (\ref llongmax "**")
129 - TH3F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216 (\ref floatmax "***")
130 - TH3D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992 (\ref doublemax "****")
131 - Profile histograms: See classes TProfile, TProfile2D and TProfile3D.
132 Profile histograms are used to display the mean value of Y and its standard deviation
133 for each bin in X. Profile histograms are in many cases an elegant
134 replacement of two-dimensional histograms : the inter-relation of two
135 measured quantities X and Y can always be visualized by a two-dimensional
136 histogram or scatter-plot; If Y is an unknown (but single-valued)
137 approximate function of X, this function is displayed by a profile
138 histogram with much better precision than by a scatter-plot.
139
140<sup>
141\anchor intmax (*) INT_MAX = 2147483647 is the [maximum value for a variable of type int.](https://docs.microsoft.com/en-us/cpp/c-language/cpp-integer-limits)<br>
142\anchor llongmax (**) LLONG_MAX = 9223372036854775807 is the [maximum value for a variable of type long64.](https://docs.microsoft.com/en-us/cpp/c-language/cpp-integer-limits)<br>
143\anchor floatmax (***) 2^24 = 16777216 is the [maximum integer that can be properly represented by a float32 with 23-bit mantissa.](https://stackoverflow.com/a/3793950/7471760)<br>
144\anchor doublemax (****) 2^53 = 9007199254740992 is the [maximum integer that can be properly represented by a double64 with 52-bit mantissa.](https://stackoverflow.com/a/3793950/7471760)
145</sup>
146
147The inheritance hierarchy looks as follows:
148
149\image html classTH1__inherit__graph_org.svg width=100%
150
151\anchor creating-histograms
152## Creating histograms
153
154Histograms are created by invoking one of the constructors, e.g.
155~~~ {.cpp}
156 TH1F *h1 = new TH1F("h1", "h1 title", 100, 0, 4.4);
157 TH2F *h2 = new TH2F("h2", "h2 title", 40, 0, 4, 30, -3, 3);
158~~~
159Histograms may also be created by:
160
161 - calling the Clone() function, see below
162 - making a projection from a 2-D or 3-D histogram, see below
163 - reading a histogram from a file
164
165 When a histogram is created, a reference to it is automatically added
166 to the list of in-memory objects for the current file or directory.
167 Then the pointer to this histogram in the current directory can be found
168 by its name, doing:
169~~~ {.cpp}
170 TH1F *h1 = (TH1F*)gDirectory->FindObject(name);
171~~~
172
173 This default behaviour can be changed by:
174~~~ {.cpp}
175 h->SetDirectory(nullptr); // for the current histogram h
176 TH1::AddDirectory(kFALSE); // sets a global switch disabling the referencing
177~~~
178 When the histogram is deleted, the reference to it is removed from
179 the list of objects in memory.
180 When a file is closed, all histograms in memory associated with this file
181 are automatically deleted.
182
183\anchor labelling-axis
184### Labelling axes
185
186 Axis titles can be specified in the title argument of the constructor.
187 They must be separated by ";":
188~~~ {.cpp}
189 TH1F* h=new TH1F("h", "Histogram title;X Axis;Y Axis", 100, 0, 1);
190~~~
191 The histogram title and the axis titles can be any TLatex string, and
192 are persisted if a histogram is written to a file.
193
194 Any title can be omitted:
195~~~ {.cpp}
196 TH1F* h=new TH1F("h", "Histogram title;;Y Axis", 100, 0, 1);
197 TH1F* h=new TH1F("h", ";;Y Axis", 100, 0, 1);
198~~~
199 The method SetTitle() has the same syntax:
200~~~ {.cpp}
201 h->SetTitle("Histogram title;Another X title Axis");
202~~~
203Alternatively, the title of each axis can be set directly:
204~~~ {.cpp}
205 h->GetXaxis()->SetTitle("X axis title");
206 h->GetYaxis()->SetTitle("Y axis title");
207~~~
208For bin labels see \ref binning.
209
210\anchor binning
211## Binning
212
213\anchor fix-var
214### Fix or variable bin size
215
216 All histogram types support either fix or variable bin sizes.
217 2-D histograms may have fix size bins along X and variable size bins
218 along Y or vice-versa. The functions to fill, manipulate, draw or access
219 histograms are identical in both cases.
220
221 Each histogram always contains 3 axis objects of type TAxis: fXaxis, fYaxis and fZaxis.
222 To access the axis parameters, use:
223~~~ {.cpp}
224 TAxis *xaxis = h->GetXaxis(); etc.
225 Double_t binCenter = xaxis->GetBinCenter(bin), etc.
226~~~
227 See class TAxis for a description of all the access functions.
228 The axis range is always stored internally in double precision.
229
230\anchor convention
231### Convention for numbering bins
232
233 For all histogram types: nbins, xlow, xup
234~~~ {.cpp}
235 bin = 0; underflow bin
236 bin = 1; first bin with low-edge xlow INCLUDED
237 bin = nbins; last bin with upper-edge xup EXCLUDED
238 bin = nbins+1; overflow bin
239~~~
240 In case of 2-D or 3-D histograms, a "global bin" number is defined.
241 For example, assuming a 3-D histogram with (binx, biny, binz), the function
242~~~ {.cpp}
243 Int_t gbin = h->GetBin(binx, biny, binz);
244~~~
245 returns a global/linearized gbin number. This global gbin is useful
246 to access the bin content/error information independently of the dimension.
247 Note that to access the information other than bin content and errors
248 one should use the TAxis object directly with e.g.:
249~~~ {.cpp}
250 Double_t xcenter = h3->GetZaxis()->GetBinCenter(27);
251~~~
252 returns the center along z of bin number 27 (not the global bin)
253 in the 3-D histogram h3.
254
255\anchor alpha
256### Alphanumeric Bin Labels
257
258 By default, a histogram axis is drawn with its numeric bin labels.
259 One can specify alphanumeric labels instead with:
260
261 - call TAxis::SetBinLabel(bin, label);
262 This can always be done before or after filling.
263 When the histogram is drawn, bin labels will be automatically drawn.
264 See examples labels1.C and labels2.C
265 - call to a Fill function with one of the arguments being a string, e.g.
266~~~ {.cpp}
267 hist1->Fill(somename, weight);
268 hist2->Fill(x, somename, weight);
269 hist2->Fill(somename, y, weight);
270 hist2->Fill(somenamex, somenamey, weight);
271~~~
272 See examples hlabels1.C and hlabels2.C
273 - via TTree::Draw. see for example cernstaff.C
274~~~ {.cpp}
275 tree.Draw("Nation::Division");
276~~~
277 where "Nation" and "Division" are two branches of a Tree.
278
279When using the options 2 or 3 above, the labels are automatically
280 added to the list (THashList) of labels for a given axis.
281 By default, an axis is drawn with the order of bins corresponding
282 to the filling sequence. It is possible to reorder the axis
283
284 - alphabetically
285 - by increasing or decreasing values
286
287 The reordering can be triggered via the TAxis context menu by selecting
288 the menu item "LabelsOption" or by calling directly
289 TH1::LabelsOption(option, axis) where
290
291 - axis may be "X", "Y" or "Z"
292 - option may be:
293 - "a" sort by alphabetic order
294 - ">" sort by decreasing values
295 - "<" sort by increasing values
296 - "h" draw labels horizontal
297 - "v" draw labels vertical
298 - "u" draw labels up (end of label right adjusted)
299 - "d" draw labels down (start of label left adjusted)
300
301 When using the option 2 above, new labels are added by doubling the current
302 number of bins in case one label does not exist yet.
303 When the Filling is terminated, it is possible to trim the number
304 of bins to match the number of active labels by calling
305~~~ {.cpp}
306 TH1::LabelsDeflate(axis) with axis = "X", "Y" or "Z"
307~~~
308 This operation is automatic when using TTree::Draw.
309 Once bin labels have been created, they become persistent if the histogram
310 is written to a file or when generating the C++ code via SavePrimitive.
311
312\anchor auto-bin
313### Histograms with automatic bins
314
315 When a histogram is created with an axis lower limit greater or equal
316 to its upper limit, the SetBuffer is automatically called with an
317 argument fBufferSize equal to fgBufferSize (default value=1000).
318 fgBufferSize may be reset via the static function TH1::SetDefaultBufferSize.
319 The axis limits will be automatically computed when the buffer will
320 be full or when the function BufferEmpty is called.
321
322\anchor rebinning
323### Rebinning
324
325 At any time, a histogram can be rebinned via TH1::Rebin. This function
326 returns a new histogram with the rebinned contents.
327 If bin errors were stored, they are recomputed during the rebinning.
328
329
330\anchor filling-histograms
331## Filling histograms
333 A histogram is typically filled with statements like:
334~~~ {.cpp}
335 h1->Fill(x);
336 h1->Fill(x, w); //fill with weight
337 h2->Fill(x, y)
338 h2->Fill(x, y, w)
339 h3->Fill(x, y, z)
340 h3->Fill(x, y, z, w)
341~~~
342 or via one of the Fill functions accepting names described above.
343 The Fill functions compute the bin number corresponding to the given
344 x, y or z argument and increment this bin by the given weight.
345 The Fill functions return the bin number for 1-D histograms or global
346 bin number for 2-D and 3-D histograms.
347 If TH1::Sumw2 has been called before filling, the sum of squares of
348 weights is also stored.
349 One can also increment directly a bin number via TH1::AddBinContent
350 or replace the existing content via TH1::SetBinContent. Passing an
351 out-of-range bin to TH1::AddBinContent leads to undefined behavior.
352 To access the bin content of a given bin, do:
353~~~ {.cpp}
354 Double_t binContent = h->GetBinContent(bin);
355~~~
356
357 By default, the bin number is computed using the current axis ranges.
358 If the automatic binning option has been set via
359~~~ {.cpp}
360 h->SetCanExtend(TH1::kAllAxes);
361~~~
362 then, the Fill Function will automatically extend the axis range to
363 accomodate the new value specified in the Fill argument. The method
364 used is to double the bin size until the new value fits in the range,
365 merging bins two by two. This automatic binning options is extensively
366 used by the TTree::Draw function when histogramming Tree variables
367 with an unknown range.
368 This automatic binning option is supported for 1-D, 2-D and 3-D histograms.
369
370 During filling, some statistics parameters are incremented to compute
371 the mean value and Root Mean Square with the maximum precision.
372
373 In case of histograms of type TH1C, TH1S, TH2C, TH2S, TH3C, TH3S
374 a check is made that the bin contents do not exceed the maximum positive
375 capacity (127 or 32767). Histograms of all types may have positive
376 or/and negative bin contents.
377
378\anchor associated-errors
379### Associated errors
380 By default, for each bin, the sum of weights is computed at fill time.
381 One can also call TH1::Sumw2 to force the storage and computation
382 of the sum of the square of weights per bin.
383 If Sumw2 has been called, the error per bin is computed as the
384 sqrt(sum of squares of weights), otherwise the error is set equal
385 to the sqrt(bin content).
386 To return the error for a given bin number, do:
387~~~ {.cpp}
388 Double_t error = h->GetBinError(bin);
389~~~
390
391\anchor associated-functions
392### Associated functions
393 One or more object (typically a TF1*) can be added to the list
394 of functions (fFunctions) associated to each histogram.
395 When TH1::Fit is invoked, the fitted function is added to this list.
396 Given a histogram h, one can retrieve an associated function
397 with:
398~~~ {.cpp}
399 TF1 *myfunc = h->GetFunction("myfunc");
400~~~
401
402
403\anchor operations-on-histograms
404## Operations on histograms
405
406 Many types of operations are supported on histograms or between histograms
407
408 - Addition of a histogram to the current histogram.
409 - Additions of two histograms with coefficients and storage into the current
410 histogram.
411 - Multiplications and Divisions are supported in the same way as additions.
412 - The Add, Divide and Multiply functions also exist to add, divide or multiply
413 a histogram by a function.
414
415 If a histogram has associated error bars (TH1::Sumw2 has been called),
416 the resulting error bars are also computed assuming independent histograms.
417 In case of divisions, Binomial errors are also supported.
418 One can mark a histogram to be an "average" histogram by setting its bit kIsAverage via
419 myhist.SetBit(TH1::kIsAverage);
420 When adding (see TH1::Add) average histograms, the histograms are averaged and not summed.
421
422
423\anchor prof-hist
424### Projections of histograms
425
426 One can:
427
428 - make a 1-D projection of a 2-D histogram or Profile
429 see functions TH2::ProjectionX,Y, TH2::ProfileX,Y, TProfile::ProjectionX
430 - make a 1-D, 2-D or profile out of a 3-D histogram
431 see functions TH3::ProjectionZ, TH3::Project3D.
432
433 One can fit these projections via:
434~~~ {.cpp}
435 TH2::FitSlicesX,Y, TH3::FitSlicesZ.
436~~~
437
438\anchor random-numbers
439### Random Numbers and histograms
440
441 TH1::FillRandom can be used to randomly fill a histogram using
442 the contents of an existing TF1 function or another
443 TH1 histogram (for all dimensions).
444 For example, the following two statements create and fill a histogram
445 10000 times with a default gaussian distribution of mean 0 and sigma 1:
446~~~ {.cpp}
447 TH1F h1("h1", "histo from a gaussian", 100, -3, 3);
448 h1.FillRandom("gaus", 10000);
449~~~
450 TH1::GetRandom can be used to return a random number distributed
451 according to the contents of a histogram.
452
453\anchor making-a-copy
454### Making a copy of a histogram
455 Like for any other ROOT object derived from TObject, one can use
456 the Clone() function. This makes an identical copy of the original
457 histogram including all associated errors and functions, e.g.:
458~~~ {.cpp}
459 TH1F *hnew = (TH1F*)h->Clone("hnew");
460~~~
461
462\anchor normalizing
463### Normalizing histograms
464
465 One can scale a histogram such that the bins integral is equal to
466 the normalization parameter via TH1::Scale(Double_t norm), where norm
467 is the desired normalization divided by the integral of the histogram.
468
469
470\anchor drawing-histograms
471## Drawing histograms
472
473 Histograms are drawn via the THistPainter class. Each histogram has
474 a pointer to its own painter (to be usable in a multithreaded program).
475 Many drawing options are supported.
476 See THistPainter::Paint() for more details.
477
478 The same histogram can be drawn with different options in different pads.
479 When a histogram drawn in a pad is deleted, the histogram is
480 automatically removed from the pad or pads where it was drawn.
481 If a histogram is drawn in a pad, then filled again, the new status
482 of the histogram will be automatically shown in the pad next time
483 the pad is updated. One does not need to redraw the histogram.
484 To draw the current version of a histogram in a pad, one can use
485~~~ {.cpp}
486 h->DrawCopy();
487~~~
488 This makes a clone (see Clone below) of the histogram. Once the clone
489 is drawn, the original histogram may be modified or deleted without
490 affecting the aspect of the clone.
491
492 One can use TH1::SetMaximum() and TH1::SetMinimum() to force a particular
493 value for the maximum or the minimum scale on the plot. (For 1-D
494 histograms this means the y-axis, while for 2-D histograms these
495 functions affect the z-axis).
496
497 TH1::UseCurrentStyle() can be used to change all histogram graphics
498 attributes to correspond to the current selected style.
499 This function must be called for each histogram.
500 In case one reads and draws many histograms from a file, one can force
501 the histograms to inherit automatically the current graphics style
502 by calling before gROOT->ForceStyle().
503
504\anchor cont-level
505### Setting Drawing histogram contour levels (2-D hists only)
506
507 By default contours are automatically generated at equidistant
508 intervals. A default value of 20 levels is used. This can be modified
509 via TH1::SetContour() or TH1::SetContourLevel().
510 the contours level info is used by the drawing options "cont", "surf",
511 and "lego".
512
513\anchor graph-att
514### Setting histogram graphics attributes
515
516 The histogram classes inherit from the attribute classes:
517 TAttLine, TAttFill, and TAttMarker.
518 See the member functions of these classes for the list of options.
519
520\anchor axis-drawing
521### Customizing how axes are drawn
522
523 Use the functions of TAxis, such as
524~~~ {.cpp}
525 histogram.GetXaxis()->SetTicks("+");
526 histogram.GetYaxis()->SetRangeUser(1., 5.);
527~~~
528
529\anchor fitting-histograms
530## Fitting histograms
531
532 Histograms (1-D, 2-D, 3-D and Profiles) can be fitted with a user
533 specified function or a pre-defined function via TH1::Fit.
534 See TH1::Fit(TF1*, Option_t *, Option_t *, Double_t, Double_t) for the fitting documentation and the possible [fitting options](\ref HFitOpt)
535
536 The FitPanel can also be used for fitting an histogram. See the [FitPanel documentation](https://root.cern/manual/fitting/#using-the-fit-panel).
537
538\anchor saving-histograms
539## Saving/reading histograms to/from a ROOT file
540
541 The following statements create a ROOT file and store a histogram
542 on the file. Because TH1 derives from TNamed, the key identifier on
543 the file is the histogram name:
544~~~ {.cpp}
545 TFile f("histos.root", "new");
546 TH1F h1("hgaus", "histo from a gaussian", 100, -3, 3);
547 h1.FillRandom("gaus", 10000);
548 h1->Write();
549~~~
550 To read this histogram in another Root session, do:
551~~~ {.cpp}
552 TFile f("histos.root");
553 TH1F *h = (TH1F*)f.Get("hgaus");
554~~~
555 One can save all histograms in memory to the file by:
556~~~ {.cpp}
557 file->Write();
558~~~
559
560
561\anchor misc
562## Miscellaneous operations
563
564~~~ {.cpp}
565 TH1::KolmogorovTest(): statistical test of compatibility in shape
566 between two histograms
567 TH1::Smooth() smooths the bin contents of a 1-d histogram
568 TH1::Integral() returns the integral of bin contents in a given bin range
569 TH1::GetMean(int axis) returns the mean value along axis
570 TH1::GetStdDev(int axis) returns the sigma distribution along axis
571 TH1::GetEntries() returns the number of entries
572 TH1::Reset() resets the bin contents and errors of a histogram
573~~~
574 IMPORTANT NOTE: The returned values for GetMean and GetStdDev depend on how the
575 histogram statistics are calculated. By default, if no range has been set, the
576 returned values are the (unbinned) ones calculated at fill time. If a range has been
577 set, however, the values are calculated using the bins in range; THIS IS TRUE EVEN
578 IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset the range.
579 To ensure that the returned values are always those of the binned data stored in the
580 histogram, call TH1::ResetStats. See TH1::GetStats.
581*/
582
583TF1 *gF1=nullptr; //left for back compatibility (use TVirtualFitter::GetUserFunc instead)
584
589
590extern void H1InitGaus();
591extern void H1InitExpo();
592extern void H1InitPolynom();
593extern void H1LeastSquareFit(Int_t n, Int_t m, Double_t *a);
594extern void H1LeastSquareLinearFit(Int_t ndata, Double_t &a0, Double_t &a1, Int_t &ifail);
595extern void H1LeastSquareSeqnd(Int_t n, Double_t *a, Int_t idim, Int_t &ifail, Int_t k, Double_t *b);
596
597namespace {
598
599/// Enumeration specifying inconsistencies between two histograms,
600/// in increasing severity.
601enum EInconsistencyBits {
602 kFullyConsistent = 0,
603 kDifferentLabels = BIT(0),
604 kDifferentBinLimits = BIT(1),
605 kDifferentAxisLimits = BIT(2),
606 kDifferentNumberOfBins = BIT(3),
607 kDifferentDimensions = BIT(4)
608};
609
610} // namespace
611
613
614////////////////////////////////////////////////////////////////////////////////
615/// Histogram default constructor.
616
618{
619 fDirectory = nullptr;
620 fFunctions = new TList;
621 fNcells = 0;
622 fIntegral = nullptr;
623 fPainter = nullptr;
624 fEntries = 0;
625 fNormFactor = 0;
627 fMaximum = -1111;
628 fMinimum = -1111;
629 fBufferSize = 0;
630 fBuffer = nullptr;
633 fXaxis.SetName("xaxis");
634 fYaxis.SetName("yaxis");
635 fZaxis.SetName("zaxis");
636 fXaxis.SetParent(this);
637 fYaxis.SetParent(this);
638 fZaxis.SetParent(this);
640}
641
642////////////////////////////////////////////////////////////////////////////////
643/// Histogram default destructor.
644
646{
648 return;
649 }
650 delete[] fIntegral;
651 fIntegral = nullptr;
652 delete[] fBuffer;
653 fBuffer = nullptr;
654 if (fFunctions) {
656
658 TObject* obj = nullptr;
659 //special logic to support the case where the same object is
660 //added multiple times in fFunctions.
661 //This case happens when the same object is added with different
662 //drawing modes
663 //In the loop below we must be careful with objects (eg TCutG) that may
664 // have been added to the list of functions of several histograms
665 //and may have been already deleted.
666 while ((obj = fFunctions->First())) {
667 while(fFunctions->Remove(obj)) { }
669 break;
670 }
671 delete obj;
672 obj = nullptr;
673 }
674 delete fFunctions;
675 fFunctions = nullptr;
676 }
677 if (fDirectory) {
678 fDirectory->Remove(this);
679 fDirectory = nullptr;
680 }
681 delete fPainter;
682 fPainter = nullptr;
683}
684
685////////////////////////////////////////////////////////////////////////////////
686/// Constructor for fix bin size histograms.
687/// Creates the main histogram structure.
688///
689/// \param[in] name name of histogram (avoid blanks)
690/// \param[in] title histogram title.
691/// If title is of the form `stringt;stringx;stringy;stringz`,
692/// the histogram title is set to `stringt`,
693/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
694/// \param[in] nbins number of bins
695/// \param[in] xlow low edge of first bin
696/// \param[in] xup upper edge of last bin (not included in last bin)
697
698
699TH1::TH1(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
700 :TNamed(name,title)
701{
702 Build();
703 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
704 fXaxis.Set(nbins,xlow,xup);
705 fNcells = fXaxis.GetNbins()+2;
706}
707
708////////////////////////////////////////////////////////////////////////////////
709/// Constructor for variable bin size histograms using an input array of type float.
710/// Creates the main histogram structure.
711///
712/// \param[in] name name of histogram (avoid blanks)
713/// \param[in] title histogram title.
714/// If title is of the form `stringt;stringx;stringy;stringz`
715/// the histogram title is set to `stringt`,
716/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
717/// \param[in] nbins number of bins
718/// \param[in] xbins array of low-edges for each bin.
719/// This is an array of type float and size nbins+1
720
721TH1::TH1(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
722 :TNamed(name,title)
723{
724 Build();
725 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
726 if (xbins) fXaxis.Set(nbins,xbins);
727 else fXaxis.Set(nbins,0,1);
728 fNcells = fXaxis.GetNbins()+2;
729}
730
731////////////////////////////////////////////////////////////////////////////////
732/// Constructor for variable bin size histograms using an input array of type double.
733///
734/// \param[in] name name of histogram (avoid blanks)
735/// \param[in] title histogram title.
736/// If title is of the form `stringt;stringx;stringy;stringz`
737/// the histogram title is set to `stringt`,
738/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
739/// \param[in] nbins number of bins
740/// \param[in] xbins array of low-edges for each bin.
741/// This is an array of type double and size nbins+1
742
743TH1::TH1(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
744 :TNamed(name,title)
745{
746 Build();
747 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
748 if (xbins) fXaxis.Set(nbins,xbins);
749 else fXaxis.Set(nbins,0,1);
750 fNcells = fXaxis.GetNbins()+2;
751}
752
753////////////////////////////////////////////////////////////////////////////////
754/// Static function: cannot be inlined on Windows/NT.
755
757{
758 return fgAddDirectory;
759}
760
761////////////////////////////////////////////////////////////////////////////////
762/// Browse the Histogram object.
763
765{
766 Draw(b ? b->GetDrawOption() : "");
767 gPad->Update();
768}
769
770////////////////////////////////////////////////////////////////////////////////
771/// Creates histogram basic data structure.
772
774{
775 fDirectory = nullptr;
776 fPainter = nullptr;
777 fIntegral = nullptr;
778 fEntries = 0;
779 fNormFactor = 0;
781 fMaximum = -1111;
782 fMinimum = -1111;
783 fBufferSize = 0;
784 fBuffer = nullptr;
787 fXaxis.SetName("xaxis");
788 fYaxis.SetName("yaxis");
789 fZaxis.SetName("zaxis");
790 fYaxis.Set(1,0.,1.);
791 fZaxis.Set(1,0.,1.);
792 fXaxis.SetParent(this);
793 fYaxis.SetParent(this);
794 fZaxis.SetParent(this);
795
797
798 fFunctions = new TList;
799
801
804 if (fDirectory) {
806 fDirectory->Append(this,kTRUE);
807 }
808 }
809}
810
811////////////////////////////////////////////////////////////////////////////////
812/// Performs the operation: `this = this + c1*f1`
813/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
814///
815/// By default, the function is computed at the centre of the bin.
816/// if option "I" is specified (1-d histogram only), the integral of the
817/// function in each bin is used instead of the value of the function at
818/// the centre of the bin.
819///
820/// Only bins inside the function range are recomputed.
821///
822/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
823/// you should call Sumw2 before making this operation.
824/// This is particularly important if you fit the histogram after TH1::Add
825///
826/// The function return kFALSE if the Add operation failed
827
829{
830 if (!f1) {
831 Error("Add","Attempt to add a non-existing function");
832 return kFALSE;
833 }
834
835 TString opt = option;
836 opt.ToLower();
837 Bool_t integral = kFALSE;
838 if (opt.Contains("i") && fDimension == 1) integral = kTRUE;
839
840 Int_t ncellsx = GetNbinsX() + 2; // cells = normal bins + underflow bin + overflow bin
841 Int_t ncellsy = GetNbinsY() + 2;
842 Int_t ncellsz = GetNbinsZ() + 2;
843 if (fDimension < 2) ncellsy = 1;
844 if (fDimension < 3) ncellsz = 1;
845
846 // delete buffer if it is there since it will become invalid
847 if (fBuffer) BufferEmpty(1);
848
849 // - Add statistics
850 Double_t s1[10];
851 for (Int_t i = 0; i < 10; ++i) s1[i] = 0;
852 PutStats(s1);
853 SetMinimum();
854 SetMaximum();
855
856 // - Loop on bins (including underflows/overflows)
857 Int_t bin, binx, biny, binz;
858 Double_t cu=0;
859 Double_t xx[3];
860 Double_t *params = nullptr;
861 f1->InitArgs(xx,params);
862 for (binz = 0; binz < ncellsz; ++binz) {
863 xx[2] = fZaxis.GetBinCenter(binz);
864 for (biny = 0; biny < ncellsy; ++biny) {
865 xx[1] = fYaxis.GetBinCenter(biny);
866 for (binx = 0; binx < ncellsx; ++binx) {
867 xx[0] = fXaxis.GetBinCenter(binx);
868 if (!f1->IsInside(xx)) continue;
870 bin = binx + ncellsx * (biny + ncellsy * binz);
871 if (integral) {
872 cu = c1*f1->Integral(fXaxis.GetBinLowEdge(binx), fXaxis.GetBinUpEdge(binx), 0.) / fXaxis.GetBinWidth(binx);
873 } else {
874 cu = c1*f1->EvalPar(xx);
875 }
876 if (TF1::RejectedPoint()) continue;
877 AddBinContent(bin,cu);
878 }
879 }
880 }
881
882 return kTRUE;
883}
884
885int TH1::LoggedInconsistency(const char *name, const TH1 *h1, const TH1 *h2, bool useMerge) const
886{
887 const auto inconsistency = CheckConsistency(h1, h2);
888
889 if (inconsistency & kDifferentDimensions) {
890 if (useMerge)
891 Info(name, "Histograms have different dimensions - trying to use TH1::Merge");
892 else {
893 Error(name, "Histograms have different dimensions");
894 }
895 } else if (inconsistency & kDifferentNumberOfBins) {
896 if (useMerge)
897 Info(name, "Histograms have different number of bins - trying to use TH1::Merge");
898 else {
899 Error(name, "Histograms have different number of bins");
900 }
901 } else if (inconsistency & kDifferentAxisLimits) {
902 if (useMerge)
903 Info(name, "Histograms have different axis limits - trying to use TH1::Merge");
904 else
905 Warning(name, "Histograms have different axis limits");
906 } else if (inconsistency & kDifferentBinLimits) {
907 if (useMerge)
908 Info(name, "Histograms have different bin limits - trying to use TH1::Merge");
909 else
910 Warning(name, "Histograms have different bin limits");
911 } else if (inconsistency & kDifferentLabels) {
912 // in case of different labels -
913 if (useMerge)
914 Info(name, "Histograms have different labels - trying to use TH1::Merge");
915 else
916 Info(name, "Histograms have different labels");
917 }
918
919 return inconsistency;
920}
921
922////////////////////////////////////////////////////////////////////////////////
923/// Performs the operation: `this = this + c1*h1`
924/// If errors are defined (see TH1::Sumw2), errors are also recalculated.
925///
926/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
927/// if not already set.
928///
929/// Note also that adding histogram with labels is not supported, histogram will be
930/// added merging them by bin number independently of the labels.
931/// For adding histogram with labels one should use TH1::Merge
932///
933/// SPECIAL CASE (Average/Efficiency histograms)
934/// For histograms representing averages or efficiencies, one should compute the average
935/// of the two histograms and not the sum. One can mark a histogram to be an average
936/// histogram by setting its bit kIsAverage with
937/// myhist.SetBit(TH1::kIsAverage);
938/// Note that the two histograms must have their kIsAverage bit set
939///
940/// IMPORTANT NOTE1: If you intend to use the errors of this histogram later
941/// you should call Sumw2 before making this operation.
942/// This is particularly important if you fit the histogram after TH1::Add
943///
944/// IMPORTANT NOTE2: if h1 has a normalisation factor, the normalisation factor
945/// is used , ie this = this + c1*factor*h1
946/// Use the other TH1::Add function if you do not want this feature
947///
948/// IMPORTANT NOTE3: You should be careful about the statistics of the
949/// returned histogram, whose statistics may be binned or unbinned,
950/// depending on whether c1 is negative, whether TAxis::kAxisRange is true,
951/// and whether TH1::ResetStats has been called on either this or h1.
952/// See TH1::GetStats.
953///
954/// The function return kFALSE if the Add operation failed
955
957{
958 if (!h1) {
959 Error("Add","Attempt to add a non-existing histogram");
960 return kFALSE;
961 }
962
963 // delete buffer if it is there since it will become invalid
964 if (fBuffer) BufferEmpty(1);
965
966 bool useMerge = false;
967 const bool considerMerge = (c1 == 1. && !this->TestBit(kIsAverage) && !h1->TestBit(kIsAverage) );
968 const auto inconsistency = LoggedInconsistency("Add", this, h1, considerMerge);
969 // If there is a bad inconsistency and we can't even consider merging, just give up
970 if(inconsistency >= kDifferentNumberOfBins && !considerMerge) {
971 return false;
972 }
973 // If there is an inconsistency, we try to use merging
974 if(inconsistency > kFullyConsistent) {
975 useMerge = considerMerge;
976 }
977
978 if (useMerge) {
979 TList l;
980 l.Add(const_cast<TH1*>(h1));
981 auto iret = Merge(&l);
982 return (iret >= 0);
983 }
984
985 // Create Sumw2 if h1 has Sumw2 set
986 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
987
988 // - Add statistics
989 Double_t entries = TMath::Abs( GetEntries() + c1 * h1->GetEntries() );
990
991 // statistics can be preserved only in case of positive coefficients
992 // otherwise with negative c1 (histogram subtraction) one risks to get negative variances
993 Bool_t resetStats = (c1 < 0);
994 Double_t s1[kNstat] = {0};
995 Double_t s2[kNstat] = {0};
996 if (!resetStats) {
997 // need to initialize to zero s1 and s2 since
998 // GetStats fills only used elements depending on dimension and type
999 GetStats(s1);
1000 h1->GetStats(s2);
1001 }
1002
1003 SetMinimum();
1004 SetMaximum();
1005
1006 // - Loop on bins (including underflows/overflows)
1007 Double_t factor = 1;
1008 if (h1->GetNormFactor() != 0) factor = h1->GetNormFactor()/h1->GetSumOfWeights();
1009 Double_t c1sq = c1 * c1;
1010 Double_t factsq = factor * factor;
1011
1012 for (Int_t bin = 0; bin < fNcells; ++bin) {
1013 //special case where histograms have the kIsAverage bit set
1014 if (this->TestBit(kIsAverage) && h1->TestBit(kIsAverage)) {
1016 Double_t y2 = this->RetrieveBinContent(bin);
1017 Double_t e1sq = h1->GetBinErrorSqUnchecked(bin);
1018 Double_t e2sq = this->GetBinErrorSqUnchecked(bin);
1019 Double_t w1 = 1., w2 = 1.;
1020
1021 // consider all special cases when bin errors are zero
1022 // see http://root-forum.cern.ch/viewtopic.php?f=3&t=13299
1023 if (e1sq) w1 = 1. / e1sq;
1024 else if (h1->fSumw2.fN) {
1025 w1 = 1.E200; // use an arbitrary huge value
1026 if (y1 == 0) {
1027 // use an estimated error from the global histogram scale
1028 double sf = (s2[0] != 0) ? s2[1]/s2[0] : 1;
1029 w1 = 1./(sf*sf);
1030 }
1031 }
1032 if (e2sq) w2 = 1. / e2sq;
1033 else if (fSumw2.fN) {
1034 w2 = 1.E200; // use an arbitrary huge value
1035 if (y2 == 0) {
1036 // use an estimated error from the global histogram scale
1037 double sf = (s1[0] != 0) ? s1[1]/s1[0] : 1;
1038 w2 = 1./(sf*sf);
1039 }
1040 }
1041
1042 double y = (w1*y1 + w2*y2)/(w1 + w2);
1043 UpdateBinContent(bin, y);
1044 if (fSumw2.fN) {
1045 double err2 = 1./(w1 + w2);
1046 if (err2 < 1.E-200) err2 = 0; // to remove arbitrary value when e1=0 AND e2=0
1047 fSumw2.fArray[bin] = err2;
1048 }
1049 } else { // normal case of addition between histograms
1050 AddBinContent(bin, c1 * factor * h1->RetrieveBinContent(bin));
1051 if (fSumw2.fN) fSumw2.fArray[bin] += c1sq * factsq * h1->GetBinErrorSqUnchecked(bin);
1052 }
1053 }
1054
1055 // update statistics (do here to avoid changes by SetBinContent)
1056 if (resetStats) {
1057 // statistics need to be reset in case coefficient are negative
1058 ResetStats();
1059 }
1060 else {
1061 for (Int_t i=0;i<kNstat;i++) {
1062 if (i == 1) s1[i] += c1*c1*s2[i];
1063 else s1[i] += c1*s2[i];
1064 }
1065 PutStats(s1);
1066 SetEntries(entries);
1067 }
1068 return kTRUE;
1069}
1070
1071////////////////////////////////////////////////////////////////////////////////
1072/// Replace contents of this histogram by the addition of h1 and h2.
1073///
1074/// `this = c1*h1 + c2*h2`
1075/// if errors are defined (see TH1::Sumw2), errors are also recalculated
1076///
1077/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
1078/// if not already set.
1079///
1080/// Note also that adding histogram with labels is not supported, histogram will be
1081/// added merging them by bin number independently of the labels.
1082/// For adding histogram ith labels one should use TH1::Merge
1083///
1084/// SPECIAL CASE (Average/Efficiency histograms)
1085/// For histograms representing averages or efficiencies, one should compute the average
1086/// of the two histograms and not the sum. One can mark a histogram to be an average
1087/// histogram by setting its bit kIsAverage with
1088/// myhist.SetBit(TH1::kIsAverage);
1089/// Note that the two histograms must have their kIsAverage bit set
1090///
1091/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
1092/// you should call Sumw2 before making this operation.
1093/// This is particularly important if you fit the histogram after TH1::Add
1094///
1095/// IMPORTANT NOTE2: You should be careful about the statistics of the
1096/// returned histogram, whose statistics may be binned or unbinned,
1097/// depending on whether c1 is negative, whether TAxis::kAxisRange is true,
1098/// and whether TH1::ResetStats has been called on either this or h1.
1099/// See TH1::GetStats.
1100///
1101/// ANOTHER SPECIAL CASE : h1 = h2 and c2 < 0
1102/// do a scaling this = c1 * h1 / (bin Volume)
1103///
1104/// The function returns kFALSE if the Add operation failed
1105
1107{
1108
1109 if (!h1 || !h2) {
1110 Error("Add","Attempt to add a non-existing histogram");
1111 return kFALSE;
1112 }
1113
1114 // delete buffer if it is there since it will become invalid
1115 if (fBuffer) BufferEmpty(1);
1116
1117 Bool_t normWidth = kFALSE;
1118 if (h1 == h2 && c2 < 0) {c2 = 0; normWidth = kTRUE;}
1119
1120 if (h1 != h2) {
1121 bool useMerge = false;
1122 const bool considerMerge = (c1 == 1. && c2 == 1. && !this->TestBit(kIsAverage) && !h1->TestBit(kIsAverage) );
1123
1124 // We can combine inconsistencies like this, since they are ordered and a
1125 // higher inconsistency is worse
1126 auto const inconsistency = std::max(LoggedInconsistency("Add", this, h1, considerMerge),
1127 LoggedInconsistency("Add", h1, h2, considerMerge));
1128
1129 // If there is a bad inconsistency and we can't even consider merging, just give up
1130 if(inconsistency >= kDifferentNumberOfBins && !considerMerge) {
1131 return false;
1132 }
1133 // If there is an inconsistency, we try to use merging
1134 if(inconsistency > kFullyConsistent) {
1135 useMerge = considerMerge;
1136 }
1137
1138 if (useMerge) {
1139 TList l;
1140 // why TList takes non-const pointers ????
1141 l.Add(const_cast<TH1*>(h1));
1142 l.Add(const_cast<TH1*>(h2));
1143 Reset("ICE");
1144 auto iret = Merge(&l);
1145 return (iret >= 0);
1146 }
1147 }
1148
1149 // Create Sumw2 if h1 or h2 have Sumw2 set
1150 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0)) Sumw2();
1151
1152 // - Add statistics
1153 Double_t nEntries = TMath::Abs( c1*h1->GetEntries() + c2*h2->GetEntries() );
1154
1155 // TODO remove
1156 // statistics can be preserved only in case of positive coefficients
1157 // otherwise with negative c1 (histogram subtraction) one risks to get negative variances
1158 // also in case of scaling with the width we cannot preserve the statistics
1159 Double_t s1[kNstat] = {0};
1160 Double_t s2[kNstat] = {0};
1161 Double_t s3[kNstat];
1162
1163
1164 Bool_t resetStats = (c1*c2 < 0) || normWidth;
1165 if (!resetStats) {
1166 // need to initialize to zero s1 and s2 since
1167 // GetStats fills only used elements depending on dimension and type
1168 h1->GetStats(s1);
1169 h2->GetStats(s2);
1170 for (Int_t i=0;i<kNstat;i++) {
1171 if (i == 1) s3[i] = c1*c1*s1[i] + c2*c2*s2[i];
1172 //else s3[i] = TMath::Abs(c1)*s1[i] + TMath::Abs(c2)*s2[i];
1173 else s3[i] = c1*s1[i] + c2*s2[i];
1174 }
1175 }
1176
1177 SetMinimum();
1178 SetMaximum();
1179
1180 if (normWidth) { // DEPRECATED CASE: belongs to fitting / drawing modules
1181
1182 Int_t nbinsx = GetNbinsX() + 2; // normal bins + underflow, overflow
1183 Int_t nbinsy = GetNbinsY() + 2;
1184 Int_t nbinsz = GetNbinsZ() + 2;
1185
1186 if (fDimension < 2) nbinsy = 1;
1187 if (fDimension < 3) nbinsz = 1;
1188
1189 Int_t bin, binx, biny, binz;
1190 for (binz = 0; binz < nbinsz; ++binz) {
1191 Double_t wz = h1->GetZaxis()->GetBinWidth(binz);
1192 for (biny = 0; biny < nbinsy; ++biny) {
1193 Double_t wy = h1->GetYaxis()->GetBinWidth(biny);
1194 for (binx = 0; binx < nbinsx; ++binx) {
1195 Double_t wx = h1->GetXaxis()->GetBinWidth(binx);
1196 bin = GetBin(binx, biny, binz);
1197 Double_t w = wx*wy*wz;
1198 UpdateBinContent(bin, c1 * h1->RetrieveBinContent(bin) / w);
1199 if (fSumw2.fN) {
1200 Double_t e1 = h1->GetBinError(bin)/w;
1201 fSumw2.fArray[bin] = c1*c1*e1*e1;
1202 }
1203 }
1204 }
1205 }
1206 } else if (h1->TestBit(kIsAverage) && h2->TestBit(kIsAverage)) {
1207 for (Int_t i = 0; i < fNcells; ++i) { // loop on cells (bins including underflow / overflow)
1208 // special case where histograms have the kIsAverage bit set
1210 Double_t y2 = h2->RetrieveBinContent(i);
1212 Double_t e2sq = h2->GetBinErrorSqUnchecked(i);
1213 Double_t w1 = 1., w2 = 1.;
1214
1215 // consider all special cases when bin errors are zero
1216 // see http://root-forum.cern.ch/viewtopic.php?f=3&t=13299
1217 if (e1sq) w1 = 1./ e1sq;
1218 else if (h1->fSumw2.fN) {
1219 w1 = 1.E200; // use an arbitrary huge value
1220 if (y1 == 0 ) { // use an estimated error from the global histogram scale
1221 double sf = (s1[0] != 0) ? s1[1]/s1[0] : 1;
1222 w1 = 1./(sf*sf);
1223 }
1224 }
1225 if (e2sq) w2 = 1./ e2sq;
1226 else if (h2->fSumw2.fN) {
1227 w2 = 1.E200; // use an arbitrary huge value
1228 if (y2 == 0) { // use an estimated error from the global histogram scale
1229 double sf = (s2[0] != 0) ? s2[1]/s2[0] : 1;
1230 w2 = 1./(sf*sf);
1231 }
1232 }
1233
1234 double y = (w1*y1 + w2*y2)/(w1 + w2);
1235 UpdateBinContent(i, y);
1236 if (fSumw2.fN) {
1237 double err2 = 1./(w1 + w2);
1238 if (err2 < 1.E-200) err2 = 0; // to remove arbitrary value when e1=0 AND e2=0
1239 fSumw2.fArray[i] = err2;
1240 }
1241 }
1242 } else { // case of simple histogram addition
1243 Double_t c1sq = c1 * c1;
1244 Double_t c2sq = c2 * c2;
1245 for (Int_t i = 0; i < fNcells; ++i) { // Loop on cells (bins including underflows/overflows)
1246 UpdateBinContent(i, c1 * h1->RetrieveBinContent(i) + c2 * h2->RetrieveBinContent(i));
1247 if (fSumw2.fN) {
1248 fSumw2.fArray[i] = c1sq * h1->GetBinErrorSqUnchecked(i) + c2sq * h2->GetBinErrorSqUnchecked(i);
1249 }
1250 }
1251 }
1252
1253 if (resetStats) {
1254 // statistics need to be reset in case coefficient are negative
1255 ResetStats();
1256 }
1257 else {
1258 // update statistics (do here to avoid changes by SetBinContent) FIXME remove???
1259 PutStats(s3);
1260 SetEntries(nEntries);
1261 }
1262
1263 return kTRUE;
1264}
1265
1266////////////////////////////////////////////////////////////////////////////////
1267/// Increment bin content by 1.
1268/// Passing an out-of-range bin leads to undefined behavior
1269
1271{
1272 AbstractMethod("AddBinContent");
1273}
1274
1275////////////////////////////////////////////////////////////////////////////////
1276/// Increment bin content by a weight w.
1277/// Passing an out-of-range bin leads to undefined behavior
1278
1280{
1281 AbstractMethod("AddBinContent");
1282}
1283
1284////////////////////////////////////////////////////////////////////////////////
1285/// Sets the flag controlling the automatic add of histograms in memory
1286///
1287/// By default (fAddDirectory = kTRUE), histograms are automatically added
1288/// to the list of objects in memory.
1289/// Note that one histogram can be removed from its support directory
1290/// by calling h->SetDirectory(nullptr) or h->SetDirectory(dir) to add it
1291/// to the list of objects in the directory dir.
1292///
1293/// NOTE that this is a static function. To call it, use;
1294/// TH1::AddDirectory
1295
1297{
1298 fgAddDirectory = add;
1299}
1300
1301////////////////////////////////////////////////////////////////////////////////
1302/// Auxiliary function to get the power of 2 next (larger) or previous (smaller)
1303/// a given x
1304///
1305/// next = kTRUE : next larger
1306/// next = kFALSE : previous smaller
1307///
1308/// Used by the autobin power of 2 algorithm
1309
1311{
1312 Int_t nn;
1313 Double_t f2 = std::frexp(x, &nn);
1314 return ((next && x > 0.) || (!next && x <= 0.)) ? std::ldexp(std::copysign(1., f2), nn)
1315 : std::ldexp(std::copysign(1., f2), --nn);
1316}
1317
1318////////////////////////////////////////////////////////////////////////////////
1319/// Auxiliary function to get the next power of 2 integer value larger then n
1320///
1321/// Used by the autobin power of 2 algorithm
1322
1324{
1325 Int_t nn;
1326 Double_t f2 = std::frexp(n, &nn);
1327 if (TMath::Abs(f2 - .5) > 0.001)
1328 return (Int_t)std::ldexp(1., nn);
1329 return n;
1330}
1331
1332////////////////////////////////////////////////////////////////////////////////
1333/// Buffer-based estimate of the histogram range using the power of 2 algorithm.
1334///
1335/// Used by the autobin power of 2 algorithm.
1336///
1337/// Works on arguments (min and max from fBuffer) and internal inputs: fXmin,
1338/// fXmax, NBinsX (from fXaxis), ...
1339/// Result save internally in fXaxis.
1340///
1341/// Overloaded by TH2 and TH3.
1342///
1343/// Return -1 if internal inputs are inconsistent, 0 otherwise.
1344
1346{
1347 // We need meaningful raw limits
1348 if (xmi >= xma)
1349 return -1;
1350
1352 Double_t xhmi = fXaxis.GetXmin();
1353 Double_t xhma = fXaxis.GetXmax();
1354
1355 // Now adjust
1356 if (TMath::Abs(xhma) > TMath::Abs(xhmi)) {
1357 // Start from the upper limit
1358 xhma = TH1::AutoP2GetPower2(xhma);
1359 xhmi = xhma - TH1::AutoP2GetPower2(xhma - xhmi);
1360 } else {
1361 // Start from the lower limit
1362 xhmi = TH1::AutoP2GetPower2(xhmi, kFALSE);
1363 xhma = xhmi + TH1::AutoP2GetPower2(xhma - xhmi);
1364 }
1365
1366 // Round the bins to the next power of 2; take into account the possible inflation
1367 // of the range
1368 Double_t rr = (xhma - xhmi) / (xma - xmi);
1369 Int_t nb = TH1::AutoP2GetBins((Int_t)(rr * GetNbinsX()));
1370
1371 // Adjust using the same bin width and offsets
1372 Double_t bw = (xhma - xhmi) / nb;
1373 // Bins to left free on each side
1374 Double_t autoside = gEnv->GetValue("Hist.Binning.Auto.Side", 0.05);
1375 Int_t nbside = (Int_t)(nb * autoside);
1376
1377 // Side up
1378 Int_t nbup = (xhma - xma) / bw;
1379 if (nbup % 2 != 0)
1380 nbup++; // Must be even
1381 if (nbup != nbside) {
1382 // Accounts also for both case: larger or smaller
1383 xhma -= bw * (nbup - nbside);
1384 nb -= (nbup - nbside);
1385 }
1386
1387 // Side low
1388 Int_t nblw = (xmi - xhmi) / bw;
1389 if (nblw % 2 != 0)
1390 nblw++; // Must be even
1391 if (nblw != nbside) {
1392 // Accounts also for both case: larger or smaller
1393 xhmi += bw * (nblw - nbside);
1394 nb -= (nblw - nbside);
1395 }
1396
1397 // Set everything and project
1398 SetBins(nb, xhmi, xhma);
1399
1400 // Done
1401 return 0;
1402}
1403
1404/// Fill histogram with all entries in the buffer.
1405///
1406/// - action = -1 histogram is reset and refilled from the buffer (called by THistPainter::Paint)
1407/// - action = 0 histogram is reset and filled from the buffer. When the histogram is filled from the
1408/// buffer the value fBuffer[0] is set to a negative number (= - number of entries)
1409/// When calling with action == 0 the histogram is NOT refilled when fBuffer[0] is < 0
1410/// While when calling with action = -1 the histogram is reset and ALWAYS refilled independently if
1411/// the histogram was filled before. This is needed when drawing the histogram
1412/// - action = 1 histogram is filled and buffer is deleted
1413/// The buffer is automatically deleted when filling the histogram and the entries is
1414/// larger than the buffer size
1415
1417{
1418 // do we need to compute the bin size?
1419 if (!fBuffer) return 0;
1420 Int_t nbentries = (Int_t)fBuffer[0];
1421
1422 // nbentries correspond to the number of entries of histogram
1423
1424 if (nbentries == 0) {
1425 // if action is 1 we delete the buffer
1426 // this will avoid infinite recursion
1427 if (action > 0) {
1428 delete [] fBuffer;
1429 fBuffer = nullptr;
1430 fBufferSize = 0;
1431 }
1432 return 0;
1433 }
1434 if (nbentries < 0 && action == 0) return 0; // case histogram has been already filled from the buffer
1435
1436 Double_t *buffer = fBuffer;
1437 if (nbentries < 0) {
1438 nbentries = -nbentries;
1439 // a reset might call BufferEmpty() giving an infinite recursion
1440 // Protect it by setting fBuffer = nullptr
1441 fBuffer = nullptr;
1442 //do not reset the list of functions
1443 Reset("ICES");
1444 fBuffer = buffer;
1445 }
1446 if (CanExtendAllAxes() || (fXaxis.GetXmax() <= fXaxis.GetXmin())) {
1447 //find min, max of entries in buffer
1450 for (Int_t i=0;i<nbentries;i++) {
1451 Double_t x = fBuffer[2*i+2];
1452 // skip infinity or NaN values
1453 if (!std::isfinite(x)) continue;
1454 if (x < xmin) xmin = x;
1455 if (x > xmax) xmax = x;
1456 }
1457 if (fXaxis.GetXmax() <= fXaxis.GetXmin()) {
1458 Int_t rc = -1;
1460 if ((rc = AutoP2FindLimits(xmin, xmax)) < 0)
1461 Warning("BufferEmpty",
1462 "inconsistency found by power-of-2 autobin algorithm: fallback to standard method");
1463 }
1464 if (rc < 0)
1466 } else {
1467 fBuffer = nullptr;
1468 Int_t keep = fBufferSize; fBufferSize = 0;
1470 if (xmax >= fXaxis.GetXmax()) ExtendAxis(xmax, &fXaxis);
1471 fBuffer = buffer;
1472 fBufferSize = keep;
1473 }
1474 }
1475
1476 // call DoFillN which will not put entries in the buffer as FillN does
1477 // set fBuffer to zero to avoid re-emptying the buffer from functions called
1478 // by DoFillN (e.g Sumw2)
1479 buffer = fBuffer; fBuffer = nullptr;
1480 DoFillN(nbentries,&buffer[2],&buffer[1],2);
1481 fBuffer = buffer;
1482
1483 // if action == 1 - delete the buffer
1484 if (action > 0) {
1485 delete [] fBuffer;
1486 fBuffer = nullptr;
1487 fBufferSize = 0;
1488 } else {
1489 // if number of entries is consistent with buffer - set it negative to avoid
1490 // refilling the histogram every time BufferEmpty(0) is called
1491 // In case it is not consistent, by setting fBuffer[0]=0 is like resetting the buffer
1492 // (it will not be used anymore the next time BufferEmpty is called)
1493 if (nbentries == (Int_t)fEntries)
1494 fBuffer[0] = -nbentries;
1495 else
1496 fBuffer[0] = 0;
1497 }
1498 return nbentries;
1499}
1500
1501////////////////////////////////////////////////////////////////////////////////
1502/// accumulate arguments in buffer. When buffer is full, empty the buffer
1503///
1504/// - `fBuffer[0]` = number of entries in buffer
1505/// - `fBuffer[1]` = w of first entry
1506/// - `fBuffer[2]` = x of first entry
1507
1509{
1510 if (!fBuffer) return -2;
1511 Int_t nbentries = (Int_t)fBuffer[0];
1512
1513
1514 if (nbentries < 0) {
1515 // reset nbentries to a positive value so next time BufferEmpty() is called
1516 // the histogram will be refilled
1517 nbentries = -nbentries;
1518 fBuffer[0] = nbentries;
1519 if (fEntries > 0) {
1520 // set fBuffer to zero to avoid calling BufferEmpty in Reset
1521 Double_t *buffer = fBuffer; fBuffer=nullptr;
1522 Reset("ICES"); // do not reset list of functions
1523 fBuffer = buffer;
1524 }
1525 }
1526 if (2*nbentries+2 >= fBufferSize) {
1527 BufferEmpty(1);
1528 if (!fBuffer)
1529 // to avoid infinite recursion Fill->BufferFill->Fill
1530 return Fill(x,w);
1531 // this cannot happen
1532 R__ASSERT(0);
1533 }
1534 fBuffer[2*nbentries+1] = w;
1535 fBuffer[2*nbentries+2] = x;
1536 fBuffer[0] += 1;
1537 return -2;
1538}
1539
1540////////////////////////////////////////////////////////////////////////////////
1541/// Check bin limits.
1542
1543bool TH1::CheckBinLimits(const TAxis* a1, const TAxis * a2)
1544{
1545 const TArrayD * h1Array = a1->GetXbins();
1546 const TArrayD * h2Array = a2->GetXbins();
1547 Int_t fN = h1Array->fN;
1548 if ( fN != 0 ) {
1549 if ( h2Array->fN != fN ) {
1550 return false;
1551 }
1552 else {
1553 for ( int i = 0; i < fN; ++i ) {
1554 // for i==fN (nbin+1) a->GetBinWidth() returns last bin width
1555 // we do not need to exclude that case
1556 double binWidth = a1->GetBinWidth(i);
1557 if ( ! TMath::AreEqualAbs( h1Array->GetAt(i), h2Array->GetAt(i), binWidth*1E-10 ) ) {
1558 return false;
1559 }
1560 }
1561 }
1562 }
1563
1564 return true;
1565}
1566
1567////////////////////////////////////////////////////////////////////////////////
1568/// Check that axis have same labels.
1569
1570bool TH1::CheckBinLabels(const TAxis* a1, const TAxis * a2)
1571{
1572 THashList *l1 = a1->GetLabels();
1573 THashList *l2 = a2->GetLabels();
1574
1575 if (!l1 && !l2 )
1576 return true;
1577 if (!l1 || !l2 ) {
1578 return false;
1579 }
1580 // check now labels sizes are the same
1581 if (l1->GetSize() != l2->GetSize() ) {
1582 return false;
1583 }
1584 for (int i = 1; i <= a1->GetNbins(); ++i) {
1585 TString label1 = a1->GetBinLabel(i);
1586 TString label2 = a2->GetBinLabel(i);
1587 if (label1 != label2) {
1588 return false;
1589 }
1590 }
1591
1592 return true;
1593}
1594
1595////////////////////////////////////////////////////////////////////////////////
1596/// Check that the axis limits of the histograms are the same.
1597/// If a first and last bin is passed the axis is compared between the given range
1598
1599bool TH1::CheckAxisLimits(const TAxis *a1, const TAxis *a2 )
1600{
1601 double firstBin = a1->GetBinWidth(1);
1602 double lastBin = a1->GetBinWidth( a1->GetNbins() );
1603 if ( ! TMath::AreEqualAbs(a1->GetXmin(), a2->GetXmin(), firstBin* 1.E-10) ||
1604 ! TMath::AreEqualAbs(a1->GetXmax(), a2->GetXmax(), lastBin*1.E-10) ) {
1605 return false;
1606 }
1607 return true;
1608}
1609
1610////////////////////////////////////////////////////////////////////////////////
1611/// Check that the axis are the same
1612
1613bool TH1::CheckEqualAxes(const TAxis *a1, const TAxis *a2 )
1614{
1615 if (a1->GetNbins() != a2->GetNbins() ) {
1616 ::Info("CheckEqualAxes","Axes have different number of bins : nbin1 = %d nbin2 = %d",a1->GetNbins(),a2->GetNbins() );
1617 return false;
1618 }
1619 if(!CheckAxisLimits(a1,a2)) {
1620 ::Info("CheckEqualAxes","Axes have different limits");
1621 return false;
1622 }
1623 if(!CheckBinLimits(a1,a2)) {
1624 ::Info("CheckEqualAxes","Axes have different bin limits");
1625 return false;
1626 }
1627
1628 // check labels
1629 if(!CheckBinLabels(a1,a2)) {
1630 ::Info("CheckEqualAxes","Axes have different labels");
1631 return false;
1632 }
1633
1634 return true;
1635}
1636
1637////////////////////////////////////////////////////////////////////////////////
1638/// Check that two sub axis are the same.
1639/// The limits are defined by first bin and last bin
1640/// N.B. no check is done in this case for variable bins
1641
1642bool TH1::CheckConsistentSubAxes(const TAxis *a1, Int_t firstBin1, Int_t lastBin1, const TAxis * a2, Int_t firstBin2, Int_t lastBin2 )
1643{
1644 // By default is assumed that no bins are given for the second axis
1645 Int_t nbins1 = lastBin1-firstBin1 + 1;
1646 Double_t xmin1 = a1->GetBinLowEdge(firstBin1);
1647 Double_t xmax1 = a1->GetBinUpEdge(lastBin1);
1648
1649 Int_t nbins2 = a2->GetNbins();
1650 Double_t xmin2 = a2->GetXmin();
1651 Double_t xmax2 = a2->GetXmax();
1652
1653 if (firstBin2 < lastBin2) {
1654 // in this case assume no bins are given for the second axis
1655 nbins2 = lastBin1-firstBin1 + 1;
1656 xmin2 = a1->GetBinLowEdge(firstBin1);
1657 xmax2 = a1->GetBinUpEdge(lastBin1);
1658 }
1659
1660 if (nbins1 != nbins2 ) {
1661 ::Info("CheckConsistentSubAxes","Axes have different number of bins");
1662 return false;
1663 }
1664
1665 Double_t firstBin = a1->GetBinWidth(firstBin1);
1666 Double_t lastBin = a1->GetBinWidth(lastBin1);
1667 if ( ! TMath::AreEqualAbs(xmin1,xmin2,1.E-10 * firstBin) ||
1668 ! TMath::AreEqualAbs(xmax1,xmax2,1.E-10 * lastBin) ) {
1669 ::Info("CheckConsistentSubAxes","Axes have different limits");
1670 return false;
1671 }
1672
1673 return true;
1674}
1675
1676////////////////////////////////////////////////////////////////////////////////
1677/// Check histogram compatibility.
1678
1679int TH1::CheckConsistency(const TH1* h1, const TH1* h2)
1680{
1681 if (h1 == h2) return kFullyConsistent;
1682
1683 if (h1->GetDimension() != h2->GetDimension() ) {
1684 return kDifferentDimensions;
1685 }
1686 Int_t dim = h1->GetDimension();
1687
1688 // returns kTRUE if number of bins and bin limits are identical
1689 Int_t nbinsx = h1->GetNbinsX();
1690 Int_t nbinsy = h1->GetNbinsY();
1691 Int_t nbinsz = h1->GetNbinsZ();
1692
1693 // Check whether the histograms have the same number of bins.
1694 if (nbinsx != h2->GetNbinsX() ||
1695 (dim > 1 && nbinsy != h2->GetNbinsY()) ||
1696 (dim > 2 && nbinsz != h2->GetNbinsZ()) ) {
1697 return kDifferentNumberOfBins;
1698 }
1699
1700 bool ret = true;
1701
1702 // check axis limits
1703 ret &= CheckAxisLimits(h1->GetXaxis(), h2->GetXaxis());
1704 if (dim > 1) ret &= CheckAxisLimits(h1->GetYaxis(), h2->GetYaxis());
1705 if (dim > 2) ret &= CheckAxisLimits(h1->GetZaxis(), h2->GetZaxis());
1706 if (!ret) return kDifferentAxisLimits;
1707
1708 // check bin limits
1709 ret &= CheckBinLimits(h1->GetXaxis(), h2->GetXaxis());
1710 if (dim > 1) ret &= CheckBinLimits(h1->GetYaxis(), h2->GetYaxis());
1711 if (dim > 2) ret &= CheckBinLimits(h1->GetZaxis(), h2->GetZaxis());
1712 if (!ret) return kDifferentBinLimits;
1713
1714 // check labels if histograms are both not empty
1715 if ( !h1->IsEmpty() && !h2->IsEmpty() ) {
1716 ret &= CheckBinLabels(h1->GetXaxis(), h2->GetXaxis());
1717 if (dim > 1) ret &= CheckBinLabels(h1->GetYaxis(), h2->GetYaxis());
1718 if (dim > 2) ret &= CheckBinLabels(h1->GetZaxis(), h2->GetZaxis());
1719 if (!ret) return kDifferentLabels;
1720 }
1721
1722 return kFullyConsistent;
1723}
1724
1725////////////////////////////////////////////////////////////////////////////////
1726/// \f$ \chi^{2} \f$ test for comparing weighted and unweighted histograms.
1727///
1728/// Compares the histograms' adjusted (normalized) residuals.
1729/// Function: Returns p-value. Other return values are specified by the 3rd parameter
1730///
1731/// \param[in] h2 the second histogram
1732/// \param[in] option
1733/// - "UU" = experiment experiment comparison (unweighted-unweighted)
1734/// - "UW" = experiment MC comparison (unweighted-weighted). Note that
1735/// the first histogram should be unweighted
1736/// - "WW" = MC MC comparison (weighted-weighted)
1737/// - "NORM" = to be used when one or both of the histograms is scaled
1738/// but the histogram originally was unweighted
1739/// - by default underflows and overflows are not included:
1740/// * "OF" = overflows included
1741/// * "UF" = underflows included
1742/// - "P" = print chi2, ndf, p_value, igood
1743/// - "CHI2" = returns chi2 instead of p-value
1744/// - "CHI2/NDF" = returns \f$ \chi^{2} \f$/ndf
1745/// \param[in] res not empty - computes normalized residuals and returns them in this array
1746///
1747/// The current implementation is based on the papers \f$ \chi^{2} \f$ test for comparison
1748/// of weighted and unweighted histograms" in Proceedings of PHYSTAT05 and
1749/// "Comparison weighted and unweighted histograms", arXiv:physics/0605123
1750/// by N.Gagunashvili. This function has been implemented by Daniel Haertl in August 2006.
1751///
1752/// #### Introduction:
1753///
1754/// A frequently used technique in data analysis is the comparison of
1755/// histograms. First suggested by Pearson [1] the \f$ \chi^{2} \f$ test of
1756/// homogeneity is used widely for comparing usual (unweighted) histograms.
1757/// This paper describes the implementation modified \f$ \chi^{2} \f$ tests
1758/// for comparison of weighted and unweighted histograms and two weighted
1759/// histograms [2] as well as usual Pearson's \f$ \chi^{2} \f$ test for
1760/// comparison two usual (unweighted) histograms.
1761///
1762/// #### Overview:
1763///
1764/// Comparison of two histograms expect hypotheses that two histograms
1765/// represent identical distributions. To make a decision p-value should
1766/// be calculated. The hypotheses of identity is rejected if the p-value is
1767/// lower then some significance level. Traditionally significance levels
1768/// 0.1, 0.05 and 0.01 are used. The comparison procedure should include an
1769/// analysis of the residuals which is often helpful in identifying the
1770/// bins of histograms responsible for a significant overall \f$ \chi^{2} \f$ value.
1771/// Residuals are the difference between bin contents and expected bin
1772/// contents. Most convenient for analysis are the normalized residuals. If
1773/// hypotheses of identity are valid then normalized residuals are
1774/// approximately independent and identically distributed random variables
1775/// having N(0,1) distribution. Analysis of residuals expect test of above
1776/// mentioned properties of residuals. Notice that indirectly the analysis
1777/// of residuals increase the power of \f$ \chi^{2} \f$ test.
1778///
1779/// #### Methods of comparison:
1780///
1781/// \f$ \chi^{2} \f$ test for comparison two (unweighted) histograms:
1782/// Let us consider two histograms with the same binning and the number
1783/// of bins equal to r. Let us denote the number of events in the ith bin
1784/// in the first histogram as ni and as mi in the second one. The total
1785/// number of events in the first histogram is equal to:
1786/// \f[
1787/// N = \sum_{i=1}^{r} n_{i}
1788/// \f]
1789/// and
1790/// \f[
1791/// M = \sum_{i=1}^{r} m_{i}
1792/// \f]
1793/// in the second histogram. The hypothesis of identity (homogeneity) [3]
1794/// is that the two histograms represent random values with identical
1795/// distributions. It is equivalent that there exist r constants p1,...,pr,
1796/// such that
1797/// \f[
1798///\sum_{i=1}^{r} p_{i}=1
1799/// \f]
1800/// and the probability of belonging to the ith bin for some measured value
1801/// in both experiments is equal to pi. The number of events in the ith
1802/// bin is a random variable with a distribution approximated by a Poisson
1803/// probability distribution
1804/// \f[
1805///\frac{e^{-Np_{i}}(Np_{i})^{n_{i}}}{n_{i}!}
1806/// \f]
1807///for the first histogram and with distribution
1808/// \f[
1809///\frac{e^{-Mp_{i}}(Mp_{i})^{m_{i}}}{m_{i}!}
1810/// \f]
1811/// for the second histogram. If the hypothesis of homogeneity is valid,
1812/// then the maximum likelihood estimator of pi, i=1,...,r, is
1813/// \f[
1814///\hat{p}_{i}= \frac{n_{i}+m_{i}}{N+M}
1815/// \f]
1816/// and then
1817/// \f[
1818/// X^{2} = \sum_{i=1}^{r}\frac{(n_{i}-N\hat{p}_{i})^{2}}{N\hat{p}_{i}} + \sum_{i=1}^{r}\frac{(m_{i}-M\hat{p}_{i})^{2}}{M\hat{p}_{i}} =\frac{1}{MN} \sum_{i=1}^{r}\frac{(Mn_{i}-Nm_{i})^{2}}{n_{i}+m_{i}}
1819/// \f]
1820/// has approximately a \f$ \chi^{2}_{(r-1)} \f$ distribution [3].
1821/// The comparison procedure can include an analysis of the residuals which
1822/// is often helpful in identifying the bins of histograms responsible for
1823/// a significant overall \f$ \chi^{2} \f$ value. Most convenient for
1824/// analysis are the adjusted (normalized) residuals [4]
1825/// \f[
1826/// r_{i} = \frac{n_{i}-N\hat{p}_{i}}{\sqrt{N\hat{p}_{i}}\sqrt{(1-N/(N+M))(1-(n_{i}+m_{i})/(N+M))}}
1827/// \f]
1828/// If hypotheses of homogeneity are valid then residuals ri are
1829/// approximately independent and identically distributed random variables
1830/// having N(0,1) distribution. The application of the \f$ \chi^{2} \f$ test has
1831/// restrictions related to the value of the expected frequencies Npi,
1832/// Mpi, i=1,...,r. A conservative rule formulated in [5] is that all the
1833/// expectations must be 1 or greater for both histograms. In practical
1834/// cases when expected frequencies are not known the estimated expected
1835/// frequencies \f$ M\hat{p}_{i}, N\hat{p}_{i}, i=1,...,r \f$ can be used.
1836///
1837/// #### Unweighted and weighted histograms comparison:
1838///
1839/// A simple modification of the ideas described above can be used for the
1840/// comparison of the usual (unweighted) and weighted histograms. Let us
1841/// denote the number of events in the ith bin in the unweighted
1842/// histogram as ni and the common weight of events in the ith bin of the
1843/// weighted histogram as wi. The total number of events in the
1844/// unweighted histogram is equal to
1845///\f[
1846/// N = \sum_{i=1}^{r} n_{i}
1847///\f]
1848/// and the total weight of events in the weighted histogram is equal to
1849///\f[
1850/// W = \sum_{i=1}^{r} w_{i}
1851///\f]
1852/// Let us formulate the hypothesis of identity of an unweighted histogram
1853/// to a weighted histogram so that there exist r constants p1,...,pr, such
1854/// that
1855///\f[
1856/// \sum_{i=1}^{r} p_{i} = 1
1857///\f]
1858/// for the unweighted histogram. The weight wi is a random variable with a
1859/// distribution approximated by the normal probability distribution
1860/// \f$ N(Wp_{i},\sigma_{i}^{2}) \f$ where \f$ \sigma_{i}^{2} \f$ is the variance of the weight wi.
1861/// If we replace the variance \f$ \sigma_{i}^{2} \f$
1862/// with estimate \f$ s_{i}^{2} \f$ (sum of squares of weights of
1863/// events in the ith bin) and the hypothesis of identity is valid, then the
1864/// maximum likelihood estimator of pi,i=1,...,r, is
1865///\f[
1866/// \hat{p}_{i} = \frac{Ww_{i}-Ns_{i}^{2}+\sqrt{(Ww_{i}-Ns_{i}^{2})^{2}+4W^{2}s_{i}^{2}n_{i}}}{2W^{2}}
1867///\f]
1868/// We may then use the test statistic
1869///\f[
1870/// X^{2} = \sum_{i=1}^{r} \frac{(n_{i}-N\hat{p}_{i})^{2}}{N\hat{p}_{i}} + \sum_{i=1}^{r} \frac{(w_{i}-W\hat{p}_{i})^{2}}{s_{i}^{2}}
1871///\f]
1872/// and it has approximately a \f$ \sigma^{2}_{(r-1)} \f$ distribution [2]. This test, as well
1873/// as the original one [3], has a restriction on the expected frequencies. The
1874/// expected frequencies recommended for the weighted histogram is more than 25.
1875/// The value of the minimal expected frequency can be decreased down to 10 for
1876/// the case when the weights of the events are close to constant. In the case
1877/// of a weighted histogram if the number of events is unknown, then we can
1878/// apply this recommendation for the equivalent number of events as
1879///\f[
1880/// n_{i}^{equiv} = \frac{ w_{i}^{2} }{ s_{i}^{2} }
1881///\f]
1882/// The minimal expected frequency for an unweighted histogram must be 1. Notice
1883/// that any usual (unweighted) histogram can be considered as a weighted
1884/// histogram with events that have constant weights equal to 1.
1885/// The variance \f$ z_{i}^{2} \f$ of the difference between the weight wi
1886/// and the estimated expectation value of the weight is approximately equal to:
1887///\f[
1888/// z_{i}^{2} = Var(w_{i}-W\hat{p}_{i}) = N\hat{p}_{i}(1-N\hat{p}_{i})\left(\frac{Ws_{i}^{2}}{\sqrt{(Ns_{i}^{2}-w_{i}W)^{2}+4W^{2}s_{i}^{2}n_{i}}}\right)^{2}+\frac{s_{i}^{2}}{4}\left(1+\frac{Ns_{i}^{2}-w_{i}W}{\sqrt{(Ns_{i}^{2}-w_{i}W)^{2}+4W^{2}s_{i}^{2}n_{i}}}\right)^{2}
1889///\f]
1890/// The residuals
1891///\f[
1892/// r_{i} = \frac{w_{i}-W\hat{p}_{i}}{z_{i}}
1893///\f]
1894/// have approximately a normal distribution with mean equal to 0 and standard
1895/// deviation equal to 1.
1896///
1897/// #### Two weighted histograms comparison:
1898///
1899/// Let us denote the common weight of events of the ith bin in the first
1900/// histogram as w1i and as w2i in the second one. The total weight of events
1901/// in the first histogram is equal to
1902///\f[
1903/// W_{1} = \sum_{i=1}^{r} w_{1i}
1904///\f]
1905/// and
1906///\f[
1907/// W_{2} = \sum_{i=1}^{r} w_{2i}
1908///\f]
1909/// in the second histogram. Let us formulate the hypothesis of identity of
1910/// weighted histograms so that there exist r constants p1,...,pr, such that
1911///\f[
1912/// \sum_{i=1}^{r} p_{i} = 1
1913///\f]
1914/// and also expectation value of weight w1i equal to W1pi and expectation value
1915/// of weight w2i equal to W2pi. Weights in both the histograms are random
1916/// variables with distributions which can be approximated by a normal
1917/// probability distribution \f$ N(W_{1}p_{i},\sigma_{1i}^{2}) \f$ for the first histogram
1918/// and by a distribution \f$ N(W_{2}p_{i},\sigma_{2i}^{2}) \f$ for the second.
1919/// Here \f$ \sigma_{1i}^{2} \f$ and \f$ \sigma_{2i}^{2} \f$ are the variances
1920/// of w1i and w2i with estimators \f$ s_{1i}^{2} \f$ and \f$ s_{2i}^{2} \f$ respectively.
1921/// If the hypothesis of identity is valid, then the maximum likelihood and
1922/// Least Square Method estimator of pi,i=1,...,r, is
1923///\f[
1924/// \hat{p}_{i} = \frac{w_{1i}W_{1}/s_{1i}^{2}+w_{2i}W_{2} /s_{2i}^{2}}{W_{1}^{2}/s_{1i}^{2}+W_{2}^{2}/s_{2i}^{2}}
1925///\f]
1926/// We may then use the test statistic
1927///\f[
1928/// X^{2} = \sum_{i=1}^{r} \frac{(w_{1i}-W_{1}\hat{p}_{i})^{2}}{s_{1i}^{2}} + \sum_{i=1}^{r} \frac{(w_{2i}-W_{2}\hat{p}_{i})^{2}}{s_{2i}^{2}} = \sum_{i=1}^{r} \frac{(W_{1}w_{2i}-W_{2}w_{1i})^{2}}{W_{1}^{2}s_{2i}^{2}+W_{2}^{2}s_{1i}^{2}}
1929///\f]
1930/// and it has approximately a \f$ \chi^{2}_{(r-1)} \f$ distribution [2].
1931/// The normalized or studentised residuals [6]
1932///\f[
1933/// r_{i} = \frac{w_{1i}-W_{1}\hat{p}_{i}}{s_{1i}\sqrt{1 - \frac{1}{(1+W_{2}^{2}s_{1i}^{2}/W_{1}^{2}s_{2i}^{2})}}}
1934///\f]
1935/// have approximately a normal distribution with mean equal to 0 and standard
1936/// deviation 1. A recommended minimal expected frequency is equal to 10 for
1937/// the proposed test.
1938///
1939/// #### Numerical examples:
1940///
1941/// The method described herein is now illustrated with an example.
1942/// We take a distribution
1943///\f[
1944/// \phi(x) = \frac{2}{(x-10)^{2}+1} + \frac{1}{(x-14)^{2}+1} (1)
1945///\f]
1946/// defined on the interval [4,16]. Events distributed according to the formula
1947/// (1) are simulated to create the unweighted histogram. Uniformly distributed
1948/// events are simulated for the weighted histogram with weights calculated by
1949/// formula (1). Each histogram has the same number of bins: 20. Fig.1 shows
1950/// the result of comparison of the unweighted histogram with 200 events
1951/// (minimal expected frequency equal to one) and the weighted histogram with
1952/// 500 events (minimal expected frequency equal to 25)
1953/// Begin_Macro
1954/// ../../../tutorials/math/chi2test.C
1955/// End_Macro
1956/// Fig 1. An example of comparison of the unweighted histogram with 200 events
1957/// and the weighted histogram with 500 events:
1958/// 1. unweighted histogram;
1959/// 2. weighted histogram;
1960/// 3. normalized residuals plot;
1961/// 4. normal Q-Q plot of residuals.
1962///
1963/// The value of the test statistic \f$ \chi^{2} \f$ is equal to
1964/// 21.09 with p-value equal to 0.33, therefore the hypothesis of identity of
1965/// the two histograms can be accepted for 0.05 significant level. The behavior
1966/// of the normalized residuals plot (see Fig. 1c) and the normal Q-Q plot
1967/// (see Fig. 1d) of residuals are regular and we cannot identify the outliers
1968/// or bins with a big influence on \f$ \chi^{2} \f$.
1969///
1970/// The second example presents the same two histograms but 17 events was added
1971/// to content of bin number 15 in unweighted histogram. Fig.2 shows the result
1972/// of comparison of the unweighted histogram with 217 events (minimal expected
1973/// frequency equal to one) and the weighted histogram with 500 events (minimal
1974/// expected frequency equal to 25)
1975/// Begin_Macro
1976/// ../../../tutorials/math/chi2test.C(17)
1977/// End_Macro
1978/// Fig 2. An example of comparison of the unweighted histogram with 217 events
1979/// and the weighted histogram with 500 events:
1980/// 1. unweighted histogram;
1981/// 2. weighted histogram;
1982/// 3. normalized residuals plot;
1983/// 4. normal Q-Q plot of residuals.
1984///
1985/// The value of the test statistic \f$ \chi^{2} \f$ is equal to
1986/// 32.33 with p-value equal to 0.029, therefore the hypothesis of identity of
1987/// the two histograms is rejected for 0.05 significant level. The behavior of
1988/// the normalized residuals plot (see Fig. 2c) and the normal Q-Q plot (see
1989/// Fig. 2d) of residuals are not regular and we can identify the outlier or
1990/// bin with a big influence on \f$ \chi^{2} \f$.
1991///
1992/// #### References:
1993///
1994/// - [1] Pearson, K., 1904. On the Theory of Contingency and Its Relation to
1995/// Association and Normal Correlation. Drapers' Co. Memoirs, Biometric
1996/// Series No. 1, London.
1997/// - [2] Gagunashvili, N., 2006. \f$ \sigma^{2} \f$ test for comparison
1998/// of weighted and unweighted histograms. Statistical Problems in Particle
1999/// Physics, Astrophysics and Cosmology, Proceedings of PHYSTAT05,
2000/// Oxford, UK, 12-15 September 2005, Imperial College Press, London, 43-44.
2001/// Gagunashvili,N., Comparison of weighted and unweighted histograms,
2002/// arXiv:physics/0605123, 2006.
2003/// - [3] Cramer, H., 1946. Mathematical methods of statistics.
2004/// Princeton University Press, Princeton.
2005/// - [4] Haberman, S.J., 1973. The analysis of residuals in cross-classified tables.
2006/// Biometrics 29, 205-220.
2007/// - [5] Lewontin, R.C. and Felsenstein, J., 1965. The robustness of homogeneity
2008/// test in 2xN tables. Biometrics 21, 19-33.
2009/// - [6] Seber, G.A.F., Lee, A.J., 2003, Linear Regression Analysis.
2010/// John Wiley & Sons Inc., New York.
2011
2012Double_t TH1::Chi2Test(const TH1* h2, Option_t *option, Double_t *res) const
2013{
2014 Double_t chi2 = 0;
2015 Int_t ndf = 0, igood = 0;
2016
2017 TString opt = option;
2018 opt.ToUpper();
2019
2020 Double_t prob = Chi2TestX(h2,chi2,ndf,igood,option,res);
2021
2022 if(opt.Contains("P")) {
2023 printf("Chi2 = %f, Prob = %g, NDF = %d, igood = %d\n", chi2,prob,ndf,igood);
2024 }
2025 if(opt.Contains("CHI2/NDF")) {
2026 if (ndf == 0) return 0;
2027 return chi2/ndf;
2028 }
2029 if(opt.Contains("CHI2")) {
2030 return chi2;
2031 }
2032
2033 return prob;
2034}
2035
2036////////////////////////////////////////////////////////////////////////////////
2037/// The computation routine of the Chisquare test. For the method description,
2038/// see Chi2Test() function.
2039///
2040/// \return p-value
2041/// \param[in] h2 the second histogram
2042/// \param[in] option
2043/// - "UU" = experiment experiment comparison (unweighted-unweighted)
2044/// - "UW" = experiment MC comparison (unweighted-weighted). Note that the first
2045/// histogram should be unweighted
2046/// - "WW" = MC MC comparison (weighted-weighted)
2047/// - "NORM" = if one or both histograms is scaled
2048/// - "OF" = overflows included
2049/// - "UF" = underflows included
2050/// by default underflows and overflows are not included
2051/// \param[out] igood test output
2052/// - igood=0 - no problems
2053/// - For unweighted unweighted comparison
2054/// - igood=1'There is a bin in the 1st histogram with less than 1 event'
2055/// - igood=2'There is a bin in the 2nd histogram with less than 1 event'
2056/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2057/// - For unweighted weighted comparison
2058/// - igood=1'There is a bin in the 1st histogram with less then 1 event'
2059/// - igood=2'There is a bin in the 2nd histogram with less then 10 effective number of events'
2060/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2061/// - For weighted weighted comparison
2062/// - igood=1'There is a bin in the 1st histogram with less then 10 effective
2063/// number of events'
2064/// - igood=2'There is a bin in the 2nd histogram with less then 10 effective
2065/// number of events'
2066/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2067/// \param[out] chi2 chisquare of the test
2068/// \param[out] ndf number of degrees of freedom (important, when both histograms have the same empty bins)
2069/// \param[out] res normalized residuals for further analysis
2070
2071Double_t TH1::Chi2TestX(const TH1* h2, Double_t &chi2, Int_t &ndf, Int_t &igood, Option_t *option, Double_t *res) const
2072{
2073
2074 Int_t i_start, i_end;
2075 Int_t j_start, j_end;
2076 Int_t k_start, k_end;
2077
2078 Double_t sum1 = 0.0, sumw1 = 0.0;
2079 Double_t sum2 = 0.0, sumw2 = 0.0;
2080
2081 chi2 = 0.0;
2082 ndf = 0;
2083
2084 TString opt = option;
2085 opt.ToUpper();
2086
2087 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
2088
2089 const TAxis *xaxis1 = GetXaxis();
2090 const TAxis *xaxis2 = h2->GetXaxis();
2091 const TAxis *yaxis1 = GetYaxis();
2092 const TAxis *yaxis2 = h2->GetYaxis();
2093 const TAxis *zaxis1 = GetZaxis();
2094 const TAxis *zaxis2 = h2->GetZaxis();
2095
2096 Int_t nbinx1 = xaxis1->GetNbins();
2097 Int_t nbinx2 = xaxis2->GetNbins();
2098 Int_t nbiny1 = yaxis1->GetNbins();
2099 Int_t nbiny2 = yaxis2->GetNbins();
2100 Int_t nbinz1 = zaxis1->GetNbins();
2101 Int_t nbinz2 = zaxis2->GetNbins();
2102
2103 //check dimensions
2104 if (this->GetDimension() != h2->GetDimension() ){
2105 Error("Chi2TestX","Histograms have different dimensions.");
2106 return 0.0;
2107 }
2108
2109 //check number of channels
2110 if (nbinx1 != nbinx2) {
2111 Error("Chi2TestX","different number of x channels");
2112 }
2113 if (nbiny1 != nbiny2) {
2114 Error("Chi2TestX","different number of y channels");
2115 }
2116 if (nbinz1 != nbinz2) {
2117 Error("Chi2TestX","different number of z channels");
2118 }
2119
2120 //check for ranges
2121 i_start = j_start = k_start = 1;
2122 i_end = nbinx1;
2123 j_end = nbiny1;
2124 k_end = nbinz1;
2125
2126 if (xaxis1->TestBit(TAxis::kAxisRange)) {
2127 i_start = xaxis1->GetFirst();
2128 i_end = xaxis1->GetLast();
2129 }
2130 if (yaxis1->TestBit(TAxis::kAxisRange)) {
2131 j_start = yaxis1->GetFirst();
2132 j_end = yaxis1->GetLast();
2133 }
2134 if (zaxis1->TestBit(TAxis::kAxisRange)) {
2135 k_start = zaxis1->GetFirst();
2136 k_end = zaxis1->GetLast();
2137 }
2138
2139
2140 if (opt.Contains("OF")) {
2141 if (GetDimension() == 3) k_end = ++nbinz1;
2142 if (GetDimension() >= 2) j_end = ++nbiny1;
2143 if (GetDimension() >= 1) i_end = ++nbinx1;
2144 }
2145
2146 if (opt.Contains("UF")) {
2147 if (GetDimension() == 3) k_start = 0;
2148 if (GetDimension() >= 2) j_start = 0;
2149 if (GetDimension() >= 1) i_start = 0;
2150 }
2151
2152 ndf = (i_end - i_start + 1) * (j_end - j_start + 1) * (k_end - k_start + 1) - 1;
2153
2154 Bool_t comparisonUU = opt.Contains("UU");
2155 Bool_t comparisonUW = opt.Contains("UW");
2156 Bool_t comparisonWW = opt.Contains("WW");
2157 Bool_t scaledHistogram = opt.Contains("NORM");
2158
2159 if (scaledHistogram && !comparisonUU) {
2160 Info("Chi2TestX", "NORM option should be used together with UU option. It is ignored");
2161 }
2162
2163 // look at histo global bin content and effective entries
2164 Stat_t s[kNstat];
2165 GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
2166 Double_t sumBinContent1 = s[0];
2167 Double_t effEntries1 = (s[1] ? s[0] * s[0] / s[1] : 0.0);
2168
2169 h2->GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
2170 Double_t sumBinContent2 = s[0];
2171 Double_t effEntries2 = (s[1] ? s[0] * s[0] / s[1] : 0.0);
2172
2173 if (!comparisonUU && !comparisonUW && !comparisonWW ) {
2174 // deduce automatically from type of histogram
2175 if (TMath::Abs(sumBinContent1 - effEntries1) < 1) {
2176 if ( TMath::Abs(sumBinContent2 - effEntries2) < 1) comparisonUU = true;
2177 else comparisonUW = true;
2178 }
2179 else comparisonWW = true;
2180 }
2181 // check unweighted histogram
2182 if (comparisonUW) {
2183 if (TMath::Abs(sumBinContent1 - effEntries1) >= 1) {
2184 Warning("Chi2TestX","First histogram is not unweighted and option UW has been requested");
2185 }
2186 }
2187 if ( (!scaledHistogram && comparisonUU) ) {
2188 if ( ( TMath::Abs(sumBinContent1 - effEntries1) >= 1) || (TMath::Abs(sumBinContent2 - effEntries2) >= 1) ) {
2189 Warning("Chi2TestX","Both histograms are not unweighted and option UU has been requested");
2190 }
2191 }
2192
2193
2194 //get number of events in histogram
2195 if (comparisonUU && scaledHistogram) {
2196 for (Int_t i = i_start; i <= i_end; ++i) {
2197 for (Int_t j = j_start; j <= j_end; ++j) {
2198 for (Int_t k = k_start; k <= k_end; ++k) {
2199
2200 Int_t bin = GetBin(i, j, k);
2201
2202 Double_t cnt1 = RetrieveBinContent(bin);
2203 Double_t cnt2 = h2->RetrieveBinContent(bin);
2204 Double_t e1sq = GetBinErrorSqUnchecked(bin);
2205 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2206
2207 if (e1sq > 0.0) cnt1 = TMath::Floor(cnt1 * cnt1 / e1sq + 0.5); // avoid rounding errors
2208 else cnt1 = 0.0;
2209
2210 if (e2sq > 0.0) cnt2 = TMath::Floor(cnt2 * cnt2 / e2sq + 0.5); // avoid rounding errors
2211 else cnt2 = 0.0;
2212
2213 // sum contents
2214 sum1 += cnt1;
2215 sum2 += cnt2;
2216 sumw1 += e1sq;
2217 sumw2 += e2sq;
2218 }
2219 }
2220 }
2221 if (sumw1 <= 0.0 || sumw2 <= 0.0) {
2222 Error("Chi2TestX", "Cannot use option NORM when one histogram has all zero errors");
2223 return 0.0;
2224 }
2225
2226 } else {
2227 for (Int_t i = i_start; i <= i_end; ++i) {
2228 for (Int_t j = j_start; j <= j_end; ++j) {
2229 for (Int_t k = k_start; k <= k_end; ++k) {
2230
2231 Int_t bin = GetBin(i, j, k);
2232
2233 sum1 += RetrieveBinContent(bin);
2234 sum2 += h2->RetrieveBinContent(bin);
2235
2236 if ( comparisonWW ) sumw1 += GetBinErrorSqUnchecked(bin);
2237 if ( comparisonUW || comparisonWW ) sumw2 += h2->GetBinErrorSqUnchecked(bin);
2238 }
2239 }
2240 }
2241 }
2242 //checks that the histograms are not empty
2243 if (sum1 == 0.0 || sum2 == 0.0) {
2244 Error("Chi2TestX","one histogram is empty");
2245 return 0.0;
2246 }
2247
2248 if ( comparisonWW && ( sumw1 <= 0.0 && sumw2 <= 0.0 ) ){
2249 Error("Chi2TestX","Hist1 and Hist2 have both all zero errors\n");
2250 return 0.0;
2251 }
2252
2253 //THE TEST
2254 Int_t m = 0, n = 0;
2255
2256 //Experiment - experiment comparison
2257 if (comparisonUU) {
2258 Double_t sum = sum1 + sum2;
2259 for (Int_t i = i_start; i <= i_end; ++i) {
2260 for (Int_t j = j_start; j <= j_end; ++j) {
2261 for (Int_t k = k_start; k <= k_end; ++k) {
2262
2263 Int_t bin = GetBin(i, j, k);
2264
2265 Double_t cnt1 = RetrieveBinContent(bin);
2266 Double_t cnt2 = h2->RetrieveBinContent(bin);
2267
2268 if (scaledHistogram) {
2269 // scale bin value to effective bin entries
2270 Double_t e1sq = GetBinErrorSqUnchecked(bin);
2271 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2272
2273 if (e1sq > 0) cnt1 = TMath::Floor(cnt1 * cnt1 / e1sq + 0.5); // avoid rounding errors
2274 else cnt1 = 0;
2275
2276 if (e2sq > 0) cnt2 = TMath::Floor(cnt2 * cnt2 / e2sq + 0.5); // avoid rounding errors
2277 else cnt2 = 0;
2278 }
2279
2280 if (Int_t(cnt1) == 0 && Int_t(cnt2) == 0) --ndf; // no data means one degree of freedom less
2281 else {
2282
2283 Double_t cntsum = cnt1 + cnt2;
2284 Double_t nexp1 = cntsum * sum1 / sum;
2285 //Double_t nexp2 = binsum*sum2/sum;
2286
2287 if (res) res[i - i_start] = (cnt1 - nexp1) / TMath::Sqrt(nexp1);
2288
2289 if (cnt1 < 1) ++m;
2290 if (cnt2 < 1) ++n;
2291
2292 //Habermann correction for residuals
2293 Double_t correc = (1. - sum1 / sum) * (1. - cntsum / sum);
2294 if (res) res[i - i_start] /= TMath::Sqrt(correc);
2295
2296 Double_t delta = sum2 * cnt1 - sum1 * cnt2;
2297 chi2 += delta * delta / cntsum;
2298 }
2299 }
2300 }
2301 }
2302 chi2 /= sum1 * sum2;
2303
2304 // flag error only when of the two histogram is zero
2305 if (m) {
2306 igood += 1;
2307 Info("Chi2TestX","There is a bin in h1 with less than 1 event.\n");
2308 }
2309 if (n) {
2310 igood += 2;
2311 Info("Chi2TestX","There is a bin in h2 with less than 1 event.\n");
2312 }
2313
2314 Double_t prob = TMath::Prob(chi2,ndf);
2315 return prob;
2316
2317 }
2318
2319 // unweighted - weighted comparison
2320 // case of error = 0 and content not zero is treated without problems by excluding second chi2 sum
2321 // and can be considered as a data-theory comparison
2322 if ( comparisonUW ) {
2323 for (Int_t i = i_start; i <= i_end; ++i) {
2324 for (Int_t j = j_start; j <= j_end; ++j) {
2325 for (Int_t k = k_start; k <= k_end; ++k) {
2326
2327 Int_t bin = GetBin(i, j, k);
2328
2329 Double_t cnt1 = RetrieveBinContent(bin);
2330 Double_t cnt2 = h2->RetrieveBinContent(bin);
2331 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2332
2333 // case both histogram have zero bin contents
2334 if (cnt1 * cnt1 == 0 && cnt2 * cnt2 == 0) {
2335 --ndf; //no data means one degree of freedom less
2336 continue;
2337 }
2338
2339 // case weighted histogram has zero bin content and error
2340 if (cnt2 * cnt2 == 0 && e2sq == 0) {
2341 if (sumw2 > 0) {
2342 // use as approximated error as 1 scaled by a scaling ratio
2343 // estimated from the total sum weight and sum weight squared
2344 e2sq = sumw2 / sum2;
2345 }
2346 else {
2347 // return error because infinite discrepancy here:
2348 // bin1 != 0 and bin2 =0 in a histogram with all errors zero
2349 Error("Chi2TestX","Hist2 has in bin (%d,%d,%d) zero content and zero errors\n", i, j, k);
2350 chi2 = 0; return 0;
2351 }
2352 }
2353
2354 if (cnt1 < 1) m++;
2355 if (e2sq > 0 && cnt2 * cnt2 / e2sq < 10) n++;
2356
2357 Double_t var1 = sum2 * cnt2 - sum1 * e2sq;
2358 Double_t var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2359
2360 // if cnt1 is zero and cnt2 = 1 and sum1 = sum2 var1 = 0 && var2 == 0
2361 // approximate by incrementing cnt1
2362 // LM (this need to be fixed for numerical errors)
2363 while (var1 * var1 + cnt1 == 0 || var1 + var2 == 0) {
2364 sum1++;
2365 cnt1++;
2366 var1 = sum2 * cnt2 - sum1 * e2sq;
2367 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2368 }
2369 var2 = TMath::Sqrt(var2);
2370
2371 while (var1 + var2 == 0) {
2372 sum1++;
2373 cnt1++;
2374 var1 = sum2 * cnt2 - sum1 * e2sq;
2375 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2376 while (var1 * var1 + cnt1 == 0 || var1 + var2 == 0) {
2377 sum1++;
2378 cnt1++;
2379 var1 = sum2 * cnt2 - sum1 * e2sq;
2380 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2381 }
2382 var2 = TMath::Sqrt(var2);
2383 }
2384
2385 Double_t probb = (var1 + var2) / (2. * sum2 * sum2);
2386
2387 Double_t nexp1 = probb * sum1;
2388 Double_t nexp2 = probb * sum2;
2389
2390 Double_t delta1 = cnt1 - nexp1;
2391 Double_t delta2 = cnt2 - nexp2;
2392
2393 chi2 += delta1 * delta1 / nexp1;
2394
2395 if (e2sq > 0) {
2396 chi2 += delta2 * delta2 / e2sq;
2397 }
2398
2399 if (res) {
2400 if (e2sq > 0) {
2401 Double_t temp1 = sum2 * e2sq / var2;
2402 Double_t temp2 = 1.0 + (sum1 * e2sq - sum2 * cnt2) / var2;
2403 temp2 = temp1 * temp1 * sum1 * probb * (1.0 - probb) + temp2 * temp2 * e2sq / 4.0;
2404 // invert sign here
2405 res[i - i_start] = - delta2 / TMath::Sqrt(temp2);
2406 }
2407 else
2408 res[i - i_start] = delta1 / TMath::Sqrt(nexp1);
2409 }
2410 }
2411 }
2412 }
2413
2414 if (m) {
2415 igood += 1;
2416 Info("Chi2TestX","There is a bin in h1 with less than 1 event.\n");
2417 }
2418 if (n) {
2419 igood += 2;
2420 Info("Chi2TestX","There is a bin in h2 with less than 10 effective events.\n");
2421 }
2422
2423 Double_t prob = TMath::Prob(chi2, ndf);
2424
2425 return prob;
2426 }
2427
2428 // weighted - weighted comparison
2429 if (comparisonWW) {
2430 for (Int_t i = i_start; i <= i_end; ++i) {
2431 for (Int_t j = j_start; j <= j_end; ++j) {
2432 for (Int_t k = k_start; k <= k_end; ++k) {
2433
2434 Int_t bin = GetBin(i, j, k);
2435 Double_t cnt1 = RetrieveBinContent(bin);
2436 Double_t cnt2 = h2->RetrieveBinContent(bin);
2437 Double_t e1sq = GetBinErrorSqUnchecked(bin);
2438 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2439
2440 // case both histogram have zero bin contents
2441 // (use square of content to avoid numerical errors)
2442 if (cnt1 * cnt1 == 0 && cnt2 * cnt2 == 0) {
2443 --ndf; //no data means one degree of freedom less
2444 continue;
2445 }
2446
2447 if (e1sq == 0 && e2sq == 0) {
2448 // cannot treat case of booth histogram have zero zero errors
2449 Error("Chi2TestX","h1 and h2 both have bin %d,%d,%d with all zero errors\n", i,j,k);
2450 chi2 = 0; return 0;
2451 }
2452
2453 Double_t sigma = sum1 * sum1 * e2sq + sum2 * sum2 * e1sq;
2454 Double_t delta = sum2 * cnt1 - sum1 * cnt2;
2455 chi2 += delta * delta / sigma;
2456
2457 if (res) {
2458 Double_t temp = cnt1 * sum1 * e2sq + cnt2 * sum2 * e1sq;
2459 Double_t probb = temp / sigma;
2460 Double_t z = 0;
2461 if (e1sq > e2sq) {
2462 Double_t d1 = cnt1 - sum1 * probb;
2463 Double_t s1 = e1sq * ( 1. - e2sq * sum1 * sum1 / sigma );
2464 z = d1 / TMath::Sqrt(s1);
2465 }
2466 else {
2467 Double_t d2 = cnt2 - sum2 * probb;
2468 Double_t s2 = e2sq * ( 1. - e1sq * sum2 * sum2 / sigma );
2469 z = -d2 / TMath::Sqrt(s2);
2470 }
2471 res[i - i_start] = z;
2472 }
2473
2474 if (e1sq > 0 && cnt1 * cnt1 / e1sq < 10) m++;
2475 if (e2sq > 0 && cnt2 * cnt2 / e2sq < 10) n++;
2476 }
2477 }
2478 }
2479 if (m) {
2480 igood += 1;
2481 Info("Chi2TestX","There is a bin in h1 with less than 10 effective events.\n");
2482 }
2483 if (n) {
2484 igood += 2;
2485 Info("Chi2TestX","There is a bin in h2 with less than 10 effective events.\n");
2486 }
2487 Double_t prob = TMath::Prob(chi2, ndf);
2488 return prob;
2489 }
2490 return 0;
2491}
2492////////////////////////////////////////////////////////////////////////////////
2493/// Compute and return the chisquare of this histogram with respect to a function
2494/// The chisquare is computed by weighting each histogram point by the bin error
2495/// By default the full range of the histogram is used.
2496/// Use option "R" for restricting the chisquare calculation to the given range of the function
2497/// Use option "L" for using the chisquare based on the poisson likelihood (Baker-Cousins Chisquare)
2498/// Use option "P" for using the Pearson chisquare based on the expected bin errors
2499
2501{
2502 if (!func) {
2503 Error("Chisquare","Function pointer is Null - return -1");
2504 return -1;
2505 }
2506
2507 TString opt(option); opt.ToUpper();
2508 bool useRange = opt.Contains("R");
2509 ROOT::Fit::EChisquareType type = ROOT::Fit::EChisquareType::kNeyman; // default chi2 with observed error
2512
2513 return ROOT::Fit::Chisquare(*this, *func, useRange, type);
2514}
2515
2516////////////////////////////////////////////////////////////////////////////////
2517/// Remove all the content from the underflow and overflow bins, without changing the number of entries
2518/// After calling this method, every undeflow and overflow bins will have content 0.0
2519/// The Sumw2 is also cleared, since there is no more content in the bins
2520
2522{
2523 for (Int_t bin = 0; bin < fNcells; ++bin)
2524 if (IsBinUnderflow(bin) || IsBinOverflow(bin)) {
2525 UpdateBinContent(bin, 0.0);
2526 if (fSumw2.fN) fSumw2.fArray[bin] = 0.0;
2527 }
2528}
2529
2530////////////////////////////////////////////////////////////////////////////////
2531/// Compute integral (normalized cumulative sum of bins) w/o under/overflows
2532/// The result is stored in fIntegral and used by the GetRandom functions.
2533/// This function is automatically called by GetRandom when the fIntegral
2534/// array does not exist or when the number of entries in the histogram
2535/// has changed since the previous call to GetRandom.
2536/// The resulting integral is normalized to 1.
2537/// If the routine is called with the onlyPositive flag set an error will
2538/// be produced in case of negative bin content and a NaN value returned
2539/// \return 1 if success, 0 if integral is zero, NAN if onlyPositive-test fails
2540
2542{
2543 if (fBuffer) BufferEmpty();
2544
2545 // delete previously computed integral (if any)
2546 if (fIntegral) delete [] fIntegral;
2547
2548 // - Allocate space to store the integral and compute integral
2549 Int_t nbinsx = GetNbinsX();
2550 Int_t nbinsy = GetNbinsY();
2551 Int_t nbinsz = GetNbinsZ();
2552 Int_t nbins = nbinsx * nbinsy * nbinsz;
2553
2554 fIntegral = new Double_t[nbins + 2];
2555 Int_t ibin = 0; fIntegral[ibin] = 0;
2556
2557 for (Int_t binz=1; binz <= nbinsz; ++binz) {
2558 for (Int_t biny=1; biny <= nbinsy; ++biny) {
2559 for (Int_t binx=1; binx <= nbinsx; ++binx) {
2560 ++ibin;
2561 Double_t y = RetrieveBinContent(GetBin(binx, biny, binz));
2562 if (onlyPositive && y < 0) {
2563 Error("ComputeIntegral","Bin content is negative - return a NaN value");
2564 fIntegral[nbins] = TMath::QuietNaN();
2565 break;
2566 }
2567 fIntegral[ibin] = fIntegral[ibin - 1] + y;
2568 }
2569 }
2570 }
2571
2572 // - Normalize integral to 1
2573 if (fIntegral[nbins] == 0 ) {
2574 Error("ComputeIntegral", "Integral = 0, no hits in histogram bins (excluding over/underflow).");
2575 return 0;
2576 }
2577 for (Int_t bin=1; bin <= nbins; ++bin) fIntegral[bin] /= fIntegral[nbins];
2578 fIntegral[nbins+1] = fEntries;
2579 return fIntegral[nbins];
2580}
2581
2582////////////////////////////////////////////////////////////////////////////////
2583/// Return a pointer to the array of bins integral.
2584/// if the pointer fIntegral is null, TH1::ComputeIntegral is called
2585/// The array dimension is the number of bins in the histograms
2586/// including underflow and overflow (fNCells)
2587/// the last value integral[fNCells] is set to the number of entries of
2588/// the histogram
2589
2591{
2592 if (!fIntegral) ComputeIntegral();
2593 return fIntegral;
2594}
2595
2596////////////////////////////////////////////////////////////////////////////////
2597/// Return a pointer to a histogram containing the cumulative content.
2598/// The cumulative can be computed both in the forward (default) or backward
2599/// direction; the name of the new histogram is constructed from
2600/// the name of this histogram with the suffix "suffix" appended provided
2601/// by the user. If not provided a default suffix="_cumulative" is used.
2602///
2603/// The cumulative distribution is formed by filling each bin of the
2604/// resulting histogram with the sum of that bin and all previous
2605/// (forward == kTRUE) or following (forward = kFALSE) bins.
2606///
2607/// Note: while cumulative distributions make sense in one dimension, you
2608/// may not be getting what you expect in more than 1D because the concept
2609/// of a cumulative distribution is much trickier to define; make sure you
2610/// understand the order of summation before you use this method with
2611/// histograms of dimension >= 2.
2612///
2613/// Note 2: By default the cumulative is computed from bin 1 to Nbins
2614/// If an axis range is set, values between the minimum and maximum of the range
2615/// are set.
2616/// Setting an axis range can also be used for including underflow and overflow in
2617/// the cumulative (e.g. by setting h->GetXaxis()->SetRange(0, h->GetNbinsX()+1); )
2619
2620TH1 *TH1::GetCumulative(Bool_t forward, const char* suffix) const
2621{
2622 const Int_t firstX = fXaxis.GetFirst();
2623 const Int_t lastX = fXaxis.GetLast();
2624 const Int_t firstY = (fDimension > 1) ? fYaxis.GetFirst() : 1;
2625 const Int_t lastY = (fDimension > 1) ? fYaxis.GetLast() : 1;
2626 const Int_t firstZ = (fDimension > 1) ? fZaxis.GetFirst() : 1;
2627 const Int_t lastZ = (fDimension > 1) ? fZaxis.GetLast() : 1;
2628
2629 TH1* hintegrated = (TH1*) Clone(fName + suffix);
2630 hintegrated->Reset();
2631 Double_t sum = 0.;
2632 Double_t esum = 0;
2633 if (forward) { // Forward computation
2634 for (Int_t binz = firstZ; binz <= lastZ; ++binz) {
2635 for (Int_t biny = firstY; biny <= lastY; ++biny) {
2636 for (Int_t binx = firstX; binx <= lastX; ++binx) {
2637 const Int_t bin = hintegrated->GetBin(binx, biny, binz);
2638 sum += RetrieveBinContent(bin);
2639 hintegrated->AddBinContent(bin, sum);
2640 if (fSumw2.fN) {
2641 esum += GetBinErrorSqUnchecked(bin);
2642 hintegrated->fSumw2.fArray[bin] = esum;
2643 }
2644 }
2645 }
2646 }
2647 } else { // Backward computation
2648 for (Int_t binz = lastZ; binz >= firstZ; --binz) {
2649 for (Int_t biny = lastY; biny >= firstY; --biny) {
2650 for (Int_t binx = lastX; binx >= firstX; --binx) {
2651 const Int_t bin = hintegrated->GetBin(binx, biny, binz);
2652 sum += RetrieveBinContent(bin);
2653 hintegrated->AddBinContent(bin, sum);
2654 if (fSumw2.fN) {
2655 esum += GetBinErrorSqUnchecked(bin);
2656 hintegrated->fSumw2.fArray[bin] = esum;
2657 }
2658 }
2659 }
2660 }
2661 }
2662 return hintegrated;
2663}
2664
2665////////////////////////////////////////////////////////////////////////////////
2666/// Copy this histogram structure to newth1.
2667///
2668/// Note that this function does not copy the list of associated functions.
2669/// Use TObject::Clone to make a full copy of a histogram.
2670///
2671/// Note also that the histogram it will be created in gDirectory (if AddDirectoryStatus()=true)
2672/// or will not be added to any directory if AddDirectoryStatus()=false
2673/// independently of the current directory stored in the original histogram
2674
2675void TH1::Copy(TObject &obj) const
2676{
2677 if (((TH1&)obj).fDirectory) {
2678 // We are likely to change the hash value of this object
2679 // with TNamed::Copy, to keep things correct, we need to
2680 // clean up its existing entries.
2681 ((TH1&)obj).fDirectory->Remove(&obj);
2682 ((TH1&)obj).fDirectory = nullptr;
2683 }
2684 TNamed::Copy(obj);
2685 ((TH1&)obj).fDimension = fDimension;
2686 ((TH1&)obj).fNormFactor= fNormFactor;
2687 ((TH1&)obj).fNcells = fNcells;
2688 ((TH1&)obj).fBarOffset = fBarOffset;
2689 ((TH1&)obj).fBarWidth = fBarWidth;
2690 ((TH1&)obj).fOption = fOption;
2691 ((TH1&)obj).fBinStatErrOpt = fBinStatErrOpt;
2692 ((TH1&)obj).fBufferSize= fBufferSize;
2693 // copy the Buffer
2694 // delete first a previously existing buffer
2695 if (((TH1&)obj).fBuffer != nullptr) {
2696 delete [] ((TH1&)obj).fBuffer;
2697 ((TH1&)obj).fBuffer = nullptr;
2698 }
2699 if (fBuffer) {
2700 Double_t *buf = new Double_t[fBufferSize];
2701 for (Int_t i=0;i<fBufferSize;i++) buf[i] = fBuffer[i];
2702 // obj.fBuffer has been deleted before
2703 ((TH1&)obj).fBuffer = buf;
2704 }
2705
2706 // copy bin contents (this should be done by the derived classes, since TH1 does not store the bin content)
2707 // Do this in case derived from TArray
2708 TArray* a = dynamic_cast<TArray*>(&obj);
2709 if (a) {
2710 a->Set(fNcells);
2711 for (Int_t i = 0; i < fNcells; i++)
2713 }
2714
2715 ((TH1&)obj).fEntries = fEntries;
2716
2717 // which will call BufferEmpty(0) and set fBuffer[0] to a Maybe one should call
2718 // assignment operator on the TArrayD
2719
2720 ((TH1&)obj).fTsumw = fTsumw;
2721 ((TH1&)obj).fTsumw2 = fTsumw2;
2722 ((TH1&)obj).fTsumwx = fTsumwx;
2723 ((TH1&)obj).fTsumwx2 = fTsumwx2;
2724 ((TH1&)obj).fMaximum = fMaximum;
2725 ((TH1&)obj).fMinimum = fMinimum;
2726
2727 TAttLine::Copy(((TH1&)obj));
2728 TAttFill::Copy(((TH1&)obj));
2729 TAttMarker::Copy(((TH1&)obj));
2730 fXaxis.Copy(((TH1&)obj).fXaxis);
2731 fYaxis.Copy(((TH1&)obj).fYaxis);
2732 fZaxis.Copy(((TH1&)obj).fZaxis);
2733 ((TH1&)obj).fXaxis.SetParent(&obj);
2734 ((TH1&)obj).fYaxis.SetParent(&obj);
2735 ((TH1&)obj).fZaxis.SetParent(&obj);
2736 fContour.Copy(((TH1&)obj).fContour);
2737 fSumw2.Copy(((TH1&)obj).fSumw2);
2738 // fFunctions->Copy(((TH1&)obj).fFunctions);
2739 // when copying an histogram if the AddDirectoryStatus() is true it
2740 // will be added to gDirectory independently of the fDirectory stored.
2741 // and if the AddDirectoryStatus() is false it will not be added to
2742 // any directory (fDirectory = nullptr)
2743 if (fgAddDirectory && gDirectory) {
2744 gDirectory->Append(&obj);
2745 ((TH1&)obj).fFunctions->UseRWLock();
2746 ((TH1&)obj).fDirectory = gDirectory;
2747 } else
2748 ((TH1&)obj).fDirectory = nullptr;
2749
2750}
2751
2752////////////////////////////////////////////////////////////////////////////////
2753/// Make a complete copy of the underlying object. If 'newname' is set,
2754/// the copy's name will be set to that name.
2755
2756TObject* TH1::Clone(const char* newname) const
2757{
2758 TH1* obj = (TH1*)IsA()->GetNew()(nullptr);
2759 Copy(*obj);
2760
2761 // Now handle the parts that Copy doesn't do
2762 if(fFunctions) {
2763 // The Copy above might have published 'obj' to the ListOfCleanups.
2764 // Clone can call RecursiveRemove, for example via TCheckHashRecursiveRemoveConsistency
2765 // when dictionary information is initialized, so we need to
2766 // keep obj->fFunction valid during its execution and
2767 // protect the update with the write lock.
2768
2769 // Reset stats parent - else cloning the stats will clone this histogram, too.
2770 auto oldstats = dynamic_cast<TVirtualPaveStats*>(fFunctions->FindObject("stats"));
2771 TObject *oldparent = nullptr;
2772 if (oldstats) {
2773 oldparent = oldstats->GetParent();
2774 oldstats->SetParent(nullptr);
2775 }
2776
2777 auto newlist = (TList*)fFunctions->Clone();
2778
2779 if (oldstats)
2780 oldstats->SetParent(oldparent);
2781 auto newstats = dynamic_cast<TVirtualPaveStats*>(obj->fFunctions->FindObject("stats"));
2782 if (newstats)
2783 newstats->SetParent(obj);
2784
2785 auto oldlist = obj->fFunctions;
2786 {
2788 obj->fFunctions = newlist;
2789 }
2790 delete oldlist;
2791 }
2792 if(newname && strlen(newname) ) {
2793 obj->SetName(newname);
2794 }
2795 return obj;
2796}
2797
2798////////////////////////////////////////////////////////////////////////////////
2799/// Perform the automatic addition of the histogram to the given directory
2800///
2801/// Note this function is called in place when the semantic requires
2802/// this object to be added to a directory (I.e. when being read from
2803/// a TKey or being Cloned)
2804
2806{
2807 Bool_t addStatus = TH1::AddDirectoryStatus();
2808 if (addStatus) {
2809 SetDirectory(dir);
2810 if (dir) {
2812 }
2813 }
2814}
2815
2816////////////////////////////////////////////////////////////////////////////////
2817/// Compute distance from point px,py to a line.
2818///
2819/// Compute the closest distance of approach from point px,py to elements
2820/// of a histogram.
2821/// The distance is computed in pixels units.
2822///
2823/// #### Algorithm:
2824/// Currently, this simple model computes the distance from the mouse
2825/// to the histogram contour only.
2826
2828{
2829 if (!fPainter) return 9999;
2830 return fPainter->DistancetoPrimitive(px,py);
2831}
2832
2833////////////////////////////////////////////////////////////////////////////////
2834/// Performs the operation: `this = this/(c1*f1)`
2835/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
2836///
2837/// Only bins inside the function range are recomputed.
2838/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2839/// you should call Sumw2 before making this operation.
2840/// This is particularly important if you fit the histogram after TH1::Divide
2841///
2842/// The function return kFALSE if the divide operation failed
2843
2845{
2846 if (!f1) {
2847 Error("Divide","Attempt to divide by a non-existing function");
2848 return kFALSE;
2849 }
2850
2851 // delete buffer if it is there since it will become invalid
2852 if (fBuffer) BufferEmpty(1);
2853
2854 Int_t nx = GetNbinsX() + 2; // normal bins + uf / of
2855 Int_t ny = GetNbinsY() + 2;
2856 Int_t nz = GetNbinsZ() + 2;
2857 if (fDimension < 2) ny = 1;
2858 if (fDimension < 3) nz = 1;
2859
2860
2861 SetMinimum();
2862 SetMaximum();
2863
2864 // - Loop on bins (including underflows/overflows)
2865 Int_t bin, binx, biny, binz;
2866 Double_t cu, w;
2867 Double_t xx[3];
2868 Double_t *params = nullptr;
2869 f1->InitArgs(xx,params);
2870 for (binz = 0; binz < nz; ++binz) {
2871 xx[2] = fZaxis.GetBinCenter(binz);
2872 for (biny = 0; biny < ny; ++biny) {
2873 xx[1] = fYaxis.GetBinCenter(biny);
2874 for (binx = 0; binx < nx; ++binx) {
2875 xx[0] = fXaxis.GetBinCenter(binx);
2876 if (!f1->IsInside(xx)) continue;
2878 bin = binx + nx * (biny + ny * binz);
2879 cu = c1 * f1->EvalPar(xx);
2880 if (TF1::RejectedPoint()) continue;
2881 if (cu) w = RetrieveBinContent(bin) / cu;
2882 else w = 0;
2883 UpdateBinContent(bin, w);
2884 if (fSumw2.fN) {
2885 if (cu != 0) fSumw2.fArray[bin] = GetBinErrorSqUnchecked(bin) / (cu * cu);
2886 else fSumw2.fArray[bin] = 0;
2887 }
2888 }
2889 }
2890 }
2891 ResetStats();
2892 return kTRUE;
2893}
2894
2895////////////////////////////////////////////////////////////////////////////////
2896/// Divide this histogram by h1.
2897///
2898/// `this = this/h1`
2899/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
2900/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
2901/// if not already set.
2902/// The resulting errors are calculated assuming uncorrelated histograms.
2903/// See the other TH1::Divide that gives the possibility to optionally
2904/// compute binomial errors.
2905///
2906/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2907/// you should call Sumw2 before making this operation.
2908/// This is particularly important if you fit the histogram after TH1::Scale
2909///
2910/// The function return kFALSE if the divide operation failed
2911
2912Bool_t TH1::Divide(const TH1 *h1)
2913{
2914 if (!h1) {
2915 Error("Divide", "Input histogram passed does not exist (NULL).");
2916 return kFALSE;
2917 }
2918
2919 // delete buffer if it is there since it will become invalid
2920 if (fBuffer) BufferEmpty(1);
2921
2922 if (LoggedInconsistency("Divide", this, h1) >= kDifferentNumberOfBins) {
2923 return false;
2924 }
2925
2926 // Create Sumw2 if h1 has Sumw2 set
2927 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
2928
2929 // - Loop on bins (including underflows/overflows)
2930 for (Int_t i = 0; i < fNcells; ++i) {
2933 if (c1) UpdateBinContent(i, c0 / c1);
2934 else UpdateBinContent(i, 0);
2935
2936 if(fSumw2.fN) {
2937 if (c1 == 0) { fSumw2.fArray[i] = 0; continue; }
2938 Double_t c1sq = c1 * c1;
2939 fSumw2.fArray[i] = (GetBinErrorSqUnchecked(i) * c1sq + h1->GetBinErrorSqUnchecked(i) * c0 * c0) / (c1sq * c1sq);
2940 }
2941 }
2942 ResetStats();
2943 return kTRUE;
2944}
2945
2946////////////////////////////////////////////////////////////////////////////////
2947/// Replace contents of this histogram by the division of h1 by h2.
2948///
2949/// `this = c1*h1/(c2*h2)`
2950///
2951/// If errors are defined (see TH1::Sumw2), errors are also recalculated
2952/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
2953/// if not already set.
2954/// The resulting errors are calculated assuming uncorrelated histograms.
2955/// However, if option ="B" is specified, Binomial errors are computed.
2956/// In this case c1 and c2 do not make real sense and they are ignored.
2957///
2958/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2959/// you should call Sumw2 before making this operation.
2960/// This is particularly important if you fit the histogram after TH1::Divide
2961///
2962/// Please note also that in the binomial case errors are calculated using standard
2963/// binomial statistics, which means when b1 = b2, the error is zero.
2964/// If you prefer to have efficiency errors not going to zero when the efficiency is 1, you must
2965/// use the function TGraphAsymmErrors::BayesDivide, which will return an asymmetric and non-zero lower
2966/// error for the case b1=b2.
2967///
2968/// The function return kFALSE if the divide operation failed
2969
2971{
2972
2973 TString opt = option;
2974 opt.ToLower();
2975 Bool_t binomial = kFALSE;
2976 if (opt.Contains("b")) binomial = kTRUE;
2977 if (!h1 || !h2) {
2978 Error("Divide", "At least one of the input histograms passed does not exist (NULL).");
2979 return kFALSE;
2980 }
2981
2982 // delete buffer if it is there since it will become invalid
2983 if (fBuffer) BufferEmpty(1);
2984
2985 if (LoggedInconsistency("Divide", this, h1) >= kDifferentNumberOfBins ||
2986 LoggedInconsistency("Divide", h1, h2) >= kDifferentNumberOfBins) {
2987 return false;
2988 }
2989
2990 if (!c2) {
2991 Error("Divide","Coefficient of dividing histogram cannot be zero");
2992 return kFALSE;
2993 }
2994
2995 // Create Sumw2 if h1 or h2 have Sumw2 set, or if binomial errors are explicitly requested
2996 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0 || binomial)) Sumw2();
2997
2998 SetMinimum();
2999 SetMaximum();
3000
3001 // - Loop on bins (including underflows/overflows)
3002 for (Int_t i = 0; i < fNcells; ++i) {
3004 Double_t b2 = h2->RetrieveBinContent(i);
3005 if (b2) UpdateBinContent(i, c1 * b1 / (c2 * b2));
3006 else UpdateBinContent(i, 0);
3007
3008 if (fSumw2.fN) {
3009 if (b2 == 0) { fSumw2.fArray[i] = 0; continue; }
3010 Double_t b1sq = b1 * b1; Double_t b2sq = b2 * b2;
3011 Double_t c1sq = c1 * c1; Double_t c2sq = c2 * c2;
3013 Double_t e2sq = h2->GetBinErrorSqUnchecked(i);
3014 if (binomial) {
3015 if (b1 != b2) {
3016 // in the case of binomial statistics c1 and c2 must be 1 otherwise it does not make sense
3017 // c1 and c2 are ignored
3018 //fSumw2.fArray[bin] = TMath::Abs(w*(1-w)/(c2*b2));//this is the formula in Hbook/Hoper1
3019 //fSumw2.fArray[bin] = TMath::Abs(w*(1-w)/b2); // old formula from G. Flucke
3020 // formula which works also for weighted histogram (see http://root-forum.cern.ch/viewtopic.php?t=3753 )
3021 fSumw2.fArray[i] = TMath::Abs( ( (1. - 2.* b1 / b2) * e1sq + b1sq * e2sq / b2sq ) / b2sq );
3022 } else {
3023 //in case b1=b2 error is zero
3024 //use TGraphAsymmErrors::BayesDivide for getting the asymmetric error not equal to zero
3025 fSumw2.fArray[i] = 0;
3026 }
3027 } else {
3028 fSumw2.fArray[i] = c1sq * c2sq * (e1sq * b2sq + e2sq * b1sq) / (c2sq * c2sq * b2sq * b2sq);
3029 }
3030 }
3031 }
3032 ResetStats();
3033 if (binomial)
3034 // in case of binomial division use denominator for number of entries
3035 SetEntries ( h2->GetEntries() );
3036
3037 return kTRUE;
3038}
3039
3040////////////////////////////////////////////////////////////////////////////////
3041/// Draw this histogram with options.
3042///
3043/// Histograms are drawn via the THistPainter class. Each histogram has
3044/// a pointer to its own painter (to be usable in a multithreaded program).
3045/// The same histogram can be drawn with different options in different pads.
3046/// When a histogram drawn in a pad is deleted, the histogram is
3047/// automatically removed from the pad or pads where it was drawn.
3048/// If a histogram is drawn in a pad, then filled again, the new status
3049/// of the histogram will be automatically shown in the pad next time
3050/// the pad is updated. One does not need to redraw the histogram.
3051/// To draw the current version of a histogram in a pad, one can use
3052/// `h->DrawCopy();`
3053/// This makes a clone of the histogram. Once the clone is drawn, the original
3054/// histogram may be modified or deleted without affecting the aspect of the
3055/// clone.
3056/// By default, TH1::Draw clears the current pad.
3057///
3058/// One can use TH1::SetMaximum and TH1::SetMinimum to force a particular
3059/// value for the maximum or the minimum scale on the plot.
3060///
3061/// TH1::UseCurrentStyle can be used to change all histogram graphics
3062/// attributes to correspond to the current selected style.
3063/// This function must be called for each histogram.
3064/// In case one reads and draws many histograms from a file, one can force
3065/// the histograms to inherit automatically the current graphics style
3066/// by calling before gROOT->ForceStyle();
3067///
3068/// See the THistPainter class for a description of all the drawing options.
3069
3071{
3072 TString opt1 = option; opt1.ToLower();
3073 TString opt2 = option;
3074 Int_t index = opt1.Index("same");
3075
3076 // Check if the string "same" is part of a TCutg name.
3077 if (index>=0) {
3078 Int_t indb = opt1.Index("[");
3079 if (indb>=0) {
3080 Int_t indk = opt1.Index("]");
3081 if (index>indb && index<indk) index = -1;
3082 }
3083 }
3084
3085 // If there is no pad or an empty pad the "same" option is ignored.
3086 if (gPad) {
3087 if (!gPad->IsEditable()) gROOT->MakeDefCanvas();
3088 if (index>=0) {
3089 if (gPad->GetX1() == 0 && gPad->GetX2() == 1 &&
3090 gPad->GetY1() == 0 && gPad->GetY2() == 1 &&
3091 gPad->GetListOfPrimitives()->GetSize()==0) opt2.Remove(index,4);
3092 } else {
3093 //the following statement is necessary in case one attempts to draw
3094 //a temporary histogram already in the current pad
3095 if (TestBit(kCanDelete)) gPad->Remove(this);
3096 gPad->Clear();
3097 }
3098 gPad->IncrementPaletteColor(1, opt1);
3099 } else {
3100 if (index>=0) opt2.Remove(index,4);
3101 }
3102
3103 AppendPad(opt2.Data());
3104}
3105
3106////////////////////////////////////////////////////////////////////////////////
3107/// Copy this histogram and Draw in the current pad.
3108///
3109/// Once the histogram is drawn into the pad, any further modification
3110/// using graphics input will be made on the copy of the histogram,
3111/// and not to the original object.
3112/// By default a postfix "_copy" is added to the histogram name. Pass an empty postfix in case
3113/// you want to draw a histogram with the same name
3114///
3115/// See Draw for the list of options
3116
3117TH1 *TH1::DrawCopy(Option_t *option, const char * name_postfix) const
3118{
3119 TString opt = option;
3120 opt.ToLower();
3121 if (gPad && !opt.Contains("same")) gPad->Clear();
3122 TString newName;
3123 if (name_postfix) newName.Form("%s%s", GetName(), name_postfix);
3124 TH1 *newth1 = (TH1 *)Clone(newName.Data());
3125 newth1->SetDirectory(nullptr);
3126 newth1->SetBit(kCanDelete);
3127 if (gPad) gPad->IncrementPaletteColor(1, opt);
3128
3129 newth1->AppendPad(option);
3130 return newth1;
3131}
3132
3133////////////////////////////////////////////////////////////////////////////////
3134/// Draw a normalized copy of this histogram.
3135///
3136/// A clone of this histogram is normalized to norm and drawn with option.
3137/// A pointer to the normalized histogram is returned.
3138/// The contents of the histogram copy are scaled such that the new
3139/// sum of weights (excluding under and overflow) is equal to norm.
3140/// Note that the returned normalized histogram is not added to the list
3141/// of histograms in the current directory in memory.
3142/// It is the user's responsibility to delete this histogram.
3143/// The kCanDelete bit is set for the returned object. If a pad containing
3144/// this copy is cleared, the histogram will be automatically deleted.
3145///
3146/// See Draw for the list of options
3147
3149{
3151 if (sum == 0) {
3152 Error("DrawNormalized","Sum of weights is null. Cannot normalize histogram: %s",GetName());
3153 return nullptr;
3154 }
3155 Bool_t addStatus = TH1::AddDirectoryStatus();
3157 TH1 *h = (TH1*)Clone();
3159 // in case of drawing with error options - scale correctly the error
3160 TString opt(option); opt.ToUpper();
3161 if (fSumw2.fN == 0) {
3162 h->Sumw2();
3163 // do not use in this case the "Error option " for drawing which is enabled by default since the normalized histogram has now errors
3164 if (opt.IsNull() || opt == "SAME") opt += "HIST";
3165 }
3166 h->Scale(norm/sum);
3167 if (TMath::Abs(fMaximum+1111) > 1e-3) h->SetMaximum(fMaximum*norm/sum);
3168 if (TMath::Abs(fMinimum+1111) > 1e-3) h->SetMinimum(fMinimum*norm/sum);
3169 h->Draw(opt);
3170 TH1::AddDirectory(addStatus);
3171 return h;
3172}
3173
3174////////////////////////////////////////////////////////////////////////////////
3175/// Display a panel with all histogram drawing options.
3176///
3177/// See class TDrawPanelHist for example
3178
3179void TH1::DrawPanel()
3180{
3181 if (!fPainter) {Draw(); if (gPad) gPad->Update();}
3182 if (fPainter) fPainter->DrawPanel();
3183}
3184
3185////////////////////////////////////////////////////////////////////////////////
3186/// Evaluate function f1 at the center of bins of this histogram.
3187///
3188/// - If option "R" is specified, the function is evaluated only
3189/// for the bins included in the function range.
3190/// - If option "A" is specified, the value of the function is added to the
3191/// existing bin contents
3192/// - If option "S" is specified, the value of the function is used to
3193/// generate a value, distributed according to the Poisson
3194/// distribution, with f1 as the mean.
3195
3197{
3198 Double_t x[3];
3199 Int_t range, stat, add;
3200 if (!f1) return;
3201
3202 TString opt = option;
3203 opt.ToLower();
3204 if (opt.Contains("a")) add = 1;
3205 else add = 0;
3206 if (opt.Contains("s")) stat = 1;
3207 else stat = 0;
3208 if (opt.Contains("r")) range = 1;
3209 else range = 0;
3210
3211 // delete buffer if it is there since it will become invalid
3212 if (fBuffer) BufferEmpty(1);
3213
3214 Int_t nbinsx = fXaxis.GetNbins();
3215 Int_t nbinsy = fYaxis.GetNbins();
3216 Int_t nbinsz = fZaxis.GetNbins();
3217 if (!add) Reset();
3218
3219 for (Int_t binz = 1; binz <= nbinsz; ++binz) {
3220 x[2] = fZaxis.GetBinCenter(binz);
3221 for (Int_t biny = 1; biny <= nbinsy; ++biny) {
3222 x[1] = fYaxis.GetBinCenter(biny);
3223 for (Int_t binx = 1; binx <= nbinsx; ++binx) {
3224 Int_t bin = GetBin(binx,biny,binz);
3225 x[0] = fXaxis.GetBinCenter(binx);
3226 if (range && !f1->IsInside(x)) continue;
3227 Double_t fu = f1->Eval(x[0], x[1], x[2]);
3228 if (stat) fu = gRandom->PoissonD(fu);
3229 AddBinContent(bin, fu);
3230 if (fSumw2.fN) fSumw2.fArray[bin] += TMath::Abs(fu);
3231 }
3232 }
3233 }
3234}
3235
3236////////////////////////////////////////////////////////////////////////////////
3237/// Execute action corresponding to one event.
3238///
3239/// This member function is called when a histogram is clicked with the locator
3240///
3241/// If Left button clicked on the bin top value, then the content of this bin
3242/// is modified according to the new position of the mouse when it is released.
3243
3244void TH1::ExecuteEvent(Int_t event, Int_t px, Int_t py)
3245{
3246 if (fPainter) fPainter->ExecuteEvent(event, px, py);
3247}
3248
3249////////////////////////////////////////////////////////////////////////////////
3250/// This function allows to do discrete Fourier transforms of TH1 and TH2.
3251/// Available transform types and flags are described below.
3252///
3253/// To extract more information about the transform, use the function
3254/// TVirtualFFT::GetCurrentTransform() to get a pointer to the current
3255/// transform object.
3256///
3257/// \param[out] h_output histogram for the output. If a null pointer is passed, a new histogram is created
3258/// and returned, otherwise, the provided histogram is used and should be big enough
3259/// \param[in] option option parameters consists of 3 parts:
3260/// - option on what to return
3261/// - "RE" - returns a histogram of the real part of the output
3262/// - "IM" - returns a histogram of the imaginary part of the output
3263/// - "MAG"- returns a histogram of the magnitude of the output
3264/// - "PH" - returns a histogram of the phase of the output
3265/// - option of transform type
3266/// - "R2C" - real to complex transforms - default
3267/// - "R2HC" - real to halfcomplex (special format of storing output data,
3268/// results the same as for R2C)
3269/// - "DHT" - discrete Hartley transform
3270/// real to real transforms (sine and cosine):
3271/// - "R2R_0", "R2R_1", "R2R_2", "R2R_3" - discrete cosine transforms of types I-IV
3272/// - "R2R_4", "R2R_5", "R2R_6", "R2R_7" - discrete sine transforms of types I-IV
3273/// To specify the type of each dimension of a 2-dimensional real to real
3274/// transform, use options of form "R2R_XX", for example, "R2R_02" for a transform,
3275/// which is of type "R2R_0" in 1st dimension and "R2R_2" in the 2nd.
3276/// - option of transform flag
3277/// - "ES" (from "estimate") - no time in preparing the transform, but probably sub-optimal
3278/// performance
3279/// - "M" (from "measure") - some time spend in finding the optimal way to do the transform
3280/// - "P" (from "patient") - more time spend in finding the optimal way to do the transform
3281/// - "EX" (from "exhaustive") - the most optimal way is found
3282/// This option should be chosen depending on how many transforms of the same size and
3283/// type are going to be done. Planning is only done once, for the first transform of this
3284/// size and type. Default is "ES".
3285///
3286/// Examples of valid options: "Mag R2C M" "Re R2R_11" "Im R2C ES" "PH R2HC EX"
3287
3288TH1* TH1::FFT(TH1* h_output, Option_t *option)
3289{
3290
3291 Int_t ndim[3];
3292 ndim[0] = this->GetNbinsX();
3293 ndim[1] = this->GetNbinsY();
3294 ndim[2] = this->GetNbinsZ();
3295
3296 TVirtualFFT *fft;
3297 TString opt = option;
3298 opt.ToUpper();
3299 if (!opt.Contains("2R")){
3300 if (!opt.Contains("2C") && !opt.Contains("2HC") && !opt.Contains("DHT")) {
3301 //no type specified, "R2C" by default
3302 opt.Append("R2C");
3303 }
3304 fft = TVirtualFFT::FFT(this->GetDimension(), ndim, opt.Data());
3305 }
3306 else {
3307 //find the kind of transform
3308 Int_t ind = opt.Index("R2R", 3);
3309 Int_t *kind = new Int_t[2];
3310 char t;
3311 t = opt[ind+4];
3312 kind[0] = atoi(&t);
3313 if (h_output->GetDimension()>1) {
3314 t = opt[ind+5];
3315 kind[1] = atoi(&t);
3316 }
3317 fft = TVirtualFFT::SineCosine(this->GetDimension(), ndim, kind, option);
3318 delete [] kind;
3319 }
3320
3321 if (!fft) return nullptr;
3322 Int_t in=0;
3323 for (Int_t binx = 1; binx<=ndim[0]; binx++) {
3324 for (Int_t biny=1; biny<=ndim[1]; biny++) {
3325 for (Int_t binz=1; binz<=ndim[2]; binz++) {
3326 fft->SetPoint(in, this->GetBinContent(binx, biny, binz));
3327 in++;
3328 }
3329 }
3330 }
3331 fft->Transform();
3332 h_output = TransformHisto(fft, h_output, option);
3333 return h_output;
3334}
3335
3336////////////////////////////////////////////////////////////////////////////////
3337/// Increment bin with abscissa X by 1.
3338///
3339/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3340/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3341///
3342/// If the storage of the sum of squares of weights has been triggered,
3343/// via the function Sumw2, then the sum of the squares of weights is incremented
3344/// by 1 in the bin corresponding to x.
3345///
3346/// The function returns the corresponding bin number which has its content incremented by 1
3347
3349{
3350 if (fBuffer) return BufferFill(x,1);
3351
3352 Int_t bin;
3353 fEntries++;
3354 bin =fXaxis.FindBin(x);
3355 if (bin <0) return -1;
3356 AddBinContent(bin);
3357 if (fSumw2.fN) ++fSumw2.fArray[bin];
3358 if (bin == 0 || bin > fXaxis.GetNbins()) {
3359 if (!GetStatOverflowsBehaviour()) return -1;
3360 }
3361 ++fTsumw;
3362 ++fTsumw2;
3363 fTsumwx += x;
3364 fTsumwx2 += x*x;
3365 return bin;
3366}
3367
3368////////////////////////////////////////////////////////////////////////////////
3369/// Increment bin with abscissa X with a weight w.
3370///
3371/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3372/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3373///
3374/// If the weight is not equal to 1, the storage of the sum of squares of
3375/// weights is automatically triggered and the sum of the squares of weights is incremented
3376/// by \f$ w^2 \f$ in the bin corresponding to x.
3377///
3378/// The function returns the corresponding bin number which has its content incremented by w
3379
3381{
3382
3383 if (fBuffer) return BufferFill(x,w);
3384
3385 Int_t bin;
3386 fEntries++;
3387 bin =fXaxis.FindBin(x);
3388 if (bin <0) return -1;
3389 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW) ) Sumw2(); // must be called before AddBinContent
3390 if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
3391 AddBinContent(bin, w);
3392 if (bin == 0 || bin > fXaxis.GetNbins()) {
3393 if (!GetStatOverflowsBehaviour()) return -1;
3394 }
3395 Double_t z= w;
3396 fTsumw += z;
3397 fTsumw2 += z*z;
3398 fTsumwx += z*x;
3399 fTsumwx2 += z*x*x;
3400 return bin;
3401}
3402
3403////////////////////////////////////////////////////////////////////////////////
3404/// Increment bin with namex with a weight w
3405///
3406/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3407/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3408///
3409/// If the weight is not equal to 1, the storage of the sum of squares of
3410/// weights is automatically triggered and the sum of the squares of weights is incremented
3411/// by \f$ w^2 \f$ in the bin corresponding to x.
3412///
3413/// The function returns the corresponding bin number which has its content
3414/// incremented by w.
3415
3416Int_t TH1::Fill(const char *namex, Double_t w)
3417{
3418 Int_t bin;
3419 fEntries++;
3420 bin =fXaxis.FindBin(namex);
3421 if (bin <0) return -1;
3422 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2();
3423 if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
3424 AddBinContent(bin, w);
3425 if (bin == 0 || bin > fXaxis.GetNbins()) return -1;
3426 Double_t z= w;
3427 fTsumw += z;
3428 fTsumw2 += z*z;
3429 // this make sense if the histogram is not expanding (the x axis cannot be extended)
3430 if (!fXaxis.CanExtend() || !fXaxis.IsAlphanumeric()) {
3432 fTsumwx += z*x;
3433 fTsumwx2 += z*x*x;
3434 }
3435 return bin;
3436}
3437
3438////////////////////////////////////////////////////////////////////////////////
3439/// Fill this histogram with an array x and weights w.
3440///
3441/// \param[in] ntimes number of entries in arrays x and w (array size must be ntimes*stride)
3442/// \param[in] x array of values to be histogrammed
3443/// \param[in] w array of weighs
3444/// \param[in] stride step size through arrays x and w
3445///
3446/// If the weight is not equal to 1, the storage of the sum of squares of
3447/// weights is automatically triggered and the sum of the squares of weights is incremented
3448/// by \f$ w^2 \f$ in the bin corresponding to x.
3449/// if w is NULL each entry is assumed a weight=1
3450
3451void TH1::FillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride)
3452{
3453 //If a buffer is activated, fill buffer
3454 if (fBuffer) {
3455 ntimes *= stride;
3456 Int_t i = 0;
3457 for (i=0;i<ntimes;i+=stride) {
3458 if (!fBuffer) break; // buffer can be deleted in BufferFill when is empty
3459 if (w) BufferFill(x[i],w[i]);
3460 else BufferFill(x[i], 1.);
3461 }
3462 // fill the remaining entries if the buffer has been deleted
3463 if (i < ntimes && !fBuffer) {
3464 auto weights = w ? &w[i] : nullptr;
3465 DoFillN((ntimes-i)/stride,&x[i],weights,stride);
3466 }
3467 return;
3468 }
3469 // call internal method
3470 DoFillN(ntimes, x, w, stride);
3471}
3472
3473////////////////////////////////////////////////////////////////////////////////
3474/// Internal method to fill histogram content from a vector
3475/// called directly by TH1::BufferEmpty
3476
3477void TH1::DoFillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride)
3478{
3479 Int_t bin,i;
3480
3481 fEntries += ntimes;
3482 Double_t ww = 1;
3483 Int_t nbins = fXaxis.GetNbins();
3484 ntimes *= stride;
3485 for (i=0;i<ntimes;i+=stride) {
3486 bin =fXaxis.FindBin(x[i]);
3487 if (bin <0) continue;
3488 if (w) ww = w[i];
3489 if (!fSumw2.fN && ww != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2();
3490 if (fSumw2.fN) fSumw2.fArray[bin] += ww*ww;
3491 AddBinContent(bin, ww);
3492 if (bin == 0 || bin > nbins) {
3493 if (!GetStatOverflowsBehaviour()) continue;
3494 }
3495 Double_t z= ww;
3496 fTsumw += z;
3497 fTsumw2 += z*z;
3498 fTsumwx += z*x[i];
3499 fTsumwx2 += z*x[i]*x[i];
3500 }
3501}
3502
3503////////////////////////////////////////////////////////////////////////////////
3504/// Fill histogram following distribution in function fname.
3505///
3506/// @param fname : Function name used for filling the histogram
3507/// @param ntimes : number of times the histogram is filled
3508/// @param rng : (optional) Random number generator used to sample
3509///
3510///
3511/// The distribution contained in the function fname (TF1) is integrated
3512/// over the channel contents for the bin range of this histogram.
3513/// It is normalized to 1.
3514///
3515/// Getting one random number implies:
3516/// - Generating a random number between 0 and 1 (say r1)
3517/// - Look in which bin in the normalized integral r1 corresponds to
3518/// - Fill histogram channel
3519/// ntimes random numbers are generated
3520///
3521/// One can also call TF1::GetRandom to get a random variate from a function.
3522
3523void TH1::FillRandom(const char *fname, Int_t ntimes, TRandom * rng)
3524{
3525 // - Search for fname in the list of ROOT defined functions
3526 TF1 *f1 = (TF1*)gROOT->GetFunction(fname);
3527 if (!f1) { Error("FillRandom", "Unknown function: %s",fname); return; }
3528
3529 FillRandom(f1, ntimes, rng);
3531
3532void TH1::FillRandom(TF1 *f1, Int_t ntimes, TRandom * rng)
3533{
3534 Int_t bin, binx, ibin, loop;
3535 Double_t r1, x;
3536
3537 // - Allocate temporary space to store the integral and compute integral
3538
3539 TAxis * xAxis = &fXaxis;
3540
3541 // in case axis of histogram is not defined use the function axis
3542 if (fXaxis.GetXmax() <= fXaxis.GetXmin()) {
3544 f1->GetRange(xmin,xmax);
3545 Info("FillRandom","Using function axis and range [%g,%g]",xmin, xmax);
3546 xAxis = f1->GetHistogram()->GetXaxis();
3547 }
3548
3549 Int_t first = xAxis->GetFirst();
3550 Int_t last = xAxis->GetLast();
3551 Int_t nbinsx = last-first+1;
3552
3553 Double_t *integral = new Double_t[nbinsx+1];
3554 integral[0] = 0;
3555 for (binx=1;binx<=nbinsx;binx++) {
3556 Double_t fint = f1->Integral(xAxis->GetBinLowEdge(binx+first-1),xAxis->GetBinUpEdge(binx+first-1), 0.);
3557 integral[binx] = integral[binx-1] + fint;
3558 }
3559
3560 // - Normalize integral to 1
3561 if (integral[nbinsx] == 0 ) {
3562 delete [] integral;
3563 Error("FillRandom", "Integral = zero"); return;
3564 }
3565 for (bin=1;bin<=nbinsx;bin++) integral[bin] /= integral[nbinsx];
3566
3567 // --------------Start main loop ntimes
3568 for (loop=0;loop<ntimes;loop++) {
3569 r1 = (rng) ? rng->Rndm() : gRandom->Rndm();
3570 ibin = TMath::BinarySearch(nbinsx,&integral[0],r1);
3571 //binx = 1 + ibin;
3572 //x = xAxis->GetBinCenter(binx); //this is not OK when SetBuffer is used
3573 x = xAxis->GetBinLowEdge(ibin+first)
3574 +xAxis->GetBinWidth(ibin+first)*(r1-integral[ibin])/(integral[ibin+1] - integral[ibin]);
3575 Fill(x);
3576 }
3577 delete [] integral;
3578}
3579
3580////////////////////////////////////////////////////////////////////////////////
3581/// Fill histogram following distribution in histogram h.
3582///
3583/// @param h : Histogram pointer used for sampling random number
3584/// @param ntimes : number of times the histogram is filled
3585/// @param rng : (optional) Random number generator used for sampling
3586///
3587/// The distribution contained in the histogram h (TH1) is integrated
3588/// over the channel contents for the bin range of this histogram.
3589/// It is normalized to 1.
3590///
3591/// Getting one random number implies:
3592/// - Generating a random number between 0 and 1 (say r1)
3593/// - Look in which bin in the normalized integral r1 corresponds to
3594/// - Fill histogram channel ntimes random numbers are generated
3595///
3596/// SPECIAL CASE when the target histogram has the same binning as the source.
3597/// in this case we simply use a poisson distribution where
3598/// the mean value per bin = bincontent/integral.
3599
3600void TH1::FillRandom(TH1 *h, Int_t ntimes, TRandom * rng)
3601{
3602 if (!h) { Error("FillRandom", "Null histogram"); return; }
3603 if (fDimension != h->GetDimension()) {
3604 Error("FillRandom", "Histograms with different dimensions"); return;
3605 }
3606 if (std::isnan(h->ComputeIntegral(true))) {
3607 Error("FillRandom", "Histograms contains negative bins, does not represent probabilities");
3608 return;
3609 }
3610
3611 //in case the target histogram has the same binning and ntimes much greater
3612 //than the number of bins we can use a fast method
3613 Int_t first = fXaxis.GetFirst();
3614 Int_t last = fXaxis.GetLast();
3615 Int_t nbins = last-first+1;
3616 if (ntimes > 10*nbins) {
3617 auto inconsistency = CheckConsistency(this,h);
3618 if (inconsistency != kFullyConsistent) return; // do nothing
3619 Double_t sumw = h->Integral(first,last);
3620 if (sumw == 0) return;
3621 Double_t sumgen = 0;
3622 for (Int_t bin=first;bin<=last;bin++) {
3623 Double_t mean = h->RetrieveBinContent(bin)*ntimes/sumw;
3624 Double_t cont = (rng) ? rng->Poisson(mean) : gRandom->Poisson(mean);
3625 sumgen += cont;
3626 AddBinContent(bin,cont);
3627 if (fSumw2.fN) fSumw2.fArray[bin] += cont;
3628 }
3629
3630 // fix for the fluctuations in the total number n
3631 // since we use Poisson instead of multinomial
3632 // add a correction to have ntimes as generated entries
3633 Int_t i;
3634 if (sumgen < ntimes) {
3635 // add missing entries
3636 for (i = Int_t(sumgen+0.5); i < ntimes; ++i)
3637 {
3638 Double_t x = h->GetRandom();
3639 Fill(x);
3640 }
3641 }
3642 else if (sumgen > ntimes) {
3643 // remove extra entries
3644 i = Int_t(sumgen+0.5);
3645 while( i > ntimes) {
3646 Double_t x = h->GetRandom(rng);
3647 Int_t ibin = fXaxis.FindBin(x);
3649 // skip in case bin is empty
3650 if (y > 0) {
3651 SetBinContent(ibin, y-1.);
3652 i--;
3653 }
3654 }
3655 }
3656
3657 ResetStats();
3658 return;
3659 }
3660 // case of different axis and not too large ntimes
3661
3662 if (h->ComputeIntegral() ==0) return;
3663 Int_t loop;
3664 Double_t x;
3665 for (loop=0;loop<ntimes;loop++) {
3666 x = h->GetRandom();
3667 Fill(x);
3668 }
3669}
3670
3671////////////////////////////////////////////////////////////////////////////////
3672/// Return Global bin number corresponding to x,y,z
3673///
3674/// 2-D and 3-D histograms are represented with a one dimensional
3675/// structure. This has the advantage that all existing functions, such as
3676/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
3677/// This function tries to extend the axis if the given point belongs to an
3678/// under-/overflow bin AND if CanExtendAllAxes() is true.
3679///
3680/// See also TH1::GetBin, TAxis::FindBin and TAxis::FindFixBin
3681
3683{
3684 if (GetDimension() < 2) {
3685 return fXaxis.FindBin(x);
3686 }
3687 if (GetDimension() < 3) {
3688 Int_t nx = fXaxis.GetNbins()+2;
3689 Int_t binx = fXaxis.FindBin(x);
3690 Int_t biny = fYaxis.FindBin(y);
3691 return binx + nx*biny;
3692 }
3693 if (GetDimension() < 4) {
3694 Int_t nx = fXaxis.GetNbins()+2;
3695 Int_t ny = fYaxis.GetNbins()+2;
3696 Int_t binx = fXaxis.FindBin(x);
3697 Int_t biny = fYaxis.FindBin(y);
3698 Int_t binz = fZaxis.FindBin(z);
3699 return binx + nx*(biny +ny*binz);
3700 }
3701 return -1;
3702}
3703
3704////////////////////////////////////////////////////////////////////////////////
3705/// Return Global bin number corresponding to x,y,z.
3706///
3707/// 2-D and 3-D histograms are represented with a one dimensional
3708/// structure. This has the advantage that all existing functions, such as
3709/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
3710/// This function DOES NOT try to extend the axis if the given point belongs
3711/// to an under-/overflow bin.
3712///
3713/// See also TH1::GetBin, TAxis::FindBin and TAxis::FindFixBin
3714
3716{
3717 if (GetDimension() < 2) {
3718 return fXaxis.FindFixBin(x);
3719 }
3720 if (GetDimension() < 3) {
3721 Int_t nx = fXaxis.GetNbins()+2;
3722 Int_t binx = fXaxis.FindFixBin(x);
3723 Int_t biny = fYaxis.FindFixBin(y);
3724 return binx + nx*biny;
3725 }
3726 if (GetDimension() < 4) {
3727 Int_t nx = fXaxis.GetNbins()+2;
3728 Int_t ny = fYaxis.GetNbins()+2;
3729 Int_t binx = fXaxis.FindFixBin(x);
3730 Int_t biny = fYaxis.FindFixBin(y);
3731 Int_t binz = fZaxis.FindFixBin(z);
3732 return binx + nx*(biny +ny*binz);
3733 }
3734 return -1;
3735}
3736
3737////////////////////////////////////////////////////////////////////////////////
3738/// Find first bin with content > threshold for axis (1=x, 2=y, 3=z)
3739/// if no bins with content > threshold is found the function returns -1.
3740/// The search will occur between the specified first and last bin. Specifying
3741/// the value of the last bin to search to less than zero will search until the
3742/// last defined bin.
3743
3744Int_t TH1::FindFirstBinAbove(Double_t threshold, Int_t axis, Int_t firstBin, Int_t lastBin) const
3745{
3746 if (fBuffer) ((TH1*)this)->BufferEmpty();
3747
3748 if (axis < 1 || (axis > 1 && GetDimension() == 1 ) ||
3749 ( axis > 2 && GetDimension() == 2 ) || ( axis > 3 && GetDimension() > 3 ) ) {
3750 Warning("FindFirstBinAbove","Invalid axis number : %d, axis x assumed\n",axis);
3751 axis = 1;
3752 }
3753 if (firstBin < 1) {
3754 firstBin = 1;
3755 }
3756 Int_t nbinsx = fXaxis.GetNbins();
3757 Int_t nbinsy = (GetDimension() > 1 ) ? fYaxis.GetNbins() : 1;
3758 Int_t nbinsz = (GetDimension() > 2 ) ? fZaxis.GetNbins() : 1;
3759
3760 if (axis == 1) {
3761 if (lastBin < 0 || lastBin > fXaxis.GetNbins()) {
3762 lastBin = fXaxis.GetNbins();
3763 }
3764 for (Int_t binx = firstBin; binx <= lastBin; binx++) {
3765 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3766 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3767 if (RetrieveBinContent(GetBin(binx,biny,binz)) > threshold) return binx;
3768 }
3769 }
3770 }
3771 }
3772 else if (axis == 2) {
3773 if (lastBin < 0 || lastBin > fYaxis.GetNbins()) {
3774 lastBin = fYaxis.GetNbins();
3775 }
3776 for (Int_t biny = firstBin; biny <= lastBin; biny++) {
3777 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3778 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3779 if (RetrieveBinContent(GetBin(binx,biny,binz)) > threshold) return biny;
3780 }
3781 }
3782 }
3783 }
3784 else if (axis == 3) {
3785 if (lastBin < 0 || lastBin > fZaxis.GetNbins()) {
3786 lastBin = fZaxis.GetNbins();
3787 }
3788 for (Int_t binz = firstBin; binz <= lastBin; binz++) {
3789 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3790 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3791 if (RetrieveBinContent(GetBin(binx,biny,binz)) > threshold) return binz;
3792 }
3793 }
3794 }
3795 }
3796
3797 return -1;
3798}
3799
3800////////////////////////////////////////////////////////////////////////////////
3801/// Find last bin with content > threshold for axis (1=x, 2=y, 3=z)
3802/// if no bins with content > threshold is found the function returns -1.
3803/// The search will occur between the specified first and last bin. Specifying
3804/// the value of the last bin to search to less than zero will search until the
3805/// last defined bin.
3806
3807Int_t TH1::FindLastBinAbove(Double_t threshold, Int_t axis, Int_t firstBin, Int_t lastBin) const
3808{
3809 if (fBuffer) ((TH1*)this)->BufferEmpty();
3810
3811
3812 if (axis < 1 || ( axis > 1 && GetDimension() == 1 ) ||
3813 ( axis > 2 && GetDimension() == 2 ) || ( axis > 3 && GetDimension() > 3) ) {
3814 Warning("FindFirstBinAbove","Invalid axis number : %d, axis x assumed\n",axis);
3815 axis = 1;
3816 }
3817 if (firstBin < 1) {
3818 firstBin = 1;
3819 }
3820 Int_t nbinsx = fXaxis.GetNbins();
3821 Int_t nbinsy = (GetDimension() > 1 ) ? fYaxis.GetNbins() : 1;
3822 Int_t nbinsz = (GetDimension() > 2 ) ? fZaxis.GetNbins() : 1;
3823
3824 if (axis == 1) {
3825 if (lastBin < 0 || lastBin > fXaxis.GetNbins()) {
3826 lastBin = fXaxis.GetNbins();
3827 }
3828 for (Int_t binx = lastBin; binx >= firstBin; binx--) {
3829 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3830 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3831 if (RetrieveBinContent(GetBin(binx, biny, binz)) > threshold) return binx;
3832 }
3833 }
3834 }
3835 }
3836 else if (axis == 2) {
3837 if (lastBin < 0 || lastBin > fYaxis.GetNbins()) {
3838 lastBin = fYaxis.GetNbins();
3839 }
3840 for (Int_t biny = lastBin; biny >= firstBin; biny--) {
3841 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3842 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3843 if (RetrieveBinContent(GetBin(binx, biny, binz)) > threshold) return biny;
3844 }
3845 }
3846 }
3847 }
3848 else if (axis == 3) {
3849 if (lastBin < 0 || lastBin > fZaxis.GetNbins()) {
3850 lastBin = fZaxis.GetNbins();
3851 }
3852 for (Int_t binz = lastBin; binz >= firstBin; binz--) {
3853 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3854 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3855 if (RetrieveBinContent(GetBin(binx, biny, binz)) > threshold) return binz;
3856 }
3857 }
3858 }
3859 }
3860
3861 return -1;
3862}
3863
3864////////////////////////////////////////////////////////////////////////////////
3865/// Search object named name in the list of functions.
3866
3867TObject *TH1::FindObject(const char *name) const
3868{
3869 if (fFunctions) return fFunctions->FindObject(name);
3870 return nullptr;
3871}
3872
3873////////////////////////////////////////////////////////////////////////////////
3874/// Search object obj in the list of functions.
3875
3876TObject *TH1::FindObject(const TObject *obj) const
3877{
3878 if (fFunctions) return fFunctions->FindObject(obj);
3879 return nullptr;
3880}
3881
3882////////////////////////////////////////////////////////////////////////////////
3883/// Fit histogram with function fname.
3884///
3885///
3886/// fname is the name of a function available in the global ROOT list of functions
3887/// `gROOT->GetListOfFunctions`
3888/// The list include any TF1 object created by the user plus some pre-defined functions
3889/// which are automatically created by ROOT the first time a pre-defined function is requested from `gROOT`
3890/// (i.e. when calling `gROOT->GetFunction(const char *name)`).
3891/// These pre-defined functions are:
3892/// - `gaus, gausn` where gausn is the normalized Gaussian
3893/// - `landau, landaun`
3894/// - `expo`
3895/// - `pol1,...9, chebyshev1,...9`.
3896///
3897/// For printing the list of all available functions do:
3898///
3899/// TF1::InitStandardFunctions(); // not needed if `gROOT->GetFunction` is called before
3900/// gROOT->GetListOfFunctions()->ls()
3901///
3902/// `fname` can also be a formula that is accepted by the linear fitter containing the special operator `++`,
3903/// representing linear components separated by `++` sign, for example `x++sin(x)` for fitting `[0]*x+[1]*sin(x)`
3904///
3905/// This function finds a pointer to the TF1 object with name `fname` and calls TH1::Fit(TF1 *, Option_t *, Option_t *,
3906/// Double_t, Double_t). See there for the fitting options and the details about fitting histograms
3907
3908TFitResultPtr TH1::Fit(const char *fname ,Option_t *option ,Option_t *goption, Double_t xxmin, Double_t xxmax)
3909{
3910 char *linear;
3911 linear= (char*)strstr(fname, "++");
3912 Int_t ndim=GetDimension();
3913 if (linear){
3914 if (ndim<2){
3915 TF1 f1(fname, fname, xxmin, xxmax);
3916 return Fit(&f1,option,goption,xxmin,xxmax);
3917 }
3918 else if (ndim<3){
3919 TF2 f2(fname, fname);
3920 return Fit(&f2,option,goption,xxmin,xxmax);
3921 }
3922 else{
3923 TF3 f3(fname, fname);
3924 return Fit(&f3,option,goption,xxmin,xxmax);
3925 }
3926 }
3927 else{
3928 TF1 * f1 = (TF1*)gROOT->GetFunction(fname);
3929 if (!f1) { Printf("Unknown function: %s",fname); return -1; }
3930 return Fit(f1,option,goption,xxmin,xxmax);
3931 }
3932}
3933
3934////////////////////////////////////////////////////////////////////////////////
3935/// Fit histogram with the function pointer f1.
3936///
3937/// \param[in] f1 pointer to the function object
3938/// \param[in] option string defining the fit options (see table below).
3939/// \param[in] goption specify a list of graphics options. See TH1::Draw for a complete list of these options.
3940/// \param[in] xxmin lower fitting range
3941/// \param[in] xxmax upper fitting range
3942/// \return A smart pointer to the TFitResult class
3943///
3944/// \anchor HFitOpt
3945/// ### Histogram Fitting Options
3946///
3947/// Here is the full list of fit options that can be given in the parameter `option`.
3948/// Several options can be used together by concatanating the strings without the need of any delimiters.
3949///
3950/// option | description
3951/// -------|------------
3952/// "L" | Uses a log likelihood method (default is chi-square method). To be used when the histogram represents counts.
3953/// "WL" | Weighted log likelihood method. To be used when the histogram has been filled with weights different than 1. This is needed for getting correct parameter uncertainties for weighted fits.
3954/// "P" | Uses Pearson chi-square method. Uses expected errors instead of the observed one (default case). The expected error is instead estimated from the square-root of the bin function value.
3955/// "MULTI" | Uses Loglikelihood method based on multi-nomial distribution. In this case the function must be normalized and one fits only the function shape.
3956/// "W" | Fit using the chi-square method and ignoring the bin uncertainties and skip empty bins.
3957/// "WW" | Fit using the chi-square method and ignoring the bin uncertainties and include the empty bins.
3958/// "I" | Uses the integral of function in the bin instead of the default bin center value.
3959/// "F" | Uses the default minimizer (e.g. Minuit) when fitting a linear function (e.g. polN) instead of the linear fitter.
3960/// "U" | Uses a user specified objective function (e.g. user providedlikelihood function) defined using `TVirtualFitter::SetFCN`
3961/// "E" | Performs a better parameter errors estimation using the Minos technique for all fit parameters.
3962/// "M" | Uses the IMPROVE algorithm (available only in TMinuit). This algorithm attempts improve the found local minimum by searching for a better one.
3963/// "S" | The full result of the fit is returned in the `TFitResultPtr`. This is needed to get the covariance matrix of the fit. See `TFitResult` and the base class `ROOT::Math::FitResult`.
3964/// "Q" | Quiet mode (minimum printing)
3965/// "V" | Verbose mode (default is between Q and V)
3966/// "+" | Adds this new fitted function to the list of fitted functions. By default, the previous function is deleted and only the last one is kept.
3967/// "N" | Does not store the graphics function, does not draw the histogram with the function after fitting.
3968/// "0" | Does not draw the histogram and the fitted function after fitting, but in contrast to option "N", it stores the fitted function in the histogram list of functions.
3969/// "R" | Fit using a fitting range specified in the function range with `TF1::SetRange`.
3970/// "B" | Use this option when you want to fix or set limits on one or more parameters and the fitting function is a predefined one (e.g gaus, expo,..), otherwise in case of pre-defined functions, some default initial values and limits will be used.
3971/// "C" | In case of linear fitting, do no calculate the chisquare (saves CPU time).
3972/// "G" | Uses the gradient implemented in `TF1::GradientPar` for the minimization. This allows to use Automatic Differentiation when it is supported by the provided TF1 function.
3973/// "WIDTH" | Scales the histogran bin content by the bin width (useful for variable bins histograms)
3974/// "SERIAL" | Runs in serial mode. By defult if ROOT is built with MT support and MT is enables, the fit is perfomed in multi-thread - "E" Perform better Errors estimation using Minos technique
3975/// "MULTITHREAD" | Forces usage of multi-thread execution whenever possible
3976///
3977/// The default fitting of an histogram (when no option is given) is perfomed as following:
3978/// - a chi-square fit (see below Chi-square Fits) computed using the bin histogram errors and excluding bins with zero errors (empty bins);
3979/// - the full range of the histogram is used;
3980/// - the default Minimizer with its default configuration is used (see below Minimizer Configuration) except for linear function;
3981/// - for linear functions (`polN`, `chenbyshev` or formula expressions combined using operator `++`) a linear minimization is used.
3982/// - only the status of the fit is returned;
3983/// - the fit is performed in Multithread whenever is enabled in ROOT;
3984/// - only the last fitted function is saved in the histogram;
3985/// - the histogram is drawn after fitting overalyed with the resulting fitting function
3986///
3987/// \anchor HFitMinimizer
3988/// ### Minimizer Configuration
3989///
3990/// The Fit is perfomed using the default Minimizer, defined in the `ROOT::Math::MinimizerOptions` class.
3991/// It is possible to change the default minimizer and its configuration parameters by calling these static functions before fitting (before calling `TH1::Fit`):
3992/// - `ROOT::Math::MinimizerOptions::SetDefaultMinimizer(minimizerName, minimizerAgorithm)` for changing the minmizer and/or the corresponding algorithm.
3993/// For example `ROOT::Math::MinimizerOptions::SetDefaultMinimizer("GSLMultiMin","BFGS");` will set the usage of the BFGS algorithm of the GSL multi-dimensional minimization
3994/// The current defaults are ("Minuit","Migrad").
3995/// See the documentation of the `ROOT::Math::MinimizerOptions` for the available minimizers in ROOT and their corresponding algorithms.
3996/// - `ROOT::Math::MinimizerOptions::SetDefaultTolerance` for setting a different tolerance value for the minimization.
3997/// - `ROOT::Math::MinimizerOptions::SetDefaultMaxFunctionCalls` for setting the maximum number of function calls.
3998/// - `ROOT::Math::MinimizerOptions::SetDefaultPrintLevel` for changing the minimizer print level from level=0 (minimal printing) to level=3 maximum printing
3999///
4000/// Other options are possible depending on the Minimizer used, see the corresponding documentation.
4001/// The default minimizer can be also set in the resource file in etc/system.rootrc. For example
4002///
4003/// ~~~ {.cpp}
4004/// Root.Fitter: Minuit2
4005/// ~~~
4006///
4007/// \anchor HFitChi2
4008/// ### Chi-square Fits
4009///
4010/// By default a chi-square (least-square) fit is performed on the histogram. The so-called modified least-square method
4011/// is used where the residual for each bin is computed using as error the observed value (the bin error) returned by `TH1::GetBinError`
4012///
4013/// \f[
4014/// Chi2 = \sum_{i}{ \left(\frac{y(i) - f(x(i) | p )}{e(i)} \right)^2 }
4015/// \f]
4016///
4017/// where `y(i)` is the bin content for each bin `i`, `x(i)` is the bin center and `e(i)` is the bin error (`sqrt(y(i)` for
4018/// an un-weighted histogram). Bins with zero errors are excluded from the fit. See also later the note on the treatment
4019/// of empty bins. When using option "I" the residual is computed not using the function value at the bin center, `f(x(i)|p)`,
4020/// but the integral of the function in the bin, Integral{ f(x|p)dx }, divided by the bin volume.
4021/// When using option `P` (Pearson chi2), the expected error computed as `e(i) = sqrt(f(x(i)|p))` is used.
4022/// In this case empty bins are considered in the fit.
4023/// Both chi-square methods should not be used when the bin content represent counts, especially in case of low bin statistics,
4024/// because they could return a biased result.
4025///
4026/// \anchor HFitNLL
4027/// ### Likelihood Fits
4028///
4029/// When using option "L" a likelihood fit is used instead of the default chi-square fit.
4030/// The likelihood is built assuming a Poisson probability density function for each bin.
4031/// The negative log-likelihood to be minimized is
4032///
4033/// \f[
4034/// NLL = - \sum_{i}{ \log {\mathrm P} ( y(i) | f(x(i) | p ) ) }
4035/// \f]
4036/// where `P(y|f)` is the Poisson distribution of observing a count `y(i)` in the bin when the expected count is `f(x(i)|p)`.
4037/// The exact likelihood used is the Poisson likelihood described in this paper:
4038/// S. Baker and R. D. Cousins, “Clarification of the use of chi-square and likelihood functions in fits to histograms,”
4039/// Nucl. Instrum. Meth. 221 (1984) 437.
4040///
4041/// \f[
4042/// NLL = \sum_{i}{( f(x(i) | p ) + y(i)\log(y(i)/ f(x(i) | p )) - y(i)) }
4043/// \f]
4044/// By using this formulation, `2*NLL` can be interpreted as the chi-square resulting from the fit.
4045///
4046/// This method should be always used when the bin content represents counts (i.e. errors are sqrt(N) ).
4047/// The likelihood method has the advantage of treating correctly bins with low statistics. In case of high
4048/// statistics/bin the distribution of the bin content becomes a normal distribution and the likelihood and the chi2 fit
4049/// give the same result.
4050///
4051/// The likelihood method, although a bit slower, it is therefore the recommended method,
4052/// when the histogram represent counts (Poisson statistics), where the chi-square methods may
4053/// give incorrect results, especially in case of low statistics.
4054/// In case of a weighted histogram, it is possible to perform also a likelihood fit by using the
4055/// option "WL". Note a weighted histogram is a histogram which has been filled with weights and it
4056/// has the information on the sum of the weight square for each bin ( TH1::Sumw2() has been called).
4057/// The bin error for a weighted histogram is the square root of the sum of the weight square.
4058///
4059/// \anchor HFitRes
4060/// ### Fit Result
4061///
4062/// The function returns a TFitResultPtr which can hold a pointer to a TFitResult object.
4063/// By default the TFitResultPtr contains only the status of the fit which is return by an
4064/// automatic conversion of the TFitResultPtr to an integer. One can write in this case directly:
4065///
4066/// ~~~ {.cpp}
4067/// Int_t fitStatus = h->Fit(myFunc);
4068/// ~~~
4069///
4070/// If the option "S" is instead used, TFitResultPtr behaves as a smart
4071/// pointer to the TFitResult object. This is useful for retrieving the full result information from the fit, such as the covariance matrix,
4072/// as shown in this example code:
4073///
4074/// ~~~ {.cpp}
4075/// TFitResultPtr r = h->Fit(myFunc,"S");
4076/// TMatrixDSym cov = r->GetCovarianceMatrix(); // to access the covariance matrix
4077/// Double_t chi2 = r->Chi2(); // to retrieve the fit chi2
4078/// Double_t par0 = r->Parameter(0); // retrieve the value for the parameter 0
4079/// Double_t err0 = r->ParError(0); // retrieve the error for the parameter 0
4080/// r->Print("V"); // print full information of fit including covariance matrix
4081/// r->Write(); // store the result in a file
4082/// ~~~
4083///
4084/// The fit parameters, error and chi-square (but not covariance matrix) can be retrieved also
4085/// directly from the fitted function that is passed to this call.
4086/// Given a pointer to an associated fitted function `myfunc`, one can retrieve the function/fit
4087/// parameters with calls such as:
4088///
4089/// ~~~ {.cpp}
4090/// Double_t chi2 = myfunc->GetChisquare();
4091/// Double_t par0 = myfunc->GetParameter(0); //value of 1st parameter
4092/// Double_t err0 = myfunc->GetParError(0); //error on first parameter
4093/// ~~~
4094///
4095/// ##### Associated functions
4096///
4097/// One or more object ( can be added to the list
4098/// of functions (fFunctions) associated to each histogram.
4099/// When TH1::Fit is invoked, the fitted function is added to the histogram list of functions (fFunctions).
4100/// If the histogram is made persistent, the list of associated functions is also persistent.
4101/// Given a histogram h, one can retrieve an associated function with:
4102///
4103/// ~~~ {.cpp}
4104/// TF1 *myfunc = h->GetFunction("myfunc");
4105/// ~~~
4106/// or by quering directly the list obtained by calling `TH1::GetListOfFunctions`.
4107///
4108/// \anchor HFitStatus
4109/// ### Fit status
4110///
4111/// The status of the fit is obtained converting the TFitResultPtr to an integer
4112/// independently if the fit option "S" is used or not:
4113///
4114/// ~~~ {.cpp}
4115/// TFitResultPtr r = h->Fit(myFunc,opt);
4116/// Int_t fitStatus = r;
4117/// ~~~
4118///
4119/// - `status = 0` : the fit has been performed successfully (i.e no error occurred).
4120/// - `status < 0` : there is an error not connected with the minimization procedure, for example when a wrong function is used.
4121/// - `status > 0` : return status from Minimizer, depends on used Minimizer. For example for TMinuit and Minuit2 we have:
4122/// - `status = migradStatus + 10*minosStatus + 100*hesseStatus + 1000*improveStatus`.
4123/// TMinuit returns 0 (for migrad, minos, hesse or improve) in case of success and 4 in case of error (see the documentation of TMinuit::mnexcm). For example, for an error
4124/// only in Minos but not in Migrad a fitStatus of 40 will be returned.
4125/// Minuit2 returns 0 in case of success and different values in migrad,minos or
4126/// hesse depending on the error. See in this case the documentation of
4127/// Minuit2Minimizer::Minimize for the migrad return status, Minuit2Minimizer::GetMinosError for the
4128/// minos return status and Minuit2Minimizer::Hesse for the hesse return status.
4129/// If other minimizers are used see their specific documentation for the status code returned.
4130/// For example in the case of Fumili, see TFumili::Minimize.
4131///
4132/// \anchor HFitRange
4133/// ### Fitting in a range
4134///
4135/// In order to fit in a sub-range of the histogram you have two options:
4136/// - pass to this function the lower (`xxmin`) and upper (`xxmax`) values for the fitting range;
4137/// - define a specific range in the fitted function and use the fitting option "R".
4138/// For example, if your histogram has a defined range between -4 and 4 and you want to fit a gaussian
4139/// only in the interval 1 to 3, you can do:
4140///
4141/// ~~~ {.cpp}
4142/// TF1 *f1 = new TF1("f1", "gaus", 1, 3);
4143/// histo->Fit("f1", "R");
4144/// ~~~
4145///
4146/// The fitting range is also limited by the histogram range defined using TAxis::SetRange
4147/// or TAxis::SetRangeUser. Therefore the fitting range is the smallest range between the
4148/// histogram one and the one defined by one of the two previous options described above.
4149///
4150/// \anchor HFitInitial
4151/// ### Setting initial conditions
4152///
4153/// Parameters must be initialized before invoking the Fit function.
4154/// The setting of the parameter initial values is automatic for the
4155/// predefined functions such as poln, expo, gaus, landau. One can however disable
4156/// this automatic computation by using the option "B".
4157/// Note that if a predefined function is defined with an argument,
4158/// eg, gaus(0), expo(1), you must specify the initial values for
4159/// the parameters.
4160/// You can specify boundary limits for some or all parameters via
4161///
4162/// ~~~ {.cpp}
4163/// f1->SetParLimits(p_number, parmin, parmax);
4164/// ~~~
4165///
4166/// if `parmin >= parmax`, the parameter is fixed
4167/// Note that you are not forced to fix the limits for all parameters.
4168/// For example, if you fit a function with 6 parameters, you can do:
4169///
4170/// ~~~ {.cpp}
4171/// func->SetParameters(0, 3.1, 1.e-6, -8, 0, 100);
4172/// func->SetParLimits(3, -10, -4);
4173/// func->FixParameter(4, 0);
4174/// func->SetParLimits(5, 1, 1);
4175/// ~~~
4176///
4177/// With this setup, parameters 0->2 can vary freely
4178/// Parameter 3 has boundaries [-10,-4] with initial value -8
4179/// Parameter 4 is fixed to 0
4180/// Parameter 5 is fixed to 100.
4181/// When the lower limit and upper limit are equal, the parameter is fixed.
4182/// However to fix a parameter to 0, one must call the FixParameter function.
4183///
4184/// \anchor HFitStatBox
4185/// ### Fit Statistics Box
4186///
4187/// The statistics box can display the result of the fit.
4188/// You can change the statistics box to display the fit parameters with
4189/// the TStyle::SetOptFit(mode) method. This mode has four digits.
4190/// mode = pcev (default = 0111)
4191///
4192/// v = 1; print name/values of parameters
4193/// e = 1; print errors (if e=1, v must be 1)
4194/// c = 1; print Chisquare/Number of degrees of freedom
4195/// p = 1; print Probability
4196///
4197/// For example: gStyle->SetOptFit(1011);
4198/// prints the fit probability, parameter names/values, and errors.
4199/// You can change the position of the statistics box with these lines
4200/// (where g is a pointer to the TGraph):
4201///
4202/// TPaveStats *st = (TPaveStats*)g->GetListOfFunctions()->FindObject("stats");
4203/// st->SetX1NDC(newx1); //new x start position
4204/// st->SetX2NDC(newx2); //new x end position
4205///
4206/// \anchor HFitExtra
4207/// ### Additional Notes on Fitting
4208///
4209/// #### Fitting a histogram of dimension N with a function of dimension N-1
4210///
4211/// It is possible to fit a TH2 with a TF1 or a TH3 with a TF2.
4212/// In this case the chi-square is computed from the squared error distance between the function values and the bin centers weighted by the bin content.
4213/// For correct error scaling, the obtained parameter error are corrected as in the case when the
4214/// option "W" is used.
4215///
4216/// #### User defined objective functions
4217///
4218/// By default when fitting a chi square function is used for fitting. When option "L" is used
4219/// a Poisson likelihood function is used. Using option "MULTI" a multinomial likelihood fit is used.
4220/// Thes functions are defined in the header Fit/Chi2Func.h or Fit/PoissonLikelihoodFCN and they
4221/// are implemented using the routines FitUtil::EvaluateChi2 or FitUtil::EvaluatePoissonLogL in
4222/// the file math/mathcore/src/FitUtil.cxx.
4223/// It is possible to specify a user defined fitting function, using option "U" and
4224/// calling the following functions:
4225///
4226/// ~~~ {.cpp}
4227/// TVirtualFitter::Fitter(myhist)->SetFCN(MyFittingFunction);
4228/// ~~~
4229///
4230/// where MyFittingFunction is of type:
4231///
4232/// ~~~ {.cpp}
4233/// extern void MyFittingFunction(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag);
4234/// ~~~
4235///
4236/// #### Note on treatment of empty bins
4237///
4238/// Empty bins, which have the content equal to zero AND error equal to zero,
4239/// are excluded by default from the chi-square fit, but they are considered in the likelihood fit.
4240/// since they affect the likelihood if the function value in these bins is not negligible.
4241/// Note that if the histogram is having bins with zero content and non zero-errors they are considered as
4242/// any other bins in the fit. Instead bins with zero error and non-zero content are by default excluded in the chi-squared fit.
4243/// In general, one should not fit a histogram with non-empty bins and zero errors.
4244///
4245/// If the bin errors are not known, one should use the fit option "W", which gives a weight=1 for each bin (it is an unweighted least-square
4246/// fit). When using option "WW" the empty bins will be also considered in the chi-square fit with an error of 1.
4247/// Note that in this fitting case (option "W" or "WW") the resulting fitted parameter errors
4248/// are corrected by the obtained chi2 value using this scaling expression:
4249/// `errorp *= sqrt(chisquare/(ndf-1))` as it is done when fitting a TGraph with
4250/// no point errors.
4251///
4252/// #### Excluding points
4253///
4254/// You can use TF1::RejectPoint inside your fitting function to exclude some points
4255/// within a certain range from the fit. See the tutorial `fit/fitExclude.C`.
4256///
4257///
4258/// #### Warning when using the option "0"
4259///
4260/// When selecting the option "0", the fitted function is added to
4261/// the list of functions of the histogram, but it is not drawn when the histogram is drawn.
4262/// You can undo this behaviour resetting its corresponding bit in the TF1 object as following:
4263///
4264/// ~~~ {.cpp}
4265/// h.Fit("myFunction", "0"); // fit, store function but do not draw
4266/// h.Draw(); // function is not drawn
4267/// h.GetFunction("myFunction")->ResetBit(TF1::kNotDraw);
4268/// h.Draw(); // function is visible again
4269/// ~~~
4271
4273{
4274 // implementation of Fit method is in file hist/src/HFitImpl.cxx
4275 Foption_t fitOption;
4277
4278 // create range and minimizer options with default values
4279 ROOT::Fit::DataRange range(xxmin,xxmax);
4281
4282 // need to empty the buffer before
4283 // (t.b.d. do a ML unbinned fit with buffer data)
4284 if (fBuffer) BufferEmpty();
4285
4286 return ROOT::Fit::FitObject(this, f1 , fitOption , minOption, goption, range);
4287}
4288
4289////////////////////////////////////////////////////////////////////////////////
4290/// Display a panel with all histogram fit options.
4291///
4292/// See class TFitPanel for example
4293
4294void TH1::FitPanel()
4295{
4296 if (!gPad)
4297 gROOT->MakeDefCanvas();
4298
4299 if (!gPad) {
4300 Error("FitPanel", "Unable to create a default canvas");
4301 return;
4302 }
4303
4304
4305 // use plugin manager to create instance of TFitEditor
4306 TPluginHandler *handler = gROOT->GetPluginManager()->FindHandler("TFitEditor");
4307 if (handler && handler->LoadPlugin() != -1) {
4308 if (handler->ExecPlugin(2, gPad, this) == 0)
4309 Error("FitPanel", "Unable to create the FitPanel");
4310 }
4311 else
4312 Error("FitPanel", "Unable to find the FitPanel plug-in");
4313}
4314
4315////////////////////////////////////////////////////////////////////////////////
4316/// Return a histogram containing the asymmetry of this histogram with h2,
4317/// where the asymmetry is defined as:
4318///
4319/// ~~~ {.cpp}
4320/// Asymmetry = (h1 - h2)/(h1 + h2) where h1 = this
4321/// ~~~
4322///
4323/// works for 1D, 2D, etc. histograms
4324/// c2 is an optional argument that gives a relative weight between the two
4325/// histograms, and dc2 is the error on this weight. This is useful, for example,
4326/// when forming an asymmetry between two histograms from 2 different data sets that
4327/// need to be normalized to each other in some way. The function calculates
4328/// the errors assuming Poisson statistics on h1 and h2 (that is, dh = sqrt(h)).
4329///
4330/// example: assuming 'h1' and 'h2' are already filled
4331///
4332/// ~~~ {.cpp}
4333/// h3 = h1->GetAsymmetry(h2)
4334/// ~~~
4335///
4336/// then 'h3' is created and filled with the asymmetry between 'h1' and 'h2';
4337/// h1 and h2 are left intact.
4338///
4339/// Note that it is the user's responsibility to manage the created histogram.
4340/// The name of the returned histogram will be `Asymmetry_nameOfh1-nameOfh2`
4341///
4342/// code proposed by Jason Seely (seely@mit.edu) and adapted by R.Brun
4343///
4344/// clone the histograms so top and bottom will have the
4345/// correct dimensions:
4346/// Sumw2 just makes sure the errors will be computed properly
4347/// when we form sums and ratios below.
4348
4350{
4351 TH1 *h1 = this;
4352 TString name = TString::Format("Asymmetry_%s-%s",h1->GetName(),h2->GetName() );
4353 TH1 *asym = (TH1*)Clone(name);
4354
4355 // set also the title
4356 TString title = TString::Format("(%s - %s)/(%s+%s)",h1->GetName(),h2->GetName(),h1->GetName(),h2->GetName() );
4357 asym->SetTitle(title);
4358
4359 asym->Sumw2();
4360 Bool_t addStatus = TH1::AddDirectoryStatus();
4362 TH1 *top = (TH1*)asym->Clone();
4363 TH1 *bottom = (TH1*)asym->Clone();
4364 TH1::AddDirectory(addStatus);
4365
4366 // form the top and bottom of the asymmetry, and then divide:
4367 top->Add(h1,h2,1,-c2);
4368 bottom->Add(h1,h2,1,c2);
4369 asym->Divide(top,bottom);
4370
4371 Int_t xmax = asym->GetNbinsX();
4372 Int_t ymax = asym->GetNbinsY();
4373 Int_t zmax = asym->GetNbinsZ();
4374
4375 if (h1->fBuffer) h1->BufferEmpty(1);
4376 if (h2->fBuffer) h2->BufferEmpty(1);
4377 if (bottom->fBuffer) bottom->BufferEmpty(1);
4378
4379 // now loop over bins to calculate the correct errors
4380 // the reason this error calculation looks complex is because of c2
4381 for(Int_t i=1; i<= xmax; i++){
4382 for(Int_t j=1; j<= ymax; j++){
4383 for(Int_t k=1; k<= zmax; k++){
4384 Int_t bin = GetBin(i, j, k);
4385 // here some bin contents are written into variables to make the error
4386 // calculation a little more legible:
4388 Double_t b = h2->RetrieveBinContent(bin);
4389 Double_t bot = bottom->RetrieveBinContent(bin);
4390
4391 // make sure there are some events, if not, then the errors are set = 0
4392 // automatically.
4393 //if(bot < 1){} was changed to the next line from recommendation of Jason Seely (28 Nov 2005)
4394 if(bot < 1e-6){}
4395 else{
4396 // computation of errors by Christos Leonidopoulos
4397 Double_t dasq = h1->GetBinErrorSqUnchecked(bin);
4398 Double_t dbsq = h2->GetBinErrorSqUnchecked(bin);
4399 Double_t error = 2*TMath::Sqrt(a*a*c2*c2*dbsq + c2*c2*b*b*dasq+a*a*b*b*dc2*dc2)/(bot*bot);
4400 asym->SetBinError(i,j,k,error);
4401 }
4402 }
4403 }
4404 }
4405 delete top;
4406 delete bottom;
4407
4408 return asym;
4409}
4410
4411////////////////////////////////////////////////////////////////////////////////
4412/// Static function
4413/// return the default buffer size for automatic histograms
4414/// the parameter fgBufferSize may be changed via SetDefaultBufferSize
4415
4417{
4418 return fgBufferSize;
4419}
4420
4421////////////////////////////////////////////////////////////////////////////////
4422/// Return kTRUE if TH1::Sumw2 must be called when creating new histograms.
4423/// see TH1::SetDefaultSumw2.
4424
4426{
4427 return fgDefaultSumw2;
4428}
4429
4430////////////////////////////////////////////////////////////////////////////////
4431/// Return the current number of entries.
4432
4434{
4435 if (fBuffer) {
4436 Int_t nentries = (Int_t) fBuffer[0];
4437 if (nentries > 0) return nentries;
4438 }
4439
4440 return fEntries;
4441}
4442
4443////////////////////////////////////////////////////////////////////////////////
4444/// Number of effective entries of the histogram.
4445///
4446/// \f[
4447/// neff = \frac{(\sum Weights )^2}{(\sum Weight^2 )}
4448/// \f]
4449///
4450/// In case of an unweighted histogram this number is equivalent to the
4451/// number of entries of the histogram.
4452/// For a weighted histogram, this number corresponds to the hypothetical number of unweighted entries
4453/// a histogram would need to have the same statistical power as this weighted histogram.
4454/// Note: The underflow/overflow are included if one has set the TH1::StatOverFlows flag
4455/// and if the statistics has been computed at filling time.
4456/// If a range is set in the histogram the number is computed from the given range.
4457
4459{
4460 Stat_t s[kNstat];
4461 this->GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
4462 return (s[1] ? s[0]*s[0]/s[1] : TMath::Abs(s[0]) );
4463}
4464
4465////////////////////////////////////////////////////////////////////////////////
4466/// Shortcut to set the three histogram colors with a single call.
4467///
4468/// By default: linecolor = markercolor = fillcolor = -1
4469/// If a color is < 0 this method does not change the corresponding color if positive or null it set the color.
4470///
4471/// For instance:
4472/// ~~~ {.cpp}
4473/// h->SetColors(kRed, kRed);
4474/// ~~~
4475/// will set the line color and the marker color to red.
4476
4477void TH1::SetColors(Color_t linecolor, Color_t markercolor, Color_t fillcolor)
4478{
4479 if (linecolor >= 0)
4480 SetLineColor(linecolor);
4481 if (markercolor >= 0)
4482 SetMarkerColor(markercolor);
4483 if (fillcolor >= 0)
4484 SetFillColor(fillcolor);
4485}
4486
4487
4488////////////////////////////////////////////////////////////////////////////////
4489/// Set highlight (enable/disable) mode for the histogram
4490/// by default highlight mode is disable
4491
4492void TH1::SetHighlight(Bool_t set)
4493{
4494 if (IsHighlight() == set)
4495 return;
4496 if (fDimension > 2) {
4497 Info("SetHighlight", "Supported only 1-D or 2-D histograms");
4498 return;
4499 }
4500
4501 SetBit(kIsHighlight, set);
4502
4503 if (fPainter)
4505}
4506
4507////////////////////////////////////////////////////////////////////////////////
4508/// Redefines TObject::GetObjectInfo.
4509/// Displays the histogram info (bin number, contents, integral up to bin
4510/// corresponding to cursor position px,py
4511
4512char *TH1::GetObjectInfo(Int_t px, Int_t py) const
4513{
4514 return ((TH1*)this)->GetPainter()->GetObjectInfo(px,py);
4515}
4516
4517////////////////////////////////////////////////////////////////////////////////
4518/// Return pointer to painter.
4519/// If painter does not exist, it is created
4520
4522{
4523 if (!fPainter) {
4524 TString opt = option;
4525 opt.ToLower();
4526 if (opt.Contains("gl") || gStyle->GetCanvasPreferGL()) {
4527 //try to create TGLHistPainter
4528 TPluginHandler *handler = gROOT->GetPluginManager()->FindHandler("TGLHistPainter");
4529
4530 if (handler && handler->LoadPlugin() != -1)
4531 fPainter = reinterpret_cast<TVirtualHistPainter *>(handler->ExecPlugin(1, this));
4532 }
4533 }
4534
4536
4537 return fPainter;
4538}
4539
4540////////////////////////////////////////////////////////////////////////////////
4541/// Compute Quantiles for this histogram
4542/// Quantile x_p := Q(p) is defined as the value x_p such that the cumulative
4543/// probability distribution Function F of variable X yields:
4544///
4545/// ~~~ {.cpp}
4546/// F(x_p) = Pr(X <= x_p) = p with 0 <= p <= 1.
4547/// x_p = Q(p) = F_inv(p)
4548/// ~~~
4549///
4550/// For instance the median x_0.5 of a distribution is defined as that value
4551/// of the random variable X for which the distribution function equals 0.5:
4552///
4553/// ~~~ {.cpp}
4554/// F(x_0.5) = Probability(X < x_0.5) = 0.5
4555/// x_0.5 = Q(0.5)
4556/// ~~~
4557///
4558/// \author Eddy Offermann
4559/// code from Eddy Offermann, Renaissance
4560///
4561/// \param[in] n maximum size of array xp and size of array p (if given)
4562/// \param[out] xp array to be filled with nq quantiles evaluated at (p). Memory has to be preallocated by caller.
4563/// If p is null (default value), then xp is actually set to the (first n) histogram bin edges
4564/// \param[in] p array of cumulative probabilities where quantiles should be evaluated.
4565/// - if p is null, the CDF of the histogram will be used instead as array, and will
4566/// have a size = number of bins + 1 in h. It will correspond to the
4567/// quantiles calculated at the lowest edge of the histogram (quantile=0) and
4568/// all the upper edges of the bins. (nbins might be > n).
4569/// - if p is not null, it is assumed to contain at least n values.
4570/// \return value nq (<=n) with the number of quantiles computed
4571///
4572/// Note that the Integral of the histogram is automatically recomputed
4573/// if the number of entries is different of the number of entries when
4574/// the integral was computed last time. In case you do not use the Fill
4575/// functions to fill your histogram, but SetBinContent, you must call
4576/// TH1::ComputeIntegral before calling this function.
4577///
4578/// Getting quantiles xp from two histograms and storing results in a TGraph,
4579/// a so-called QQ-plot
4580///
4581/// ~~~ {.cpp}
4582/// TGraph *gr = new TGraph(nprob);
4583/// h1->GetQuantiles(nprob,gr->GetX());
4584/// h2->GetQuantiles(nprob,gr->GetY());
4585/// gr->Draw("alp");
4586/// ~~~
4587///
4588/// Example:
4589///
4590/// ~~~ {.cpp}
4591/// void quantiles() {
4592/// // demo for quantiles
4593/// const Int_t nq = 20;
4594/// TH1F *h = new TH1F("h","demo quantiles",100,-3,3);
4595/// h->FillRandom("gaus",5000);
4596/// h->GetXaxis()->SetTitle("x");
4597/// h->GetYaxis()->SetTitle("Counts");
4598///
4599/// Double_t p[nq]; // probabilities where to evaluate the quantiles in [0,1]
4600/// Double_t xp[nq]; // array of positions X to store the resulting quantiles
4601/// for (Int_t i=0;i<nq;i++) p[i] = Float_t(i+1)/nq;
4602/// h->GetQuantiles(nq,xp,p);
4603///
4604/// //show the original histogram in the top pad
4605/// TCanvas *c1 = new TCanvas("c1","demo quantiles",10,10,700,900);
4606/// c1->Divide(1,2);
4607/// c1->cd(1);
4608/// h->Draw();
4609///
4610/// // show the quantiles in the bottom pad
4611/// c1->cd(2);
4612/// gPad->SetGrid();
4613/// TGraph *gr = new TGraph(nq,p,xp);
4614/// gr->SetMarkerStyle(21);
4615/// gr->GetXaxis()->SetTitle("p");
4616/// gr->GetYaxis()->SetTitle("x");
4617/// gr->Draw("alp");
4618/// }
4619/// ~~~
4620
4622{
4623 if (GetDimension() > 1) {
4624 Error("GetQuantiles","Only available for 1-d histograms");
4625 return 0;
4626 }
4627
4628 const Int_t nbins = GetXaxis()->GetNbins();
4629 if (!fIntegral) ComputeIntegral();
4630 if (fIntegral[nbins+1] != fEntries) ComputeIntegral();
4631
4632 Int_t i, ibin;
4633 Double_t *prob = (Double_t*)p;
4634 Int_t nq = n;
4635 if (p == nullptr) {
4636 nq = nbins+1;
4637 prob = new Double_t[nq];
4638 prob[0] = 0;
4639 for (i=1;i<nq;i++) {
4640 prob[i] = fIntegral[i]/fIntegral[nbins];
4641 }
4642 }
4643
4644 for (i = 0; i < nq; i++) {
4645 ibin = TMath::BinarySearch(nbins,fIntegral,prob[i]);
4646 if (fIntegral[ibin] == prob[i]) {
4647 if (prob[i] == 0.) {
4648 for (; ibin+1 <= nbins && fIntegral[ibin+1] == 0.; ++ibin) {
4649
4650 }
4651 xp[i] = fXaxis.GetBinUpEdge(ibin);
4652 }
4653 else if (prob[i] == 1.) {
4654 xp[i] = fXaxis.GetBinUpEdge(ibin);
4655 }
4656 else {
4657 // Find equal integral in later bins (ie their entries are zero)
4658 Double_t width = 0;
4659 for (Int_t j = ibin+1; j <= nbins; ++j) {
4660 if (prob[i] == fIntegral[j]) {
4661 width += fXaxis.GetBinWidth(j);
4662 }
4663 else
4664 break;
4665 }
4666 xp[i] = width == 0 ? fXaxis.GetBinCenter(ibin) : fXaxis.GetBinUpEdge(ibin) + width/2.;
4667 }
4668 }
4669 else {
4670 xp[i] = GetBinLowEdge(ibin+1);
4671 const Double_t dint = fIntegral[ibin+1]-fIntegral[ibin];
4672 if (dint > 0) xp[i] += GetBinWidth(ibin+1)*(prob[i]-fIntegral[ibin])/dint;
4673 }
4674 }
4675
4676 if (!p) delete [] prob;
4677 return nq;
4678}
4679
4680////////////////////////////////////////////////////////////////////////////////
4681/// Decode string choptin and fill fitOption structure.
4682
4683Int_t TH1::FitOptionsMake(Option_t *choptin, Foption_t &fitOption)
4684{
4686 return 1;
4687}
4688
4689////////////////////////////////////////////////////////////////////////////////
4690/// Compute Initial values of parameters for a gaussian.
4691
4692void H1InitGaus()
4693{
4694 Double_t allcha, sumx, sumx2, x, val, stddev, mean;
4695 Int_t bin;
4696 const Double_t sqrtpi = 2.506628;
4697
4698 // - Compute mean value and StdDev of the histogram in the given range
4700 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4701 Int_t hxfirst = hFitter->GetXfirst();
4702 Int_t hxlast = hFitter->GetXlast();
4703 Double_t valmax = curHist->GetBinContent(hxfirst);
4704 Double_t binwidx = curHist->GetBinWidth(hxfirst);
4705 allcha = sumx = sumx2 = 0;
4706 for (bin=hxfirst;bin<=hxlast;bin++) {
4707 x = curHist->GetBinCenter(bin);
4708 val = TMath::Abs(curHist->GetBinContent(bin));
4709 if (val > valmax) valmax = val;
4710 sumx += val*x;
4711 sumx2 += val*x*x;
4712 allcha += val;
4713 }
4714 if (allcha == 0) return;
4715 mean = sumx/allcha;
4716 stddev = sumx2/allcha - mean*mean;
4717 if (stddev > 0) stddev = TMath::Sqrt(stddev);
4718 else stddev = 0;
4719 if (stddev == 0) stddev = binwidx*(hxlast-hxfirst+1)/4;
4720 //if the distribution is really gaussian, the best approximation
4721 //is binwidx*allcha/(sqrtpi*stddev)
4722 //However, in case of non-gaussian tails, this underestimates
4723 //the normalisation constant. In this case the maximum value
4724 //is a better approximation.
4725 //We take the average of both quantities
4726 Double_t constant = 0.5*(valmax+binwidx*allcha/(sqrtpi*stddev));
4727
4728 //In case the mean value is outside the histo limits and
4729 //the StdDev is bigger than the range, we take
4730 // mean = center of bins
4731 // stddev = half range
4732 Double_t xmin = curHist->GetXaxis()->GetXmin();
4733 Double_t xmax = curHist->GetXaxis()->GetXmax();
4734 if ((mean < xmin || mean > xmax) && stddev > (xmax-xmin)) {
4735 mean = 0.5*(xmax+xmin);
4736 stddev = 0.5*(xmax-xmin);
4737 }
4738 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4739 f1->SetParameter(0,constant);
4740 f1->SetParameter(1,mean);
4741 f1->SetParameter(2,stddev);
4742 f1->SetParLimits(2,0,10*stddev);
4743}
4744
4745////////////////////////////////////////////////////////////////////////////////
4746/// Compute Initial values of parameters for an exponential.
4747
4748void H1InitExpo()
4749{
4750 Double_t constant, slope;
4751 Int_t ifail;
4753 Int_t hxfirst = hFitter->GetXfirst();
4754 Int_t hxlast = hFitter->GetXlast();
4755 Int_t nchanx = hxlast - hxfirst + 1;
4756
4757 H1LeastSquareLinearFit(-nchanx, constant, slope, ifail);
4758
4759 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4760 f1->SetParameter(0,constant);
4761 f1->SetParameter(1,slope);
4762
4763}
4764
4765////////////////////////////////////////////////////////////////////////////////
4766/// Compute Initial values of parameters for a polynom.
4767
4768void H1InitPolynom()
4769{
4770 Double_t fitpar[25];
4771
4773 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4774 Int_t hxfirst = hFitter->GetXfirst();
4775 Int_t hxlast = hFitter->GetXlast();
4776 Int_t nchanx = hxlast - hxfirst + 1;
4777 Int_t npar = f1->GetNpar();
4778
4779 if (nchanx <=1 || npar == 1) {
4780 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4781 fitpar[0] = curHist->GetSumOfWeights()/Double_t(nchanx);
4782 } else {
4783 H1LeastSquareFit( nchanx, npar, fitpar);
4784 }
4785 for (Int_t i=0;i<npar;i++) f1->SetParameter(i, fitpar[i]);
4786}
4787
4788////////////////////////////////////////////////////////////////////////////////
4789/// Least squares lpolynomial fitting without weights.
4790///
4791/// \param[in] n number of points to fit
4792/// \param[in] m number of parameters
4793/// \param[in] a array of parameters
4794///
4795/// based on CERNLIB routine LSQ: Translated to C++ by Rene Brun
4796/// (E.Keil. revised by B.Schorr, 23.10.1981.)
4797
4799{
4800 const Double_t zero = 0.;
4801 const Double_t one = 1.;
4802 const Int_t idim = 20;
4803
4804 Double_t b[400] /* was [20][20] */;
4805 Int_t i, k, l, ifail;
4806 Double_t power;
4807 Double_t da[20], xk, yk;
4808
4809 if (m <= 2) {
4810 H1LeastSquareLinearFit(n, a[0], a[1], ifail);
4811 return;
4812 }
4813 if (m > idim || m > n) return;
4814 b[0] = Double_t(n);
4815 da[0] = zero;
4816 for (l = 2; l <= m; ++l) {
4817 b[l-1] = zero;
4818 b[m + l*20 - 21] = zero;
4819 da[l-1] = zero;
4820 }
4822 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4823 Int_t hxfirst = hFitter->GetXfirst();
4824 Int_t hxlast = hFitter->GetXlast();
4825 for (k = hxfirst; k <= hxlast; ++k) {
4826 xk = curHist->GetBinCenter(k);
4827 yk = curHist->GetBinContent(k);
4828 power = one;
4829 da[0] += yk;
4830 for (l = 2; l <= m; ++l) {
4831 power *= xk;
4832 b[l-1] += power;
4833 da[l-1] += power*yk;
4834 }
4835 for (l = 2; l <= m; ++l) {
4836 power *= xk;
4837 b[m + l*20 - 21] += power;
4838 }
4839 }
4840 for (i = 3; i <= m; ++i) {
4841 for (k = i; k <= m; ++k) {
4842 b[k - 1 + (i-1)*20 - 21] = b[k + (i-2)*20 - 21];
4843 }
4844 }
4845 H1LeastSquareSeqnd(m, b, idim, ifail, 1, da);
4846
4847 for (i=0; i<m; ++i) a[i] = da[i];
4848
4849}
4850
4851////////////////////////////////////////////////////////////////////////////////
4852/// Least square linear fit without weights.
4853///
4854/// extracted from CERNLIB LLSQ: Translated to C++ by Rene Brun
4855/// (added to LSQ by B. Schorr, 15.02.1982.)
4856
4857void H1LeastSquareLinearFit(Int_t ndata, Double_t &a0, Double_t &a1, Int_t &ifail)
4858{
4859 Double_t xbar, ybar, x2bar;
4860 Int_t i, n;
4861 Double_t xybar;
4862 Double_t fn, xk, yk;
4863 Double_t det;
4864
4865 n = TMath::Abs(ndata);
4866 ifail = -2;
4867 xbar = ybar = x2bar = xybar = 0;
4869 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4870 Int_t hxfirst = hFitter->GetXfirst();
4871 Int_t hxlast = hFitter->GetXlast();
4872 for (i = hxfirst; i <= hxlast; ++i) {
4873 xk = curHist->GetBinCenter(i);
4874 yk = curHist->GetBinContent(i);
4875 if (ndata < 0) {
4876 if (yk <= 0) yk = 1e-9;
4877 yk = TMath::Log(yk);
4878 }
4879 xbar += xk;
4880 ybar += yk;
4881 x2bar += xk*xk;
4882 xybar += xk*yk;
4883 }
4884 fn = Double_t(n);
4885 det = fn*x2bar - xbar*xbar;
4886 ifail = -1;
4887 if (det <= 0) {
4888 a0 = ybar/fn;
4889 a1 = 0;
4890 return;
4891 }
4892 ifail = 0;
4893 a0 = (x2bar*ybar - xbar*xybar) / det;
4894 a1 = (fn*xybar - xbar*ybar) / det;
4895
4896}
4897
4898////////////////////////////////////////////////////////////////////////////////
4899/// Extracted from CERN Program library routine DSEQN.
4900///
4901/// Translated to C++ by Rene Brun
4902
4903void H1LeastSquareSeqnd(Int_t n, Double_t *a, Int_t idim, Int_t &ifail, Int_t k, Double_t *b)
4904{
4905 Int_t a_dim1, a_offset, b_dim1, b_offset;
4906 Int_t nmjp1, i, j, l;
4907 Int_t im1, jp1, nm1, nmi;
4908 Double_t s1, s21, s22;
4909 const Double_t one = 1.;
4910
4911 /* Parameter adjustments */
4912 b_dim1 = idim;
4913 b_offset = b_dim1 + 1;
4914 b -= b_offset;
4915 a_dim1 = idim;
4916 a_offset = a_dim1 + 1;
4917 a -= a_offset;
4918
4919 if (idim < n) return;
4920
4921 ifail = 0;
4922 for (j = 1; j <= n; ++j) {
4923 if (a[j + j*a_dim1] <= 0) { ifail = -1; return; }
4924 a[j + j*a_dim1] = one / a[j + j*a_dim1];
4925 if (j == n) continue;
4926 jp1 = j + 1;
4927 for (l = jp1; l <= n; ++l) {
4928 a[j + l*a_dim1] = a[j + j*a_dim1] * a[l + j*a_dim1];
4929 s1 = -a[l + (j+1)*a_dim1];
4930 for (i = 1; i <= j; ++i) { s1 = a[l + i*a_dim1] * a[i + (j+1)*a_dim1] + s1; }
4931 a[l + (j+1)*a_dim1] = -s1;
4932 }
4933 }
4934 if (k <= 0) return;
4935
4936 for (l = 1; l <= k; ++l) {
4937 b[l*b_dim1 + 1] = a[a_dim1 + 1]*b[l*b_dim1 + 1];
4938 }
4939 if (n == 1) return;
4940 for (l = 1; l <= k; ++l) {
4941 for (i = 2; i <= n; ++i) {
4942 im1 = i - 1;
4943 s21 = -b[i + l*b_dim1];
4944 for (j = 1; j <= im1; ++j) {
4945 s21 = a[i + j*a_dim1]*b[j + l*b_dim1] + s21;
4946 }
4947 b[i + l*b_dim1] = -a[i + i*a_dim1]*s21;
4948 }
4949 nm1 = n - 1;
4950 for (i = 1; i <= nm1; ++i) {
4951 nmi = n - i;
4952 s22 = -b[nmi + l*b_dim1];
4953 for (j = 1; j <= i; ++j) {
4954 nmjp1 = n - j + 1;
4955 s22 = a[nmi + nmjp1*a_dim1]*b[nmjp1 + l*b_dim1] + s22;
4956 }
4957 b[nmi + l*b_dim1] = -s22;
4958 }
4959 }
4960}
4961
4962////////////////////////////////////////////////////////////////////////////////
4963/// Return Global bin number corresponding to binx,y,z.
4964///
4965/// 2-D and 3-D histograms are represented with a one dimensional
4966/// structure.
4967/// This has the advantage that all existing functions, such as
4968/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
4969///
4970/// In case of a TH1x, returns binx directly.
4971/// see TH1::GetBinXYZ for the inverse transformation.
4972///
4973/// Convention for numbering bins
4974///
4975/// For all histogram types: nbins, xlow, xup
4976///
4977/// - bin = 0; underflow bin
4978/// - bin = 1; first bin with low-edge xlow INCLUDED
4979/// - bin = nbins; last bin with upper-edge xup EXCLUDED
4980/// - bin = nbins+1; overflow bin
4981///
4982/// In case of 2-D or 3-D histograms, a "global bin" number is defined.
4983/// For example, assuming a 3-D histogram with binx,biny,binz, the function
4984///
4985/// ~~~ {.cpp}
4986/// Int_t bin = h->GetBin(binx,biny,binz);
4987/// ~~~
4988///
4989/// returns a global/linearized bin number. This global bin is useful
4990/// to access the bin information independently of the dimension.
4991
4992Int_t TH1::GetBin(Int_t binx, Int_t, Int_t) const
4993{
4994 Int_t ofx = fXaxis.GetNbins() + 1; // overflow bin
4995 if (binx < 0) binx = 0;
4996 if (binx > ofx) binx = ofx;
4997
4998 return binx;
4999}
5000
5001////////////////////////////////////////////////////////////////////////////////
5002/// Return binx, biny, binz corresponding to the global bin number globalbin
5003/// see TH1::GetBin function above
5004
5005void TH1::GetBinXYZ(Int_t binglobal, Int_t &binx, Int_t &biny, Int_t &binz) const
5006{
5007 Int_t nx = fXaxis.GetNbins()+2;
5008 Int_t ny = fYaxis.GetNbins()+2;
5009
5010 if (GetDimension() == 1) {
5011 binx = binglobal%nx;
5012 biny = 0;
5013 binz = 0;
5014 return;
5015 }
5016 if (GetDimension() == 2) {
5017 binx = binglobal%nx;
5018 biny = ((binglobal-binx)/nx)%ny;
5019 binz = 0;
5020 return;
5021 }
5022 if (GetDimension() == 3) {
5023 binx = binglobal%nx;
5024 biny = ((binglobal-binx)/nx)%ny;
5025 binz = ((binglobal-binx)/nx -biny)/ny;
5026 }
5027}
5028
5029////////////////////////////////////////////////////////////////////////////////
5030/// Return a random number distributed according the histogram bin contents.
5031/// This function checks if the bins integral exists. If not, the integral
5032/// is evaluated, normalized to one.
5033///
5034/// @param rng (optional) Random number generator pointer used (default is gRandom)
5035///
5036/// The integral is automatically recomputed if the number of entries
5037/// is not the same then when the integral was computed.
5038/// NB Only valid for 1-d histograms. Use GetRandom2 or 3 otherwise.
5039/// If the histogram has a bin with negative content a NaN is returned
5040
5041Double_t TH1::GetRandom(TRandom * rng) const
5042{
5043 if (fDimension > 1) {
5044 Error("GetRandom","Function only valid for 1-d histograms");
5045 return 0;
5046 }
5047 Int_t nbinsx = GetNbinsX();
5048 Double_t integral = 0;
5049 // compute integral checking that all bins have positive content (see ROOT-5894)
5050 if (fIntegral) {
5051 if (fIntegral[nbinsx+1] != fEntries) integral = ((TH1*)this)->ComputeIntegral(true);
5052 else integral = fIntegral[nbinsx];
5053 } else {
5054 integral = ((TH1*)this)->ComputeIntegral(true);
5055 }
5056 if (integral == 0) return 0;
5057 // return a NaN in case some bins have negative content
5058 if (integral == TMath::QuietNaN() ) return TMath::QuietNaN();
5059
5060 Double_t r1 = (rng) ? rng->Rndm() : gRandom->Rndm();
5061 Int_t ibin = TMath::BinarySearch(nbinsx,fIntegral,r1);
5062 Double_t x = GetBinLowEdge(ibin+1);
5063 if (r1 > fIntegral[ibin]) x +=
5064 GetBinWidth(ibin+1)*(r1-fIntegral[ibin])/(fIntegral[ibin+1] - fIntegral[ibin]);
5065 return x;
5066}
5067
5068////////////////////////////////////////////////////////////////////////////////
5069/// Return content of bin number bin.
5070///
5071/// Implemented in TH1C,S,F,D
5072///
5073/// Convention for numbering bins
5074///
5075/// For all histogram types: nbins, xlow, xup
5076///
5077/// - bin = 0; underflow bin
5078/// - bin = 1; first bin with low-edge xlow INCLUDED
5079/// - bin = nbins; last bin with upper-edge xup EXCLUDED
5080/// - bin = nbins+1; overflow bin
5081///
5082/// In case of 2-D or 3-D histograms, a "global bin" number is defined.
5083/// For example, assuming a 3-D histogram with binx,biny,binz, the function
5084///
5085/// ~~~ {.cpp}
5086/// Int_t bin = h->GetBin(binx,biny,binz);
5087/// ~~~
5088///
5089/// returns a global/linearized bin number. This global bin is useful
5090/// to access the bin information independently of the dimension.
5091
5093{
5094 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
5095 if (bin < 0) bin = 0;
5096 if (bin >= fNcells) bin = fNcells-1;
5097
5098 return RetrieveBinContent(bin);
5099}
5100
5101////////////////////////////////////////////////////////////////////////////////
5102/// Compute first binx in the range [firstx,lastx] for which
5103/// diff = abs(bin_content-c) <= maxdiff
5104///
5105/// In case several bins in the specified range with diff=0 are found
5106/// the first bin found is returned in binx.
5107/// In case several bins in the specified range satisfy diff <=maxdiff
5108/// the bin with the smallest difference is returned in binx.
5109/// In all cases the function returns the smallest difference.
5110///
5111/// NOTE1: if firstx <= 0, firstx is set to bin 1
5112/// if (lastx < firstx then firstx is set to the number of bins
5113/// ie if firstx=0 and lastx=0 (default) the search is on all bins.
5114///
5115/// NOTE2: if maxdiff=0 (default), the first bin with content=c is returned.
5116
5117Double_t TH1::GetBinWithContent(Double_t c, Int_t &binx, Int_t firstx, Int_t lastx,Double_t maxdiff) const
5118{
5119 if (fDimension > 1) {
5120 binx = 0;
5121 Error("GetBinWithContent","function is only valid for 1-D histograms");
5122 return 0;
5123 }
5124
5125 if (fBuffer) ((TH1*)this)->BufferEmpty();
5126
5127 if (firstx <= 0) firstx = 1;
5128 if (lastx < firstx) lastx = fXaxis.GetNbins();
5129 Int_t binminx = 0;
5130 Double_t diff, curmax = 1.e240;
5131 for (Int_t i=firstx;i<=lastx;i++) {
5132 diff = TMath::Abs(RetrieveBinContent(i)-c);
5133 if (diff <= 0) {binx = i; return diff;}
5134 if (diff < curmax && diff <= maxdiff) {curmax = diff, binminx=i;}
5135 }
5136 binx = binminx;
5137 return curmax;
5138}
5139
5140////////////////////////////////////////////////////////////////////////////////
5141/// Given a point x, approximates the value via linear interpolation
5142/// based on the two nearest bin centers
5143///
5144/// Andy Mastbaum 10/21/08
5145
5147{
5148 if (fBuffer) ((TH1*)this)->BufferEmpty();
5149
5150 Int_t xbin = fXaxis.FindFixBin(x);
5151 Double_t x0,x1,y0,y1;
5152
5153 if(x<=GetBinCenter(1)) {
5154 return RetrieveBinContent(1);
5155 } else if(x>=GetBinCenter(GetNbinsX())) {
5156 return RetrieveBinContent(GetNbinsX());
5157 } else {
5158 if(x<=GetBinCenter(xbin)) {
5159 y0 = RetrieveBinContent(xbin-1);
5160 x0 = GetBinCenter(xbin-1);
5161 y1 = RetrieveBinContent(xbin);
5162 x1 = GetBinCenter(xbin);
5163 } else {
5164 y0 = RetrieveBinContent(xbin);
5165 x0 = GetBinCenter(xbin);
5166 y1 = RetrieveBinContent(xbin+1);
5167 x1 = GetBinCenter(xbin+1);
5168 }
5169 return y0 + (x-x0)*((y1-y0)/(x1-x0));
5170 }
5171}
5172
5173////////////////////////////////////////////////////////////////////////////////
5174/// 2d Interpolation. Not yet implemented.
5175
5177{
5178 Error("Interpolate","This function must be called with 1 argument for a TH1");
5179 return 0;
5180}
5181
5182////////////////////////////////////////////////////////////////////////////////
5183/// 3d Interpolation. Not yet implemented.
5184
5186{
5187 Error("Interpolate","This function must be called with 1 argument for a TH1&