Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
TH1.cxx
Go to the documentation of this file.
1// @(#)root/hist:$Id$
2// Author: Rene Brun 26/12/94
3
4/*************************************************************************
5 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12#include <array>
13#include <cctype>
14#include <climits>
15#include <cmath>
16#include <cstdio>
17#include <cstdlib>
18#include <cstring>
19#include <iostream>
20#include <memory>
21#include <sstream>
22#include <fstream>
23#include <limits>
24#include <iomanip>
25
26#include "TROOT.h"
27#include "TBuffer.h"
28#include "TEnv.h"
29#include "TClass.h"
30#include "TMath.h"
31#include "THashList.h"
32#include "TH1.h"
33#include "TH2.h"
34#include "TH3.h"
35#include "TF2.h"
36#include "TF3.h"
37#include "TPluginManager.h"
38#include "TVirtualPad.h"
39#include "TRandom.h"
40#include "TVirtualFitter.h"
41#include "THLimitsFinder.h"
42#include "TProfile.h"
43#include "TStyle.h"
44#include "TVectorF.h"
45#include "TVectorD.h"
46#include "TBrowser.h"
47#include "TError.h"
48#include "TVirtualHistPainter.h"
49#include "TVirtualFFT.h"
50#include "TVirtualPaveStats.h"
51
52#include "HFitInterface.h"
53#include "Fit/DataRange.h"
54#include "Fit/BinData.h"
55#include "Math/GoFTest.h"
58
59#include "TH1Merger.h"
60
61/** \addtogroup Histograms
62@{
63\class TH1C
64\brief 1-D histogram with a byte per channel (see TH1 documentation)
65\class TH1S
66\brief 1-D histogram with a short per channel (see TH1 documentation)
67\class TH1I
68\brief 1-D histogram with an int per channel (see TH1 documentation)
69\class TH1L
70\brief 1-D histogram with a long64 per channel (see TH1 documentation)
71\class TH1F
72\brief 1-D histogram with a float per channel (see TH1 documentation)
73\class TH1D
74\brief 1-D histogram with a double per channel (see TH1 documentation)
75@}
76*/
77
78/** \class TH1
79 \ingroup Histograms
80TH1 is the base class of all histogram classes in %ROOT.
81
82It provides the common interface for operations such as binning, filling, drawing, which
83will be detailed below.
84
85-# [Creating histograms](\ref creating-histograms)
86 - [Labelling axes](\ref labelling-axis)
87-# [Binning](\ref binning)
88 - [Fix or variable bin size](\ref fix-var)
89 - [Convention for numbering bins](\ref convention)
90 - [Alphanumeric Bin Labels](\ref alpha)
91 - [Histograms with automatic bins](\ref auto-bin)
92 - [Rebinning](\ref rebinning)
93-# [Filling histograms](\ref filling-histograms)
94 - [Associated errors](\ref associated-errors)
95 - [Associated functions](\ref associated-functions)
96 - [Projections of histograms](\ref prof-hist)
97 - [Random Numbers and histograms](\ref random-numbers)
98 - [Making a copy of a histogram](\ref making-a-copy)
99 - [Normalizing histograms](\ref normalizing)
100-# [Drawing histograms](\ref drawing-histograms)
101 - [Setting Drawing histogram contour levels (2-D hists only)](\ref cont-level)
102 - [Setting histogram graphics attributes](\ref graph-att)
103 - [Customising how axes are drawn](\ref axis-drawing)
104-# [Fitting histograms](\ref fitting-histograms)
105-# [Saving/reading histograms to/from a ROOT file](\ref saving-histograms)
106-# [Operations on histograms](\ref operations-on-histograms)
107-# [Miscellaneous operations](\ref misc)
108
109ROOT supports the following histogram types:
110
111 - 1-D histograms:
112 - TH1C : histograms with one byte per channel. Maximum bin content = 127
113 - TH1S : histograms with one short per channel. Maximum bin content = 32767
114 - TH1I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
115 - TH1L : histograms with one long64 per channel. Maximum bin content = LLONG_MAX (\ref llongmax "**")
116 - TH1F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216 (\ref floatmax "***")
117 - TH1D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992 (\ref doublemax "****")
118 - 2-D histograms:
119 - TH2C : histograms with one byte per channel. Maximum bin content = 127
120 - TH2S : histograms with one short per channel. Maximum bin content = 32767
121 - TH2I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
122 - TH2L : histograms with one long64 per channel. Maximum bin content = LLONG_MAX (\ref llongmax "**")
123 - TH2F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216 (\ref floatmax "***")
124 - TH2D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992 (\ref doublemax "****")
125 - 3-D histograms:
126 - TH3C : histograms with one byte per channel. Maximum bin content = 127
127 - TH3S : histograms with one short per channel. Maximum bin content = 32767
128 - TH3I : histograms with one int per channel. Maximum bin content = INT_MAX (\ref intmax "*")
129 - TH3L : histograms with one long64 per channel. Maximum bin content = LLONG_MAX (\ref llongmax "**")
130 - TH3F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216 (\ref floatmax "***")
131 - TH3D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992 (\ref doublemax "****")
132 - Profile histograms: See classes TProfile, TProfile2D and TProfile3D.
133 Profile histograms are used to display the mean value of Y and its standard deviation
134 for each bin in X. Profile histograms are in many cases an elegant
135 replacement of two-dimensional histograms : the inter-relation of two
136 measured quantities X and Y can always be visualized by a two-dimensional
137 histogram or scatter-plot; If Y is an unknown (but single-valued)
138 approximate function of X, this function is displayed by a profile
139 histogram with much better precision than by a scatter-plot.
140
141<sup>
142\anchor intmax (*) INT_MAX = 2147483647 is the [maximum value for a variable of type int.](https://docs.microsoft.com/en-us/cpp/c-language/cpp-integer-limits)<br>
143\anchor llongmax (**) LLONG_MAX = 9223372036854775807 is the [maximum value for a variable of type long64.](https://docs.microsoft.com/en-us/cpp/c-language/cpp-integer-limits)<br>
144\anchor floatmax (***) 2^24 = 16777216 is the [maximum integer that can be properly represented by a float32 with 23-bit mantissa.](https://stackoverflow.com/a/3793950/7471760)<br>
145\anchor doublemax (****) 2^53 = 9007199254740992 is the [maximum integer that can be properly represented by a double64 with 52-bit mantissa.](https://stackoverflow.com/a/3793950/7471760)
146</sup>
147
148The inheritance hierarchy looks as follows:
149
150\image html classTH1__inherit__graph_org.svg width=100%
151
152\anchor creating-histograms
153## Creating histograms
154
155Histograms are created by invoking one of the constructors, e.g.
156~~~ {.cpp}
157 TH1F *h1 = new TH1F("h1", "h1 title", 100, 0, 4.4);
158 TH2F *h2 = new TH2F("h2", "h2 title", 40, 0, 4, 30, -3, 3);
159~~~
160Histograms may also be created by:
161
162 - calling the Clone() function, see below
163 - making a projection from a 2-D or 3-D histogram, see below
164 - reading a histogram from a file
165
166 When a histogram is created, a reference to it is automatically added
167 to the list of in-memory objects for the current file or directory.
168 Then the pointer to this histogram in the current directory can be found
169 by its name, doing:
170~~~ {.cpp}
171 TH1F *h1 = (TH1F*)gDirectory->FindObject(name);
172~~~
173
174 This default behaviour can be changed by:
175~~~ {.cpp}
176 h->SetDirectory(nullptr); // for the current histogram h
177 TH1::AddDirectory(kFALSE); // sets a global switch disabling the referencing
178~~~
179 When the histogram is deleted, the reference to it is removed from
180 the list of objects in memory.
181 When a file is closed, all histograms in memory associated with this file
182 are automatically deleted.
183
184\anchor labelling-axis
185### Labelling axes
186
187 Axis titles can be specified in the title argument of the constructor.
188 They must be separated by ";":
189~~~ {.cpp}
190 TH1F* h=new TH1F("h", "Histogram title;X Axis;Y Axis", 100, 0, 1);
191~~~
192 The histogram title and the axis titles can be any TLatex string, and
193 are persisted if a histogram is written to a file.
194
195 Any title can be omitted:
196~~~ {.cpp}
197 TH1F* h=new TH1F("h", "Histogram title;;Y Axis", 100, 0, 1);
198 TH1F* h=new TH1F("h", ";;Y Axis", 100, 0, 1);
199~~~
200 The method SetTitle() has the same syntax:
201~~~ {.cpp}
202 h->SetTitle("Histogram title;Another X title Axis");
203~~~
204Alternatively, the title of each axis can be set directly:
205~~~ {.cpp}
206 h->GetXaxis()->SetTitle("X axis title");
207 h->GetYaxis()->SetTitle("Y axis title");
208~~~
209For bin labels see \ref binning.
210
211\anchor binning
212## Binning
213
214\anchor fix-var
215### Fix or variable bin size
216
217 All histogram types support either fix or variable bin sizes.
218 2-D histograms may have fix size bins along X and variable size bins
219 along Y or vice-versa. The functions to fill, manipulate, draw or access
220 histograms are identical in both cases.
221
222 Each histogram always contains 3 axis objects of type TAxis: fXaxis, fYaxis and fZaxis.
223 To access the axis parameters, use:
224~~~ {.cpp}
225 TAxis *xaxis = h->GetXaxis(); etc.
226 Double_t binCenter = xaxis->GetBinCenter(bin), etc.
227~~~
228 See class TAxis for a description of all the access functions.
229 The axis range is always stored internally in double precision.
230
231\anchor convention
232### Convention for numbering bins
233
234 For all histogram types: nbins, xlow, xup
235~~~ {.cpp}
236 bin = 0; underflow bin
237 bin = 1; first bin with low-edge xlow INCLUDED
238 bin = nbins; last bin with upper-edge xup EXCLUDED
239 bin = nbins+1; overflow bin
240~~~
241 In case of 2-D or 3-D histograms, a "global bin" number is defined.
242 For example, assuming a 3-D histogram with (binx, biny, binz), the function
243~~~ {.cpp}
244 Int_t gbin = h->GetBin(binx, biny, binz);
245~~~
246 returns a global/linearized gbin number. This global gbin is useful
247 to access the bin content/error information independently of the dimension.
248 Note that to access the information other than bin content and errors
249 one should use the TAxis object directly with e.g.:
250~~~ {.cpp}
251 Double_t xcenter = h3->GetZaxis()->GetBinCenter(27);
252~~~
253 returns the center along z of bin number 27 (not the global bin)
254 in the 3-D histogram h3.
255
256\anchor alpha
257### Alphanumeric Bin Labels
258
259 By default, a histogram axis is drawn with its numeric bin labels.
260 One can specify alphanumeric labels instead with:
261
262 - call TAxis::SetBinLabel(bin, label);
263 This can always be done before or after filling.
264 When the histogram is drawn, bin labels will be automatically drawn.
265 See examples labels1.C and labels2.C
266 - call to a Fill function with one of the arguments being a string, e.g.
267~~~ {.cpp}
268 hist1->Fill(somename, weight);
269 hist2->Fill(x, somename, weight);
270 hist2->Fill(somename, y, weight);
271 hist2->Fill(somenamex, somenamey, weight);
272~~~
273 See examples hlabels1.C and hlabels2.C
274 - via TTree::Draw. see for example cernstaff.C
275~~~ {.cpp}
276 tree.Draw("Nation::Division");
277~~~
278 where "Nation" and "Division" are two branches of a Tree.
279
280When using the options 2 or 3 above, the labels are automatically
281 added to the list (THashList) of labels for a given axis.
282 By default, an axis is drawn with the order of bins corresponding
283 to the filling sequence. It is possible to reorder the axis
284
285 - alphabetically
286 - by increasing or decreasing values
287
288 The reordering can be triggered via the TAxis context menu by selecting
289 the menu item "LabelsOption" or by calling directly
290 TH1::LabelsOption(option, axis) where
291
292 - axis may be "X", "Y" or "Z"
293 - option may be:
294 - "a" sort by alphabetic order
295 - ">" sort by decreasing values
296 - "<" sort by increasing values
297 - "h" draw labels horizontal
298 - "v" draw labels vertical
299 - "u" draw labels up (end of label right adjusted)
300 - "d" draw labels down (start of label left adjusted)
301
302 When using the option 2 above, new labels are added by doubling the current
303 number of bins in case one label does not exist yet.
304 When the Filling is terminated, it is possible to trim the number
305 of bins to match the number of active labels by calling
306~~~ {.cpp}
307 TH1::LabelsDeflate(axis) with axis = "X", "Y" or "Z"
308~~~
309 This operation is automatic when using TTree::Draw.
310 Once bin labels have been created, they become persistent if the histogram
311 is written to a file or when generating the C++ code via SavePrimitive.
312
313\anchor auto-bin
314### Histograms with automatic bins
315
316 When a histogram is created with an axis lower limit greater or equal
317 to its upper limit, the SetBuffer is automatically called with an
318 argument fBufferSize equal to fgBufferSize (default value=1000).
319 fgBufferSize may be reset via the static function TH1::SetDefaultBufferSize.
320 The axis limits will be automatically computed when the buffer will
321 be full or when the function BufferEmpty is called.
322
323\anchor rebinning
324### Rebinning
325
326 At any time, a histogram can be rebinned via TH1::Rebin. This function
327 returns a new histogram with the rebinned contents.
328 If bin errors were stored, they are recomputed during the rebinning.
329
330
331\anchor filling-histograms
332## Filling histograms
333
334 A histogram is typically filled with statements like:
335~~~ {.cpp}
336 h1->Fill(x);
337 h1->Fill(x, w); //fill with weight
338 h2->Fill(x, y)
339 h2->Fill(x, y, w)
340 h3->Fill(x, y, z)
341 h3->Fill(x, y, z, w)
342~~~
343 or via one of the Fill functions accepting names described above.
344 The Fill functions compute the bin number corresponding to the given
345 x, y or z argument and increment this bin by the given weight.
346 The Fill functions return the bin number for 1-D histograms or global
347 bin number for 2-D and 3-D histograms.
348 If TH1::Sumw2 has been called before filling, the sum of squares of
349 weights is also stored.
350 One can also increment directly a bin number via TH1::AddBinContent
351 or replace the existing content via TH1::SetBinContent. Passing an
352 out-of-range bin to TH1::AddBinContent leads to undefined behavior.
353 To access the bin content of a given bin, do:
354~~~ {.cpp}
355 Double_t binContent = h->GetBinContent(bin);
356~~~
357
358 By default, the bin number is computed using the current axis ranges.
359 If the automatic binning option has been set via
360~~~ {.cpp}
361 h->SetCanExtend(TH1::kAllAxes);
362~~~
363 then, the Fill Function will automatically extend the axis range to
364 accommodate the new value specified in the Fill argument. The method
365 used is to double the bin size until the new value fits in the range,
366 merging bins two by two. This automatic binning options is extensively
367 used by the TTree::Draw function when histogramming Tree variables
368 with an unknown range.
369 This automatic binning option is supported for 1-D, 2-D and 3-D histograms.
370
371 During filling, some statistics parameters are incremented to compute
372 the mean value and Root Mean Square with the maximum precision.
373
374 In case of histograms of type TH1C, TH1S, TH2C, TH2S, TH3C, TH3S
375 a check is made that the bin contents do not exceed the maximum positive
376 capacity (127 or 32767). Histograms of all types may have positive
377 or/and negative bin contents.
378
379\anchor associated-errors
380### Associated errors
381 By default, for each bin, the sum of weights is computed at fill time.
382 One can also call TH1::Sumw2 to force the storage and computation
383 of the sum of the square of weights per bin.
384 If Sumw2 has been called, the error per bin is computed as the
385 sqrt(sum of squares of weights), otherwise the error is set equal
386 to the sqrt(bin content).
387 To return the error for a given bin number, do:
388~~~ {.cpp}
389 Double_t error = h->GetBinError(bin);
390~~~
391
392\anchor associated-functions
393### Associated functions
394 One or more objects (typically a TF1*) can be added to the list
395 of functions (fFunctions) associated to each histogram.
396 When TH1::Fit is invoked, the fitted function is added to this list.
397 Given a histogram (or TGraph) `h`, one can retrieve an associated function
398 with:
399~~~ {.cpp}
400 TF1 *myfunc = h->GetFunction("myfunc");
401~~~
402
403
404\anchor operations-on-histograms
405## Operations on histograms
406
407 Many types of operations are supported on histograms or between histograms
408
409 - Addition of a histogram to the current histogram.
410 - Additions of two histograms with coefficients and storage into the current
411 histogram.
412 - Multiplications and Divisions are supported in the same way as additions.
413 - The Add, Divide and Multiply functions also exist to add, divide or multiply
414 a histogram by a function.
415
416 If a histogram has associated error bars (TH1::Sumw2 has been called),
417 the resulting error bars are also computed assuming independent histograms.
418 In case of divisions, Binomial errors are also supported.
419 One can mark a histogram to be an "average" histogram by setting its bit kIsAverage via
420 myhist.SetBit(TH1::kIsAverage);
421 When adding (see TH1::Add) average histograms, the histograms are averaged and not summed.
422
423
424\anchor prof-hist
425### Projections of histograms
426
427 One can:
428
429 - make a 1-D projection of a 2-D histogram or Profile
430 see functions TH2::ProjectionX,Y, TH2::ProfileX,Y, TProfile::ProjectionX
431 - make a 1-D, 2-D or profile out of a 3-D histogram
432 see functions TH3::ProjectionZ, TH3::Project3D.
433
434 One can fit these projections via:
435~~~ {.cpp}
436 TH2::FitSlicesX,Y, TH3::FitSlicesZ.
437~~~
438
439\anchor random-numbers
440### Random Numbers and histograms
441
442 TH1::FillRandom can be used to randomly fill a histogram using
443 the contents of an existing TF1 function or another
444 TH1 histogram (for all dimensions).
445 For example, the following two statements create and fill a histogram
446 10000 times with a default gaussian distribution of mean 0 and sigma 1:
447~~~ {.cpp}
448 TH1F h1("h1", "histo from a gaussian", 100, -3, 3);
449 h1.FillRandom("gaus", 10000);
450~~~
451 TH1::GetRandom can be used to return a random number distributed
452 according to the contents of a histogram.
453
454\anchor making-a-copy
455### Making a copy of a histogram
456 Like for any other ROOT object derived from TObject, one can use
457 the Clone() function. This makes an identical copy of the original
458 histogram including all associated errors and functions, e.g.:
459~~~ {.cpp}
460 TH1F *hnew = (TH1F*)h->Clone("hnew");
461~~~
462
463\anchor normalizing
464### Normalizing histograms
465
466 One can scale a histogram such that the bins integral is equal to
467 the normalization parameter via TH1::Scale(Double_t norm), where norm
468 is the desired normalization divided by the integral of the histogram.
471\anchor drawing-histograms
472## Drawing histograms
473
474 Histograms are drawn via the THistPainter class. Each histogram has
475 a pointer to its own painter (to be usable in a multithreaded program).
476 Many drawing options are supported.
477 See THistPainter::Paint() for more details.
478
479 The same histogram can be drawn with different options in different pads.
480 When a histogram drawn in a pad is deleted, the histogram is
481 automatically removed from the pad or pads where it was drawn.
482 If a histogram is drawn in a pad, then filled again, the new status
483 of the histogram will be automatically shown in the pad next time
484 the pad is updated. One does not need to redraw the histogram.
485 To draw the current version of a histogram in a pad, one can use
486~~~ {.cpp}
487 h->DrawCopy();
488~~~
489 This makes a clone (see Clone below) of the histogram. Once the clone
490 is drawn, the original histogram may be modified or deleted without
491 affecting the aspect of the clone.
492
493 One can use TH1::SetMaximum() and TH1::SetMinimum() to force a particular
494 value for the maximum or the minimum scale on the plot. (For 1-D
495 histograms this means the y-axis, while for 2-D histograms these
496 functions affect the z-axis).
497
498 TH1::UseCurrentStyle() can be used to change all histogram graphics
499 attributes to correspond to the current selected style.
500 This function must be called for each histogram.
501 In case one reads and draws many histograms from a file, one can force
502 the histograms to inherit automatically the current graphics style
503 by calling before gROOT->ForceStyle().
504
505\anchor cont-level
506### Setting Drawing histogram contour levels (2-D hists only)
507
508 By default contours are automatically generated at equidistant
509 intervals. A default value of 20 levels is used. This can be modified
510 via TH1::SetContour() or TH1::SetContourLevel().
511 the contours level info is used by the drawing options "cont", "surf",
512 and "lego".
513
514\anchor graph-att
515### Setting histogram graphics attributes
517 The histogram classes inherit from the attribute classes:
518 TAttLine, TAttFill, and TAttMarker.
519 See the member functions of these classes for the list of options.
520
521\anchor axis-drawing
522### Customizing how axes are drawn
523
524 Use the functions of TAxis, such as
525~~~ {.cpp}
526 histogram.GetXaxis()->SetTicks("+");
527 histogram.GetYaxis()->SetRangeUser(1., 5.);
528~~~
529
530\anchor fitting-histograms
531## Fitting histograms
532
533 Histograms (1-D, 2-D, 3-D and Profiles) can be fitted with a user
534 specified function or a pre-defined function via TH1::Fit.
535 See TH1::Fit(TF1*, Option_t *, Option_t *, Double_t, Double_t) for the fitting documentation and the possible [fitting options](\ref HFitOpt)
536
537 The FitPanel can also be used for fitting an histogram. See the [FitPanel documentation](https://root.cern/manual/fitting/#using-the-fit-panel).
538
539\anchor saving-histograms
540## Saving/reading histograms to/from a ROOT file
541
542 The following statements create a ROOT file and store a histogram
543 on the file. Because TH1 derives from TNamed, the key identifier on
544 the file is the histogram name:
545~~~ {.cpp}
546 TFile f("histos.root", "new");
547 TH1F h1("hgaus", "histo from a gaussian", 100, -3, 3);
548 h1.FillRandom("gaus", 10000);
549 h1->Write();
550~~~
551 To read this histogram in another Root session, do:
552~~~ {.cpp}
553 TFile f("histos.root");
554 TH1F *h = (TH1F*)f.Get("hgaus");
555~~~
556 One can save all histograms in memory to the file by:
557~~~ {.cpp}
558 file->Write();
559~~~
560
561
562\anchor misc
563## Miscellaneous operations
564
565~~~ {.cpp}
566 TH1::KolmogorovTest(): statistical test of compatibility in shape
567 between two histograms
568 TH1::Smooth() smooths the bin contents of a 1-d histogram
569 TH1::Integral() returns the integral of bin contents in a given bin range
570 TH1::GetMean(int axis) returns the mean value along axis
571 TH1::GetStdDev(int axis) returns the sigma distribution along axis
572 TH1::GetEntries() returns the number of entries
573 TH1::Reset() resets the bin contents and errors of a histogram
574~~~
575 IMPORTANT NOTE: The returned values for GetMean and GetStdDev depend on how the
576 histogram statistics are calculated. By default, if no range has been set, the
577 returned values are the (unbinned) ones calculated at fill time. If a range has been
578 set, however, the values are calculated using the bins in range; THIS IS TRUE EVEN
579 IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset the range.
580 To ensure that the returned values are always those of the binned data stored in the
581 histogram, call TH1::ResetStats. See TH1::GetStats.
582*/
583
584TF1 *gF1=nullptr; //left for back compatibility (use TVirtualFitter::GetUserFunc instead)
585
590
591extern void H1InitGaus();
592extern void H1InitExpo();
593extern void H1InitPolynom();
594extern void H1LeastSquareFit(Int_t n, Int_t m, Double_t *a);
597
598
599////////////////////////////////////////////////////////////////////////////////
600/// Histogram default constructor.
601
603{
604 fDirectory = nullptr;
605 fFunctions = new TList;
606 fNcells = 0;
607 fIntegral = nullptr;
608 fPainter = nullptr;
609 fEntries = 0;
610 fNormFactor = 0;
612 fMaximum = -1111;
613 fMinimum = -1111;
614 fBufferSize = 0;
615 fBuffer = nullptr;
618 fXaxis.SetName("xaxis");
619 fYaxis.SetName("yaxis");
620 fZaxis.SetName("zaxis");
621 fXaxis.SetParent(this);
622 fYaxis.SetParent(this);
623 fZaxis.SetParent(this);
625}
626
627////////////////////////////////////////////////////////////////////////////////
628/// Histogram default destructor.
629
631{
633 return;
634 }
635 delete[] fIntegral;
636 fIntegral = nullptr;
637 delete[] fBuffer;
638 fBuffer = nullptr;
639 if (fFunctions) {
641
643 TObject* obj = nullptr;
644 //special logic to support the case where the same object is
645 //added multiple times in fFunctions.
646 //This case happens when the same object is added with different
647 //drawing modes
648 //In the loop below we must be careful with objects (eg TCutG) that may
649 // have been added to the list of functions of several histograms
650 //and may have been already deleted.
651 while ((obj = fFunctions->First())) {
652 while(fFunctions->Remove(obj)) { }
654 break;
655 }
656 delete obj;
657 obj = nullptr;
658 }
659 delete fFunctions;
660 fFunctions = nullptr;
661 }
662 if (fDirectory) {
663 fDirectory->Remove(this);
664 fDirectory = nullptr;
665 }
666 delete fPainter;
667 fPainter = nullptr;
668}
669
670////////////////////////////////////////////////////////////////////////////////
671/// Constructor for fix bin size histograms.
672/// Creates the main histogram structure.
673///
674/// \param[in] name name of histogram (avoid blanks)
675/// \param[in] title histogram title.
676/// If title is of the form `stringt;stringx;stringy;stringz`,
677/// the histogram title is set to `stringt`,
678/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
679/// \param[in] nbins number of bins
680/// \param[in] xlow low edge of first bin
681/// \param[in] xup upper edge of last bin (not included in last bin)
682
683
684TH1::TH1(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
685 :TNamed(name,title)
686{
687 Build();
688 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
689 fXaxis.Set(nbins,xlow,xup);
690 fNcells = fXaxis.GetNbins()+2;
691}
692
693////////////////////////////////////////////////////////////////////////////////
694/// Constructor for variable bin size histograms using an input array of type float.
695/// Creates the main histogram structure.
696///
697/// \param[in] name name of histogram (avoid blanks)
698/// \param[in] title histogram title.
699/// If title is of the form `stringt;stringx;stringy;stringz`
700/// the histogram title is set to `stringt`,
701/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
702/// \param[in] nbins number of bins
703/// \param[in] xbins array of low-edges for each bin.
704/// This is an array of type float and size nbins+1
705
706TH1::TH1(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
707 :TNamed(name,title)
708{
709 Build();
710 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
711 if (xbins) fXaxis.Set(nbins,xbins);
712 else fXaxis.Set(nbins,0,1);
713 fNcells = fXaxis.GetNbins()+2;
714}
715
716////////////////////////////////////////////////////////////////////////////////
717/// Constructor for variable bin size histograms using an input array of type double.
718///
719/// \param[in] name name of histogram (avoid blanks)
720/// \param[in] title histogram title.
721/// If title is of the form `stringt;stringx;stringy;stringz`
722/// the histogram title is set to `stringt`,
723/// the x axis title to `stringx`, the y axis title to `stringy`, etc.
724/// \param[in] nbins number of bins
725/// \param[in] xbins array of low-edges for each bin.
726/// This is an array of type double and size nbins+1
727
728TH1::TH1(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
729 :TNamed(name,title)
730{
731 Build();
732 if (nbins <= 0) {Warning("TH1","nbins is <=0 - set to nbins = 1"); nbins = 1; }
733 if (xbins) fXaxis.Set(nbins,xbins);
734 else fXaxis.Set(nbins,0,1);
735 fNcells = fXaxis.GetNbins()+2;
736}
737
738////////////////////////////////////////////////////////////////////////////////
739/// Static function: cannot be inlined on Windows/NT.
740
745
746////////////////////////////////////////////////////////////////////////////////
747/// Browse the Histogram object.
748
750{
751 Draw(b ? b->GetDrawOption() : "");
752 gPad->Update();
753}
754
755////////////////////////////////////////////////////////////////////////////////
756/// Creates histogram basic data structure.
757
759{
760 fDirectory = nullptr;
761 fPainter = nullptr;
762 fIntegral = nullptr;
763 fEntries = 0;
764 fNormFactor = 0;
766 fMaximum = -1111;
767 fMinimum = -1111;
768 fBufferSize = 0;
769 fBuffer = nullptr;
772 fXaxis.SetName("xaxis");
773 fYaxis.SetName("yaxis");
774 fZaxis.SetName("zaxis");
775 fYaxis.Set(1,0.,1.);
776 fZaxis.Set(1,0.,1.);
777 fXaxis.SetParent(this);
778 fYaxis.SetParent(this);
779 fZaxis.SetParent(this);
780
782
783 fFunctions = new TList;
784
786
789 if (fDirectory) {
791 fDirectory->Append(this,kTRUE);
792 }
793 }
794}
795
796////////////////////////////////////////////////////////////////////////////////
797/// Performs the operation: `this = this + c1*f1`
798/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
799///
800/// By default, the function is computed at the centre of the bin.
801/// if option "I" is specified (1-d histogram only), the integral of the
802/// function in each bin is used instead of the value of the function at
803/// the centre of the bin.
804///
805/// Only bins inside the function range are recomputed.
806///
807/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
808/// you should call Sumw2 before making this operation.
809/// This is particularly important if you fit the histogram after TH1::Add
810///
811/// The function return kFALSE if the Add operation failed
812
814{
815 if (!f1) {
816 Error("Add","Attempt to add a non-existing function");
817 return kFALSE;
818 }
819
820 TString opt = option;
821 opt.ToLower();
822 Bool_t integral = kFALSE;
823 if (opt.Contains("i") && fDimension == 1) integral = kTRUE;
824
825 Int_t ncellsx = GetNbinsX() + 2; // cells = normal bins + underflow bin + overflow bin
826 Int_t ncellsy = GetNbinsY() + 2;
827 Int_t ncellsz = GetNbinsZ() + 2;
828 if (fDimension < 2) ncellsy = 1;
829 if (fDimension < 3) ncellsz = 1;
830
831 // delete buffer if it is there since it will become invalid
832 if (fBuffer) BufferEmpty(1);
833
834 // - Add statistics
835 Double_t s1[10];
836 for (Int_t i = 0; i < 10; ++i) s1[i] = 0;
837 PutStats(s1);
838 SetMinimum();
839 SetMaximum();
840
841 // - Loop on bins (including underflows/overflows)
842 Int_t bin, binx, biny, binz;
843 Double_t cu=0;
844 Double_t xx[3];
845 Double_t *params = nullptr;
846 f1->InitArgs(xx,params);
847 for (binz = 0; binz < ncellsz; ++binz) {
849 for (biny = 0; biny < ncellsy; ++biny) {
851 for (binx = 0; binx < ncellsx; ++binx) {
853 if (!f1->IsInside(xx)) continue;
855 bin = binx + ncellsx * (biny + ncellsy * binz);
856 if (integral) {
858 } else {
859 cu = c1*f1->EvalPar(xx);
860 }
861 if (TF1::RejectedPoint()) continue;
862 AddBinContent(bin,cu);
863 }
864 }
865 }
866
867 return kTRUE;
868}
869
870int TH1::LoggedInconsistency(const char *name, const TH1 *h1, const TH1 *h2, bool useMerge) const
871{
872 const auto inconsistency = CheckConsistency(h1, h2);
873
875 if (useMerge)
876 Info(name, "Histograms have different dimensions - trying to use TH1::Merge");
877 else {
878 Error(name, "Histograms have different dimensions");
879 }
881 if (useMerge)
882 Info(name, "Histograms have different number of bins - trying to use TH1::Merge");
883 else {
884 Error(name, "Histograms have different number of bins");
885 }
886 } else if (inconsistency & kDifferentAxisLimits) {
887 if (useMerge)
888 Info(name, "Histograms have different axis limits - trying to use TH1::Merge");
889 else
890 Warning(name, "Histograms have different axis limits");
891 } else if (inconsistency & kDifferentBinLimits) {
892 if (useMerge)
893 Info(name, "Histograms have different bin limits - trying to use TH1::Merge");
894 else
895 Warning(name, "Histograms have different bin limits");
896 } else if (inconsistency & kDifferentLabels) {
897 // in case of different labels -
898 if (useMerge)
899 Info(name, "Histograms have different labels - trying to use TH1::Merge");
900 else
901 Info(name, "Histograms have different labels");
902 }
903
904 return inconsistency;
905}
906
907////////////////////////////////////////////////////////////////////////////////
908/// Performs the operation: `this = this + c1*h1`
909/// If errors are defined (see TH1::Sumw2), errors are also recalculated.
910///
911/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
912/// if not already set.
913///
914/// Note also that adding histogram with labels is not supported, histogram will be
915/// added merging them by bin number independently of the labels.
916/// For adding histogram with labels one should use TH1::Merge
917///
918/// SPECIAL CASE (Average/Efficiency histograms)
919/// For histograms representing averages or efficiencies, one should compute the average
920/// of the two histograms and not the sum. One can mark a histogram to be an average
921/// histogram by setting its bit kIsAverage with
922/// myhist.SetBit(TH1::kIsAverage);
923/// Note that the two histograms must have their kIsAverage bit set
924///
925/// IMPORTANT NOTE1: If you intend to use the errors of this histogram later
926/// you should call Sumw2 before making this operation.
927/// This is particularly important if you fit the histogram after TH1::Add
928///
929/// IMPORTANT NOTE2: if h1 has a normalisation factor, the normalisation factor
930/// is used , ie this = this + c1*factor*h1
931/// Use the other TH1::Add function if you do not want this feature
932///
933/// IMPORTANT NOTE3: You should be careful about the statistics of the
934/// returned histogram, whose statistics may be binned or unbinned,
935/// depending on whether c1 is negative, whether TAxis::kAxisRange is true,
936/// and whether TH1::ResetStats has been called on either this or h1.
937/// See TH1::GetStats.
938///
939/// The function return kFALSE if the Add operation failed
940
942{
943 if (!h1) {
944 Error("Add","Attempt to add a non-existing histogram");
945 return kFALSE;
946 }
947
948 // delete buffer if it is there since it will become invalid
949 if (fBuffer) BufferEmpty(1);
950
951 bool useMerge = false;
952 const bool considerMerge = (c1 == 1. && !this->TestBit(kIsAverage) && !h1->TestBit(kIsAverage) );
953 const auto inconsistency = LoggedInconsistency("Add", this, h1, considerMerge);
954 // If there is a bad inconsistency and we can't even consider merging, just give up
956 return false;
957 }
958 // If there is an inconsistency, we try to use merging
961 }
962
963 if (useMerge) {
964 TList l;
965 l.Add(const_cast<TH1*>(h1));
966 auto iret = Merge(&l);
967 return (iret >= 0);
968 }
969
970 // Create Sumw2 if h1 has Sumw2 set
971 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
972
973 // - Add statistics
974 Double_t entries = TMath::Abs( GetEntries() + c1 * h1->GetEntries() );
975
976 // statistics can be preserved only in case of positive coefficients
977 // otherwise with negative c1 (histogram subtraction) one risks to get negative variances
978 Bool_t resetStats = (c1 < 0);
979 Double_t s1[kNstat] = {0};
980 Double_t s2[kNstat] = {0};
981 if (!resetStats) {
982 // need to initialize to zero s1 and s2 since
983 // GetStats fills only used elements depending on dimension and type
984 GetStats(s1);
985 h1->GetStats(s2);
986 }
987
988 SetMinimum();
989 SetMaximum();
990
991 // - Loop on bins (including underflows/overflows)
992 Double_t factor = 1;
993 if (h1->GetNormFactor() != 0) factor = h1->GetNormFactor()/h1->GetSumOfWeights();
994 Double_t c1sq = c1 * c1;
995 Double_t factsq = factor * factor;
996
997 for (Int_t bin = 0; bin < fNcells; ++bin) {
998 //special case where histograms have the kIsAverage bit set
999 if (this->TestBit(kIsAverage) && h1->TestBit(kIsAverage)) {
1001 Double_t y2 = this->RetrieveBinContent(bin);
1004 Double_t w1 = 1., w2 = 1.;
1005
1006 // consider all special cases when bin errors are zero
1007 // see http://root-forum.cern.ch/viewtopic.php?f=3&t=13299
1008 if (e1sq) w1 = 1. / e1sq;
1009 else if (h1->fSumw2.fN) {
1010 w1 = 1.E200; // use an arbitrary huge value
1011 if (y1 == 0) {
1012 // use an estimated error from the global histogram scale
1013 double sf = (s2[0] != 0) ? s2[1]/s2[0] : 1;
1014 w1 = 1./(sf*sf);
1015 }
1016 }
1017 if (e2sq) w2 = 1. / e2sq;
1018 else if (fSumw2.fN) {
1019 w2 = 1.E200; // use an arbitrary huge value
1020 if (y2 == 0) {
1021 // use an estimated error from the global histogram scale
1022 double sf = (s1[0] != 0) ? s1[1]/s1[0] : 1;
1023 w2 = 1./(sf*sf);
1024 }
1025 }
1026
1027 double y = (w1*y1 + w2*y2)/(w1 + w2);
1028 UpdateBinContent(bin, y);
1029 if (fSumw2.fN) {
1030 double err2 = 1./(w1 + w2);
1031 if (err2 < 1.E-200) err2 = 0; // to remove arbitrary value when e1=0 AND e2=0
1032 fSumw2.fArray[bin] = err2;
1033 }
1034 } else { // normal case of addition between histograms
1035 AddBinContent(bin, c1 * factor * h1->RetrieveBinContent(bin));
1036 if (fSumw2.fN) fSumw2.fArray[bin] += c1sq * factsq * h1->GetBinErrorSqUnchecked(bin);
1037 }
1038 }
1039
1040 // update statistics (do here to avoid changes by SetBinContent)
1041 if (resetStats) {
1042 // statistics need to be reset in case coefficient are negative
1043 ResetStats();
1044 }
1045 else {
1046 for (Int_t i=0;i<kNstat;i++) {
1047 if (i == 1) s1[i] += c1*c1*s2[i];
1048 else s1[i] += c1*s2[i];
1049 }
1050 PutStats(s1);
1051 SetEntries(entries);
1052 }
1053 return kTRUE;
1054}
1055
1056////////////////////////////////////////////////////////////////////////////////
1057/// Replace contents of this histogram by the addition of h1 and h2.
1058///
1059/// `this = c1*h1 + c2*h2`
1060/// if errors are defined (see TH1::Sumw2), errors are also recalculated
1061///
1062/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
1063/// if not already set.
1064///
1065/// Note also that adding histogram with labels is not supported, histogram will be
1066/// added merging them by bin number independently of the labels.
1067/// For adding histogram ith labels one should use TH1::Merge
1068///
1069/// SPECIAL CASE (Average/Efficiency histograms)
1070/// For histograms representing averages or efficiencies, one should compute the average
1071/// of the two histograms and not the sum. One can mark a histogram to be an average
1072/// histogram by setting its bit kIsAverage with
1073/// myhist.SetBit(TH1::kIsAverage);
1074/// Note that the two histograms must have their kIsAverage bit set
1075///
1076/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
1077/// you should call Sumw2 before making this operation.
1078/// This is particularly important if you fit the histogram after TH1::Add
1079///
1080/// IMPORTANT NOTE2: You should be careful about the statistics of the
1081/// returned histogram, whose statistics may be binned or unbinned,
1082/// depending on whether c1 is negative, whether TAxis::kAxisRange is true,
1083/// and whether TH1::ResetStats has been called on either this or h1.
1084/// See TH1::GetStats.
1085///
1086/// ANOTHER SPECIAL CASE : h1 = h2 and c2 < 0
1087/// do a scaling this = c1 * h1 / (bin Volume)
1088///
1089/// The function returns kFALSE if the Add operation failed
1090
1092{
1093
1094 if (!h1 || !h2) {
1095 Error("Add","Attempt to add a non-existing histogram");
1096 return kFALSE;
1097 }
1098
1099 // delete buffer if it is there since it will become invalid
1100 if (fBuffer) BufferEmpty(1);
1101
1103 if (h1 == h2 && c2 < 0) {c2 = 0; normWidth = kTRUE;}
1104
1105 if (h1 != h2) {
1106 bool useMerge = false;
1107 const bool considerMerge = (c1 == 1. && c2 == 1. && !this->TestBit(kIsAverage) && !h1->TestBit(kIsAverage) );
1108
1109 // We can combine inconsistencies like this, since they are ordered and a
1110 // higher inconsistency is worse
1111 auto const inconsistency = std::max(LoggedInconsistency("Add", this, h1, considerMerge),
1112 LoggedInconsistency("Add", h1, h2, considerMerge));
1113
1114 // If there is a bad inconsistency and we can't even consider merging, just give up
1116 return false;
1117 }
1118 // If there is an inconsistency, we try to use merging
1121 }
1122
1123 if (useMerge) {
1124 TList l;
1125 // why TList takes non-const pointers ????
1126 l.Add(const_cast<TH1*>(h1));
1127 l.Add(const_cast<TH1*>(h2));
1128 Reset("ICE");
1129 auto iret = Merge(&l);
1130 return (iret >= 0);
1131 }
1132 }
1133
1134 // Create Sumw2 if h1 or h2 have Sumw2 set
1135 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0)) Sumw2();
1136
1137 // - Add statistics
1138 Double_t nEntries = TMath::Abs( c1*h1->GetEntries() + c2*h2->GetEntries() );
1139
1140 // TODO remove
1141 // statistics can be preserved only in case of positive coefficients
1142 // otherwise with negative c1 (histogram subtraction) one risks to get negative variances
1143 // also in case of scaling with the width we cannot preserve the statistics
1144 Double_t s1[kNstat] = {0};
1145 Double_t s2[kNstat] = {0};
1147
1148
1149 Bool_t resetStats = (c1*c2 < 0) || normWidth;
1150 if (!resetStats) {
1151 // need to initialize to zero s1 and s2 since
1152 // GetStats fills only used elements depending on dimension and type
1153 h1->GetStats(s1);
1154 h2->GetStats(s2);
1155 for (Int_t i=0;i<kNstat;i++) {
1156 if (i == 1) s3[i] = c1*c1*s1[i] + c2*c2*s2[i];
1157 //else s3[i] = TMath::Abs(c1)*s1[i] + TMath::Abs(c2)*s2[i];
1158 else s3[i] = c1*s1[i] + c2*s2[i];
1159 }
1160 }
1161
1162 SetMinimum();
1163 SetMaximum();
1164
1165 if (normWidth) { // DEPRECATED CASE: belongs to fitting / drawing modules
1166
1167 Int_t nbinsx = GetNbinsX() + 2; // normal bins + underflow, overflow
1168 Int_t nbinsy = GetNbinsY() + 2;
1169 Int_t nbinsz = GetNbinsZ() + 2;
1170
1171 if (fDimension < 2) nbinsy = 1;
1172 if (fDimension < 3) nbinsz = 1;
1173
1174 Int_t bin, binx, biny, binz;
1175 for (binz = 0; binz < nbinsz; ++binz) {
1177 for (biny = 0; biny < nbinsy; ++biny) {
1179 for (binx = 0; binx < nbinsx; ++binx) {
1181 bin = GetBin(binx, biny, binz);
1182 Double_t w = wx*wy*wz;
1183 UpdateBinContent(bin, c1 * h1->RetrieveBinContent(bin) / w);
1184 if (fSumw2.fN) {
1185 Double_t e1 = h1->GetBinError(bin)/w;
1186 fSumw2.fArray[bin] = c1*c1*e1*e1;
1187 }
1188 }
1189 }
1190 }
1191 } else if (h1->TestBit(kIsAverage) && h2->TestBit(kIsAverage)) {
1192 for (Int_t i = 0; i < fNcells; ++i) { // loop on cells (bins including underflow / overflow)
1193 // special case where histograms have the kIsAverage bit set
1195 Double_t y2 = h2->RetrieveBinContent(i);
1197 Double_t e2sq = h2->GetBinErrorSqUnchecked(i);
1198 Double_t w1 = 1., w2 = 1.;
1199
1200 // consider all special cases when bin errors are zero
1201 // see http://root-forum.cern.ch/viewtopic.php?f=3&t=13299
1202 if (e1sq) w1 = 1./ e1sq;
1203 else if (h1->fSumw2.fN) {
1204 w1 = 1.E200; // use an arbitrary huge value
1205 if (y1 == 0 ) { // use an estimated error from the global histogram scale
1206 double sf = (s1[0] != 0) ? s1[1]/s1[0] : 1;
1207 w1 = 1./(sf*sf);
1208 }
1209 }
1210 if (e2sq) w2 = 1./ e2sq;
1211 else if (h2->fSumw2.fN) {
1212 w2 = 1.E200; // use an arbitrary huge value
1213 if (y2 == 0) { // use an estimated error from the global histogram scale
1214 double sf = (s2[0] != 0) ? s2[1]/s2[0] : 1;
1215 w2 = 1./(sf*sf);
1216 }
1217 }
1218
1219 double y = (w1*y1 + w2*y2)/(w1 + w2);
1220 UpdateBinContent(i, y);
1221 if (fSumw2.fN) {
1222 double err2 = 1./(w1 + w2);
1223 if (err2 < 1.E-200) err2 = 0; // to remove arbitrary value when e1=0 AND e2=0
1224 fSumw2.fArray[i] = err2;
1225 }
1226 }
1227 } else { // case of simple histogram addition
1228 Double_t c1sq = c1 * c1;
1229 Double_t c2sq = c2 * c2;
1230 for (Int_t i = 0; i < fNcells; ++i) { // Loop on cells (bins including underflows/overflows)
1231 UpdateBinContent(i, c1 * h1->RetrieveBinContent(i) + c2 * h2->RetrieveBinContent(i));
1232 if (fSumw2.fN) {
1233 fSumw2.fArray[i] = c1sq * h1->GetBinErrorSqUnchecked(i) + c2sq * h2->GetBinErrorSqUnchecked(i);
1234 }
1235 }
1236 }
1237
1238 if (resetStats) {
1239 // statistics need to be reset in case coefficient are negative
1240 ResetStats();
1241 }
1242 else {
1243 // update statistics (do here to avoid changes by SetBinContent) FIXME remove???
1244 PutStats(s3);
1246 }
1247
1248 return kTRUE;
1249}
1250
1251////////////////////////////////////////////////////////////////////////////////
1252/// Sets the flag controlling the automatic add of histograms in memory
1253///
1254/// By default (fAddDirectory = kTRUE), histograms are automatically added
1255/// to the list of objects in memory.
1256/// Note that one histogram can be removed from its support directory
1257/// by calling h->SetDirectory(nullptr) or h->SetDirectory(dir) to add it
1258/// to the list of objects in the directory dir.
1259///
1260/// NOTE that this is a static function. To call it, use;
1261/// TH1::AddDirectory
1262
1264{
1265 fgAddDirectory = add;
1266}
1267
1268////////////////////////////////////////////////////////////////////////////////
1269/// Auxiliary function to get the power of 2 next (larger) or previous (smaller)
1270/// a given x
1271///
1272/// next = kTRUE : next larger
1273/// next = kFALSE : previous smaller
1274///
1275/// Used by the autobin power of 2 algorithm
1276
1278{
1279 Int_t nn;
1280 Double_t f2 = std::frexp(x, &nn);
1281 return ((next && x > 0.) || (!next && x <= 0.)) ? std::ldexp(std::copysign(1., f2), nn)
1282 : std::ldexp(std::copysign(1., f2), --nn);
1283}
1284
1285////////////////////////////////////////////////////////////////////////////////
1286/// Auxiliary function to get the next power of 2 integer value larger then n
1287///
1288/// Used by the autobin power of 2 algorithm
1289
1291{
1292 Int_t nn;
1293 Double_t f2 = std::frexp(n, &nn);
1294 if (TMath::Abs(f2 - .5) > 0.001)
1295 return (Int_t)std::ldexp(1., nn);
1296 return n;
1297}
1298
1299////////////////////////////////////////////////////////////////////////////////
1300/// Buffer-based estimate of the histogram range using the power of 2 algorithm.
1301///
1302/// Used by the autobin power of 2 algorithm.
1303///
1304/// Works on arguments (min and max from fBuffer) and internal inputs: fXmin,
1305/// fXmax, NBinsX (from fXaxis), ...
1306/// Result save internally in fXaxis.
1307///
1308/// Overloaded by TH2 and TH3.
1309///
1310/// Return -1 if internal inputs are inconsistent, 0 otherwise.
1311
1313{
1314 // We need meaningful raw limits
1315 if (xmi >= xma)
1316 return -1;
1317
1318 THLimitsFinder::GetLimitsFinder()->FindGoodLimits(this, xmi, xma);
1321
1322 // Now adjust
1323 if (TMath::Abs(xhma) > TMath::Abs(xhmi)) {
1324 // Start from the upper limit
1327 } else {
1328 // Start from the lower limit
1331 }
1332
1333 // Round the bins to the next power of 2; take into account the possible inflation
1334 // of the range
1335 Double_t rr = (xhma - xhmi) / (xma - xmi);
1337
1338 // Adjust using the same bin width and offsets
1339 Double_t bw = (xhma - xhmi) / nb;
1340 // Bins to left free on each side
1341 Double_t autoside = gEnv->GetValue("Hist.Binning.Auto.Side", 0.05);
1342 Int_t nbside = (Int_t)(nb * autoside);
1343
1344 // Side up
1345 Int_t nbup = (xhma - xma) / bw;
1346 if (nbup % 2 != 0)
1347 nbup++; // Must be even
1348 if (nbup != nbside) {
1349 // Accounts also for both case: larger or smaller
1350 xhma -= bw * (nbup - nbside);
1351 nb -= (nbup - nbside);
1352 }
1353
1354 // Side low
1355 Int_t nblw = (xmi - xhmi) / bw;
1356 if (nblw % 2 != 0)
1357 nblw++; // Must be even
1358 if (nblw != nbside) {
1359 // Accounts also for both case: larger or smaller
1360 xhmi += bw * (nblw - nbside);
1361 nb -= (nblw - nbside);
1362 }
1363
1364 // Set everything and project
1365 SetBins(nb, xhmi, xhma);
1366
1367 // Done
1368 return 0;
1369}
1370
1371/// Fill histogram with all entries in the buffer.
1372///
1373/// - action = -1 histogram is reset and refilled from the buffer (called by THistPainter::Paint)
1374/// - action = 0 histogram is reset and filled from the buffer. When the histogram is filled from the
1375/// buffer the value fBuffer[0] is set to a negative number (= - number of entries)
1376/// When calling with action == 0 the histogram is NOT refilled when fBuffer[0] is < 0
1377/// While when calling with action = -1 the histogram is reset and ALWAYS refilled independently if
1378/// the histogram was filled before. This is needed when drawing the histogram
1379/// - action = 1 histogram is filled and buffer is deleted
1380/// The buffer is automatically deleted when filling the histogram and the entries is
1381/// larger than the buffer size
1382
1384{
1385 // do we need to compute the bin size?
1386 if (!fBuffer) return 0;
1388
1389 // nbentries correspond to the number of entries of histogram
1390
1391 if (nbentries == 0) {
1392 // if action is 1 we delete the buffer
1393 // this will avoid infinite recursion
1394 if (action > 0) {
1395 delete [] fBuffer;
1396 fBuffer = nullptr;
1397 fBufferSize = 0;
1398 }
1399 return 0;
1400 }
1401 if (nbentries < 0 && action == 0) return 0; // case histogram has been already filled from the buffer
1402
1403 Double_t *buffer = fBuffer;
1404 if (nbentries < 0) {
1406 // a reset might call BufferEmpty() giving an infinite recursion
1407 // Protect it by setting fBuffer = nullptr
1408 fBuffer = nullptr;
1409 //do not reset the list of functions
1410 Reset("ICES");
1411 fBuffer = buffer;
1412 }
1413 if (CanExtendAllAxes() || (fXaxis.GetXmax() <= fXaxis.GetXmin())) {
1414 //find min, max of entries in buffer
1417 for (Int_t i=0;i<nbentries;i++) {
1418 Double_t x = fBuffer[2*i+2];
1419 // skip infinity or NaN values
1420 if (!std::isfinite(x)) continue;
1421 if (x < xmin) xmin = x;
1422 if (x > xmax) xmax = x;
1423 }
1424 if (fXaxis.GetXmax() <= fXaxis.GetXmin()) {
1425 Int_t rc = -1;
1427 if ((rc = AutoP2FindLimits(xmin, xmax)) < 0)
1428 Warning("BufferEmpty",
1429 "inconsistency found by power-of-2 autobin algorithm: fallback to standard method");
1430 }
1431 if (rc < 0)
1432 THLimitsFinder::GetLimitsFinder()->FindGoodLimits(this, xmin, xmax);
1433 } else {
1434 fBuffer = nullptr;
1437 if (xmax >= fXaxis.GetXmax()) ExtendAxis(xmax, &fXaxis);
1438 fBuffer = buffer;
1439 fBufferSize = keep;
1440 }
1441 }
1442
1443 // call DoFillN which will not put entries in the buffer as FillN does
1444 // set fBuffer to zero to avoid re-emptying the buffer from functions called
1445 // by DoFillN (e.g Sumw2)
1446 buffer = fBuffer; fBuffer = nullptr;
1447 DoFillN(nbentries,&buffer[2],&buffer[1],2);
1448 fBuffer = buffer;
1449
1450 // if action == 1 - delete the buffer
1451 if (action > 0) {
1452 delete [] fBuffer;
1453 fBuffer = nullptr;
1454 fBufferSize = 0;
1455 } else {
1456 // if number of entries is consistent with buffer - set it negative to avoid
1457 // refilling the histogram every time BufferEmpty(0) is called
1458 // In case it is not consistent, by setting fBuffer[0]=0 is like resetting the buffer
1459 // (it will not be used anymore the next time BufferEmpty is called)
1460 if (nbentries == (Int_t)fEntries)
1461 fBuffer[0] = -nbentries;
1462 else
1463 fBuffer[0] = 0;
1464 }
1465 return nbentries;
1466}
1467
1468////////////////////////////////////////////////////////////////////////////////
1469/// accumulate arguments in buffer. When buffer is full, empty the buffer
1470///
1471/// - `fBuffer[0]` = number of entries in buffer
1472/// - `fBuffer[1]` = w of first entry
1473/// - `fBuffer[2]` = x of first entry
1474
1476{
1477 if (!fBuffer) return -2;
1479
1480
1481 if (nbentries < 0) {
1482 // reset nbentries to a positive value so next time BufferEmpty() is called
1483 // the histogram will be refilled
1485 fBuffer[0] = nbentries;
1486 if (fEntries > 0) {
1487 // set fBuffer to zero to avoid calling BufferEmpty in Reset
1488 Double_t *buffer = fBuffer; fBuffer=nullptr;
1489 Reset("ICES"); // do not reset list of functions
1490 fBuffer = buffer;
1491 }
1492 }
1493 if (2*nbentries+2 >= fBufferSize) {
1494 BufferEmpty(1);
1495 if (!fBuffer)
1496 // to avoid infinite recursion Fill->BufferFill->Fill
1497 return Fill(x,w);
1498 // this cannot happen
1499 R__ASSERT(0);
1500 }
1501 fBuffer[2*nbentries+1] = w;
1502 fBuffer[2*nbentries+2] = x;
1503 fBuffer[0] += 1;
1504 return -2;
1505}
1506
1507////////////////////////////////////////////////////////////////////////////////
1508/// Check bin limits.
1509
1510bool TH1::CheckBinLimits(const TAxis* a1, const TAxis * a2)
1511{
1512 const TArrayD * h1Array = a1->GetXbins();
1513 const TArrayD * h2Array = a2->GetXbins();
1514 Int_t fN = h1Array->fN;
1515 if ( fN != 0 ) {
1516 if ( h2Array->fN != fN ) {
1517 return false;
1518 }
1519 else {
1520 for ( int i = 0; i < fN; ++i ) {
1521 // for i==fN (nbin+1) a->GetBinWidth() returns last bin width
1522 // we do not need to exclude that case
1523 double binWidth = a1->GetBinWidth(i);
1524 if ( ! TMath::AreEqualAbs( h1Array->GetAt(i), h2Array->GetAt(i), binWidth*1E-10 ) ) {
1525 return false;
1526 }
1527 }
1528 }
1529 }
1530
1531 return true;
1532}
1533
1534////////////////////////////////////////////////////////////////////////////////
1535/// Check that axis have same labels.
1536
1537bool TH1::CheckBinLabels(const TAxis* a1, const TAxis * a2)
1538{
1539 THashList *l1 = a1->GetLabels();
1540 THashList *l2 = a2->GetLabels();
1541
1542 if (!l1 && !l2 )
1543 return true;
1544 if (!l1 || !l2 ) {
1545 return false;
1546 }
1547 // check now labels sizes are the same
1548 if (l1->GetSize() != l2->GetSize() ) {
1549 return false;
1550 }
1551 for (int i = 1; i <= a1->GetNbins(); ++i) {
1552 TString label1 = a1->GetBinLabel(i);
1553 TString label2 = a2->GetBinLabel(i);
1554 if (label1 != label2) {
1555 return false;
1556 }
1557 }
1558
1559 return true;
1560}
1561
1562////////////////////////////////////////////////////////////////////////////////
1563/// Check that the axis limits of the histograms are the same.
1564/// If a first and last bin is passed the axis is compared between the given range
1565
1566bool TH1::CheckAxisLimits(const TAxis *a1, const TAxis *a2 )
1567{
1568 double firstBin = a1->GetBinWidth(1);
1569 double lastBin = a1->GetBinWidth( a1->GetNbins() );
1570 if ( ! TMath::AreEqualAbs(a1->GetXmin(), a2->GetXmin(), firstBin* 1.E-10) ||
1571 ! TMath::AreEqualAbs(a1->GetXmax(), a2->GetXmax(), lastBin*1.E-10) ) {
1572 return false;
1573 }
1574 return true;
1575}
1576
1577////////////////////////////////////////////////////////////////////////////////
1578/// Check that the axis are the same
1579
1580bool TH1::CheckEqualAxes(const TAxis *a1, const TAxis *a2 )
1581{
1582 if (a1->GetNbins() != a2->GetNbins() ) {
1583 ::Info("CheckEqualAxes","Axes have different number of bins : nbin1 = %d nbin2 = %d",a1->GetNbins(),a2->GetNbins() );
1584 return false;
1585 }
1586 if(!CheckAxisLimits(a1,a2)) {
1587 ::Info("CheckEqualAxes","Axes have different limits");
1588 return false;
1589 }
1590 if(!CheckBinLimits(a1,a2)) {
1591 ::Info("CheckEqualAxes","Axes have different bin limits");
1592 return false;
1593 }
1594
1595 // check labels
1596 if(!CheckBinLabels(a1,a2)) {
1597 ::Info("CheckEqualAxes","Axes have different labels");
1598 return false;
1599 }
1600
1601 return true;
1602}
1603
1604////////////////////////////////////////////////////////////////////////////////
1605/// Check that two sub axis are the same.
1606/// The limits are defined by first bin and last bin
1607/// N.B. no check is done in this case for variable bins
1608
1610{
1611 // By default is assumed that no bins are given for the second axis
1613 Double_t xmin1 = a1->GetBinLowEdge(firstBin1);
1614 Double_t xmax1 = a1->GetBinUpEdge(lastBin1);
1615
1616 Int_t nbins2 = a2->GetNbins();
1617 Double_t xmin2 = a2->GetXmin();
1618 Double_t xmax2 = a2->GetXmax();
1619
1620 if (firstBin2 < lastBin2) {
1621 // in this case assume no bins are given for the second axis
1623 xmin2 = a1->GetBinLowEdge(firstBin1);
1624 xmax2 = a1->GetBinUpEdge(lastBin1);
1625 }
1626
1627 if (nbins1 != nbins2 ) {
1628 ::Info("CheckConsistentSubAxes","Axes have different number of bins");
1629 return false;
1630 }
1631
1632 Double_t firstBin = a1->GetBinWidth(firstBin1);
1633 Double_t lastBin = a1->GetBinWidth(lastBin1);
1634 if ( ! TMath::AreEqualAbs(xmin1,xmin2,1.E-10 * firstBin) ||
1635 ! TMath::AreEqualAbs(xmax1,xmax2,1.E-10 * lastBin) ) {
1636 ::Info("CheckConsistentSubAxes","Axes have different limits");
1637 return false;
1638 }
1639
1640 return true;
1641}
1642
1643////////////////////////////////////////////////////////////////////////////////
1644/// Check histogram compatibility.
1645/// The returned integer is part of EInconsistencyBits
1646/// The value 0 means that the histograms are compatible
1647
1649{
1650 if (h1 == h2) return kFullyConsistent;
1651
1652 if (h1->GetDimension() != h2->GetDimension() ) {
1653 return kDifferentDimensions;
1654 }
1655 Int_t dim = h1->GetDimension();
1656
1657 // returns kTRUE if number of bins and bin limits are identical
1658 Int_t nbinsx = h1->GetNbinsX();
1659 Int_t nbinsy = h1->GetNbinsY();
1660 Int_t nbinsz = h1->GetNbinsZ();
1661
1662 // Check whether the histograms have the same number of bins.
1663 if (nbinsx != h2->GetNbinsX() ||
1664 (dim > 1 && nbinsy != h2->GetNbinsY()) ||
1665 (dim > 2 && nbinsz != h2->GetNbinsZ()) ) {
1667 }
1668
1669 bool ret = true;
1670
1671 // check axis limits
1672 ret &= CheckAxisLimits(h1->GetXaxis(), h2->GetXaxis());
1673 if (dim > 1) ret &= CheckAxisLimits(h1->GetYaxis(), h2->GetYaxis());
1674 if (dim > 2) ret &= CheckAxisLimits(h1->GetZaxis(), h2->GetZaxis());
1675 if (!ret) return kDifferentAxisLimits;
1676
1677 // check bin limits
1678 ret &= CheckBinLimits(h1->GetXaxis(), h2->GetXaxis());
1679 if (dim > 1) ret &= CheckBinLimits(h1->GetYaxis(), h2->GetYaxis());
1680 if (dim > 2) ret &= CheckBinLimits(h1->GetZaxis(), h2->GetZaxis());
1681 if (!ret) return kDifferentBinLimits;
1682
1683 // check labels if histograms are both not empty
1684 if ( !h1->IsEmpty() && !h2->IsEmpty() ) {
1685 ret &= CheckBinLabels(h1->GetXaxis(), h2->GetXaxis());
1686 if (dim > 1) ret &= CheckBinLabels(h1->GetYaxis(), h2->GetYaxis());
1687 if (dim > 2) ret &= CheckBinLabels(h1->GetZaxis(), h2->GetZaxis());
1688 if (!ret) return kDifferentLabels;
1689 }
1690
1691 return kFullyConsistent;
1692}
1693
1694////////////////////////////////////////////////////////////////////////////////
1695/// \f$ \chi^{2} \f$ test for comparing weighted and unweighted histograms.
1696///
1697/// Compares the histograms' adjusted (normalized) residuals.
1698/// Function: Returns p-value. Other return values are specified by the 3rd parameter
1699///
1700/// \param[in] h2 the second histogram
1701/// \param[in] option
1702/// - "UU" = experiment experiment comparison (unweighted-unweighted)
1703/// - "UW" = experiment MC comparison (unweighted-weighted). Note that
1704/// the first histogram should be unweighted
1705/// - "WW" = MC MC comparison (weighted-weighted)
1706/// - "NORM" = to be used when one or both of the histograms is scaled
1707/// but the histogram originally was unweighted
1708/// - by default underflows and overflows are not included:
1709/// * "OF" = overflows included
1710/// * "UF" = underflows included
1711/// - "P" = print chi2, ndf, p_value, igood
1712/// - "CHI2" = returns chi2 instead of p-value
1713/// - "CHI2/NDF" = returns \f$ \chi^{2} \f$/ndf
1714/// \param[in] res not empty - computes normalized residuals and returns them in this array
1715///
1716/// The current implementation is based on the papers \f$ \chi^{2} \f$ test for comparison
1717/// of weighted and unweighted histograms" in Proceedings of PHYSTAT05 and
1718/// "Comparison weighted and unweighted histograms", arXiv:physics/0605123
1719/// by N.Gagunashvili. This function has been implemented by Daniel Haertl in August 2006.
1720///
1721/// #### Introduction:
1722///
1723/// A frequently used technique in data analysis is the comparison of
1724/// histograms. First suggested by Pearson [1] the \f$ \chi^{2} \f$ test of
1725/// homogeneity is used widely for comparing usual (unweighted) histograms.
1726/// This paper describes the implementation modified \f$ \chi^{2} \f$ tests
1727/// for comparison of weighted and unweighted histograms and two weighted
1728/// histograms [2] as well as usual Pearson's \f$ \chi^{2} \f$ test for
1729/// comparison two usual (unweighted) histograms.
1730///
1731/// #### Overview:
1732///
1733/// Comparison of two histograms expect hypotheses that two histograms
1734/// represent identical distributions. To make a decision p-value should
1735/// be calculated. The hypotheses of identity is rejected if the p-value is
1736/// lower then some significance level. Traditionally significance levels
1737/// 0.1, 0.05 and 0.01 are used. The comparison procedure should include an
1738/// analysis of the residuals which is often helpful in identifying the
1739/// bins of histograms responsible for a significant overall \f$ \chi^{2} \f$ value.
1740/// Residuals are the difference between bin contents and expected bin
1741/// contents. Most convenient for analysis are the normalized residuals. If
1742/// hypotheses of identity are valid then normalized residuals are
1743/// approximately independent and identically distributed random variables
1744/// having N(0,1) distribution. Analysis of residuals expect test of above
1745/// mentioned properties of residuals. Notice that indirectly the analysis
1746/// of residuals increase the power of \f$ \chi^{2} \f$ test.
1747///
1748/// #### Methods of comparison:
1749///
1750/// \f$ \chi^{2} \f$ test for comparison two (unweighted) histograms:
1751/// Let us consider two histograms with the same binning and the number
1752/// of bins equal to r. Let us denote the number of events in the ith bin
1753/// in the first histogram as ni and as mi in the second one. The total
1754/// number of events in the first histogram is equal to:
1755/// \f[
1756/// N = \sum_{i=1}^{r} n_{i}
1757/// \f]
1758/// and
1759/// \f[
1760/// M = \sum_{i=1}^{r} m_{i}
1761/// \f]
1762/// in the second histogram. The hypothesis of identity (homogeneity) [3]
1763/// is that the two histograms represent random values with identical
1764/// distributions. It is equivalent that there exist r constants p1,...,pr,
1765/// such that
1766/// \f[
1767///\sum_{i=1}^{r} p_{i}=1
1768/// \f]
1769/// and the probability of belonging to the ith bin for some measured value
1770/// in both experiments is equal to pi. The number of events in the ith
1771/// bin is a random variable with a distribution approximated by a Poisson
1772/// probability distribution
1773/// \f[
1774///\frac{e^{-Np_{i}}(Np_{i})^{n_{i}}}{n_{i}!}
1775/// \f]
1776///for the first histogram and with distribution
1777/// \f[
1778///\frac{e^{-Mp_{i}}(Mp_{i})^{m_{i}}}{m_{i}!}
1779/// \f]
1780/// for the second histogram. If the hypothesis of homogeneity is valid,
1781/// then the maximum likelihood estimator of pi, i=1,...,r, is
1782/// \f[
1783///\hat{p}_{i}= \frac{n_{i}+m_{i}}{N+M}
1784/// \f]
1785/// and then
1786/// \f[
1787/// X^{2} = \sum_{i=1}^{r}\frac{(n_{i}-N\hat{p}_{i})^{2}}{N\hat{p}_{i}} + \sum_{i=1}^{r}\frac{(m_{i}-M\hat{p}_{i})^{2}}{M\hat{p}_{i}} =\frac{1}{MN} \sum_{i=1}^{r}\frac{(Mn_{i}-Nm_{i})^{2}}{n_{i}+m_{i}}
1788/// \f]
1789/// has approximately a \f$ \chi^{2}_{(r-1)} \f$ distribution [3].
1790/// The comparison procedure can include an analysis of the residuals which
1791/// is often helpful in identifying the bins of histograms responsible for
1792/// a significant overall \f$ \chi^{2} \f$ value. Most convenient for
1793/// analysis are the adjusted (normalized) residuals [4]
1794/// \f[
1795/// r_{i} = \frac{n_{i}-N\hat{p}_{i}}{\sqrt{N\hat{p}_{i}}\sqrt{(1-N/(N+M))(1-(n_{i}+m_{i})/(N+M))}}
1796/// \f]
1797/// If hypotheses of homogeneity are valid then residuals ri are
1798/// approximately independent and identically distributed random variables
1799/// having N(0,1) distribution. The application of the \f$ \chi^{2} \f$ test has
1800/// restrictions related to the value of the expected frequencies Npi,
1801/// Mpi, i=1,...,r. A conservative rule formulated in [5] is that all the
1802/// expectations must be 1 or greater for both histograms. In practical
1803/// cases when expected frequencies are not known the estimated expected
1804/// frequencies \f$ M\hat{p}_{i}, N\hat{p}_{i}, i=1,...,r \f$ can be used.
1805///
1806/// #### Unweighted and weighted histograms comparison:
1807///
1808/// A simple modification of the ideas described above can be used for the
1809/// comparison of the usual (unweighted) and weighted histograms. Let us
1810/// denote the number of events in the ith bin in the unweighted
1811/// histogram as ni and the common weight of events in the ith bin of the
1812/// weighted histogram as wi. The total number of events in the
1813/// unweighted histogram is equal to
1814///\f[
1815/// N = \sum_{i=1}^{r} n_{i}
1816///\f]
1817/// and the total weight of events in the weighted histogram is equal to
1818///\f[
1819/// W = \sum_{i=1}^{r} w_{i}
1820///\f]
1821/// Let us formulate the hypothesis of identity of an unweighted histogram
1822/// to a weighted histogram so that there exist r constants p1,...,pr, such
1823/// that
1824///\f[
1825/// \sum_{i=1}^{r} p_{i} = 1
1826///\f]
1827/// for the unweighted histogram. The weight wi is a random variable with a
1828/// distribution approximated by the normal probability distribution
1829/// \f$ N(Wp_{i},\sigma_{i}^{2}) \f$ where \f$ \sigma_{i}^{2} \f$ is the variance of the weight wi.
1830/// If we replace the variance \f$ \sigma_{i}^{2} \f$
1831/// with estimate \f$ s_{i}^{2} \f$ (sum of squares of weights of
1832/// events in the ith bin) and the hypothesis of identity is valid, then the
1833/// maximum likelihood estimator of pi,i=1,...,r, is
1834///\f[
1835/// \hat{p}_{i} = \frac{Ww_{i}-Ns_{i}^{2}+\sqrt{(Ww_{i}-Ns_{i}^{2})^{2}+4W^{2}s_{i}^{2}n_{i}}}{2W^{2}}
1836///\f]
1837/// We may then use the test statistic
1838///\f[
1839/// X^{2} = \sum_{i=1}^{r} \frac{(n_{i}-N\hat{p}_{i})^{2}}{N\hat{p}_{i}} + \sum_{i=1}^{r} \frac{(w_{i}-W\hat{p}_{i})^{2}}{s_{i}^{2}}
1840///\f]
1841/// and it has approximately a \f$ \sigma^{2}_{(r-1)} \f$ distribution [2]. This test, as well
1842/// as the original one [3], has a restriction on the expected frequencies. The
1843/// expected frequencies recommended for the weighted histogram is more than 25.
1844/// The value of the minimal expected frequency can be decreased down to 10 for
1845/// the case when the weights of the events are close to constant. In the case
1846/// of a weighted histogram if the number of events is unknown, then we can
1847/// apply this recommendation for the equivalent number of events as
1848///\f[
1849/// n_{i}^{equiv} = \frac{ w_{i}^{2} }{ s_{i}^{2} }
1850///\f]
1851/// The minimal expected frequency for an unweighted histogram must be 1. Notice
1852/// that any usual (unweighted) histogram can be considered as a weighted
1853/// histogram with events that have constant weights equal to 1.
1854/// The variance \f$ z_{i}^{2} \f$ of the difference between the weight wi
1855/// and the estimated expectation value of the weight is approximately equal to:
1856///\f[
1857/// z_{i}^{2} = Var(w_{i}-W\hat{p}_{i}) = N\hat{p}_{i}(1-N\hat{p}_{i})\left(\frac{Ws_{i}^{2}}{\sqrt{(Ns_{i}^{2}-w_{i}W)^{2}+4W^{2}s_{i}^{2}n_{i}}}\right)^{2}+\frac{s_{i}^{2}}{4}\left(1+\frac{Ns_{i}^{2}-w_{i}W}{\sqrt{(Ns_{i}^{2}-w_{i}W)^{2}+4W^{2}s_{i}^{2}n_{i}}}\right)^{2}
1858///\f]
1859/// The residuals
1860///\f[
1861/// r_{i} = \frac{w_{i}-W\hat{p}_{i}}{z_{i}}
1862///\f]
1863/// have approximately a normal distribution with mean equal to 0 and standard
1864/// deviation equal to 1.
1865///
1866/// #### Two weighted histograms comparison:
1867///
1868/// Let us denote the common weight of events of the ith bin in the first
1869/// histogram as w1i and as w2i in the second one. The total weight of events
1870/// in the first histogram is equal to
1871///\f[
1872/// W_{1} = \sum_{i=1}^{r} w_{1i}
1873///\f]
1874/// and
1875///\f[
1876/// W_{2} = \sum_{i=1}^{r} w_{2i}
1877///\f]
1878/// in the second histogram. Let us formulate the hypothesis of identity of
1879/// weighted histograms so that there exist r constants p1,...,pr, such that
1880///\f[
1881/// \sum_{i=1}^{r} p_{i} = 1
1882///\f]
1883/// and also expectation value of weight w1i equal to W1pi and expectation value
1884/// of weight w2i equal to W2pi. Weights in both the histograms are random
1885/// variables with distributions which can be approximated by a normal
1886/// probability distribution \f$ N(W_{1}p_{i},\sigma_{1i}^{2}) \f$ for the first histogram
1887/// and by a distribution \f$ N(W_{2}p_{i},\sigma_{2i}^{2}) \f$ for the second.
1888/// Here \f$ \sigma_{1i}^{2} \f$ and \f$ \sigma_{2i}^{2} \f$ are the variances
1889/// of w1i and w2i with estimators \f$ s_{1i}^{2} \f$ and \f$ s_{2i}^{2} \f$ respectively.
1890/// If the hypothesis of identity is valid, then the maximum likelihood and
1891/// Least Square Method estimator of pi,i=1,...,r, is
1892///\f[
1893/// \hat{p}_{i} = \frac{w_{1i}W_{1}/s_{1i}^{2}+w_{2i}W_{2} /s_{2i}^{2}}{W_{1}^{2}/s_{1i}^{2}+W_{2}^{2}/s_{2i}^{2}}
1894///\f]
1895/// We may then use the test statistic
1896///\f[
1897/// X^{2} = \sum_{i=1}^{r} \frac{(w_{1i}-W_{1}\hat{p}_{i})^{2}}{s_{1i}^{2}} + \sum_{i=1}^{r} \frac{(w_{2i}-W_{2}\hat{p}_{i})^{2}}{s_{2i}^{2}} = \sum_{i=1}^{r} \frac{(W_{1}w_{2i}-W_{2}w_{1i})^{2}}{W_{1}^{2}s_{2i}^{2}+W_{2}^{2}s_{1i}^{2}}
1898///\f]
1899/// and it has approximately a \f$ \chi^{2}_{(r-1)} \f$ distribution [2].
1900/// The normalized or studentised residuals [6]
1901///\f[
1902/// r_{i} = \frac{w_{1i}-W_{1}\hat{p}_{i}}{s_{1i}\sqrt{1 - \frac{1}{(1+W_{2}^{2}s_{1i}^{2}/W_{1}^{2}s_{2i}^{2})}}}
1903///\f]
1904/// have approximately a normal distribution with mean equal to 0 and standard
1905/// deviation 1. A recommended minimal expected frequency is equal to 10 for
1906/// the proposed test.
1907///
1908/// #### Numerical examples:
1909///
1910/// The method described herein is now illustrated with an example.
1911/// We take a distribution
1912///\f[
1913/// \phi(x) = \frac{2}{(x-10)^{2}+1} + \frac{1}{(x-14)^{2}+1} (1)
1914///\f]
1915/// defined on the interval [4,16]. Events distributed according to the formula
1916/// (1) are simulated to create the unweighted histogram. Uniformly distributed
1917/// events are simulated for the weighted histogram with weights calculated by
1918/// formula (1). Each histogram has the same number of bins: 20. Fig.1 shows
1919/// the result of comparison of the unweighted histogram with 200 events
1920/// (minimal expected frequency equal to one) and the weighted histogram with
1921/// 500 events (minimal expected frequency equal to 25)
1922/// Begin_Macro
1923/// ../../../tutorials/math/chi2test.C
1924/// End_Macro
1925/// Fig 1. An example of comparison of the unweighted histogram with 200 events
1926/// and the weighted histogram with 500 events:
1927/// 1. unweighted histogram;
1928/// 2. weighted histogram;
1929/// 3. normalized residuals plot;
1930/// 4. normal Q-Q plot of residuals.
1931///
1932/// The value of the test statistic \f$ \chi^{2} \f$ is equal to
1933/// 21.09 with p-value equal to 0.33, therefore the hypothesis of identity of
1934/// the two histograms can be accepted for 0.05 significant level. The behavior
1935/// of the normalized residuals plot (see Fig. 1c) and the normal Q-Q plot
1936/// (see Fig. 1d) of residuals are regular and we cannot identify the outliers
1937/// or bins with a big influence on \f$ \chi^{2} \f$.
1938///
1939/// The second example presents the same two histograms but 17 events was added
1940/// to content of bin number 15 in unweighted histogram. Fig.2 shows the result
1941/// of comparison of the unweighted histogram with 217 events (minimal expected
1942/// frequency equal to one) and the weighted histogram with 500 events (minimal
1943/// expected frequency equal to 25)
1944/// Begin_Macro
1945/// ../../../tutorials/math/chi2test.C(17)
1946/// End_Macro
1947/// Fig 2. An example of comparison of the unweighted histogram with 217 events
1948/// and the weighted histogram with 500 events:
1949/// 1. unweighted histogram;
1950/// 2. weighted histogram;
1951/// 3. normalized residuals plot;
1952/// 4. normal Q-Q plot of residuals.
1953///
1954/// The value of the test statistic \f$ \chi^{2} \f$ is equal to
1955/// 32.33 with p-value equal to 0.029, therefore the hypothesis of identity of
1956/// the two histograms is rejected for 0.05 significant level. The behavior of
1957/// the normalized residuals plot (see Fig. 2c) and the normal Q-Q plot (see
1958/// Fig. 2d) of residuals are not regular and we can identify the outlier or
1959/// bin with a big influence on \f$ \chi^{2} \f$.
1960///
1961/// #### References:
1962///
1963/// - [1] Pearson, K., 1904. On the Theory of Contingency and Its Relation to
1964/// Association and Normal Correlation. Drapers' Co. Memoirs, Biometric
1965/// Series No. 1, London.
1966/// - [2] Gagunashvili, N., 2006. \f$ \sigma^{2} \f$ test for comparison
1967/// of weighted and unweighted histograms. Statistical Problems in Particle
1968/// Physics, Astrophysics and Cosmology, Proceedings of PHYSTAT05,
1969/// Oxford, UK, 12-15 September 2005, Imperial College Press, London, 43-44.
1970/// Gagunashvili,N., Comparison of weighted and unweighted histograms,
1971/// arXiv:physics/0605123, 2006.
1972/// - [3] Cramer, H., 1946. Mathematical methods of statistics.
1973/// Princeton University Press, Princeton.
1974/// - [4] Haberman, S.J., 1973. The analysis of residuals in cross-classified tables.
1975/// Biometrics 29, 205-220.
1976/// - [5] Lewontin, R.C. and Felsenstein, J., 1965. The robustness of homogeneity
1977/// test in 2xN tables. Biometrics 21, 19-33.
1978/// - [6] Seber, G.A.F., Lee, A.J., 2003, Linear Regression Analysis.
1979/// John Wiley & Sons Inc., New York.
1980
1981Double_t TH1::Chi2Test(const TH1* h2, Option_t *option, Double_t *res) const
1982{
1983 Double_t chi2 = 0;
1984 Int_t ndf = 0, igood = 0;
1985
1986 TString opt = option;
1987 opt.ToUpper();
1988
1990
1991 if(opt.Contains("P")) {
1992 printf("Chi2 = %f, Prob = %g, NDF = %d, igood = %d\n", chi2,prob,ndf,igood);
1993 }
1994 if(opt.Contains("CHI2/NDF")) {
1995 if (ndf == 0) return 0;
1996 return chi2/ndf;
1997 }
1998 if(opt.Contains("CHI2")) {
1999 return chi2;
2000 }
2001
2002 return prob;
2003}
2004
2005////////////////////////////////////////////////////////////////////////////////
2006/// The computation routine of the Chisquare test. For the method description,
2007/// see Chi2Test() function.
2008///
2009/// \return p-value
2010/// \param[in] h2 the second histogram
2011/// \param[in] option
2012/// - "UU" = experiment experiment comparison (unweighted-unweighted)
2013/// - "UW" = experiment MC comparison (unweighted-weighted). Note that the first
2014/// histogram should be unweighted
2015/// - "WW" = MC MC comparison (weighted-weighted)
2016/// - "NORM" = if one or both histograms is scaled
2017/// - "OF" = overflows included
2018/// - "UF" = underflows included
2019/// by default underflows and overflows are not included
2020/// \param[out] igood test output
2021/// - igood=0 - no problems
2022/// - For unweighted unweighted comparison
2023/// - igood=1'There is a bin in the 1st histogram with less than 1 event'
2024/// - igood=2'There is a bin in the 2nd histogram with less than 1 event'
2025/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2026/// - For unweighted weighted comparison
2027/// - igood=1'There is a bin in the 1st histogram with less then 1 event'
2028/// - igood=2'There is a bin in the 2nd histogram with less then 10 effective number of events'
2029/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2030/// - For weighted weighted comparison
2031/// - igood=1'There is a bin in the 1st histogram with less then 10 effective
2032/// number of events'
2033/// - igood=2'There is a bin in the 2nd histogram with less then 10 effective
2034/// number of events'
2035/// - igood=3'when the conditions for igood=1 and igood=2 are satisfied'
2036/// \param[out] chi2 chisquare of the test
2037/// \param[out] ndf number of degrees of freedom (important, when both histograms have the same empty bins)
2038/// \param[out] res normalized residuals for further analysis
2039
2041{
2042
2046
2047 Double_t sum1 = 0.0, sumw1 = 0.0;
2048 Double_t sum2 = 0.0, sumw2 = 0.0;
2049
2050 chi2 = 0.0;
2051 ndf = 0;
2052
2053 TString opt = option;
2054 opt.ToUpper();
2055
2056 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
2057
2058 const TAxis *xaxis1 = GetXaxis();
2059 const TAxis *xaxis2 = h2->GetXaxis();
2060 const TAxis *yaxis1 = GetYaxis();
2061 const TAxis *yaxis2 = h2->GetYaxis();
2062 const TAxis *zaxis1 = GetZaxis();
2063 const TAxis *zaxis2 = h2->GetZaxis();
2064
2065 Int_t nbinx1 = xaxis1->GetNbins();
2066 Int_t nbinx2 = xaxis2->GetNbins();
2067 Int_t nbiny1 = yaxis1->GetNbins();
2068 Int_t nbiny2 = yaxis2->GetNbins();
2069 Int_t nbinz1 = zaxis1->GetNbins();
2070 Int_t nbinz2 = zaxis2->GetNbins();
2071
2072 //check dimensions
2073 if (this->GetDimension() != h2->GetDimension() ){
2074 Error("Chi2TestX","Histograms have different dimensions.");
2075 return 0.0;
2076 }
2077
2078 //check number of channels
2079 if (nbinx1 != nbinx2) {
2080 Error("Chi2TestX","different number of x channels");
2081 }
2082 if (nbiny1 != nbiny2) {
2083 Error("Chi2TestX","different number of y channels");
2084 }
2085 if (nbinz1 != nbinz2) {
2086 Error("Chi2TestX","different number of z channels");
2087 }
2088
2089 //check for ranges
2090 i_start = j_start = k_start = 1;
2091 i_end = nbinx1;
2092 j_end = nbiny1;
2093 k_end = nbinz1;
2094
2095 if (xaxis1->TestBit(TAxis::kAxisRange)) {
2096 i_start = xaxis1->GetFirst();
2097 i_end = xaxis1->GetLast();
2098 }
2099 if (yaxis1->TestBit(TAxis::kAxisRange)) {
2100 j_start = yaxis1->GetFirst();
2101 j_end = yaxis1->GetLast();
2102 }
2103 if (zaxis1->TestBit(TAxis::kAxisRange)) {
2104 k_start = zaxis1->GetFirst();
2105 k_end = zaxis1->GetLast();
2106 }
2107
2108
2109 if (opt.Contains("OF")) {
2110 if (GetDimension() == 3) k_end = ++nbinz1;
2111 if (GetDimension() >= 2) j_end = ++nbiny1;
2112 if (GetDimension() >= 1) i_end = ++nbinx1;
2113 }
2114
2115 if (opt.Contains("UF")) {
2116 if (GetDimension() == 3) k_start = 0;
2117 if (GetDimension() >= 2) j_start = 0;
2118 if (GetDimension() >= 1) i_start = 0;
2119 }
2120
2121 ndf = (i_end - i_start + 1) * (j_end - j_start + 1) * (k_end - k_start + 1) - 1;
2122
2123 Bool_t comparisonUU = opt.Contains("UU");
2124 Bool_t comparisonUW = opt.Contains("UW");
2125 Bool_t comparisonWW = opt.Contains("WW");
2126 Bool_t scaledHistogram = opt.Contains("NORM");
2127
2128 if (scaledHistogram && !comparisonUU) {
2129 Info("Chi2TestX", "NORM option should be used together with UU option. It is ignored");
2130 }
2131
2132 // look at histo global bin content and effective entries
2133 Stat_t s[kNstat];
2134 GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
2135 Double_t sumBinContent1 = s[0];
2136 Double_t effEntries1 = (s[1] ? s[0] * s[0] / s[1] : 0.0);
2137
2138 h2->GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
2139 Double_t sumBinContent2 = s[0];
2140 Double_t effEntries2 = (s[1] ? s[0] * s[0] / s[1] : 0.0);
2141
2142 if (!comparisonUU && !comparisonUW && !comparisonWW ) {
2143 // deduce automatically from type of histogram
2146 else comparisonUW = true;
2147 }
2148 else comparisonWW = true;
2149 }
2150 // check unweighted histogram
2151 if (comparisonUW) {
2153 Warning("Chi2TestX","First histogram is not unweighted and option UW has been requested");
2154 }
2155 }
2156 if ( (!scaledHistogram && comparisonUU) ) {
2158 Warning("Chi2TestX","Both histograms are not unweighted and option UU has been requested");
2159 }
2160 }
2161
2162
2163 //get number of events in histogram
2165 for (Int_t i = i_start; i <= i_end; ++i) {
2166 for (Int_t j = j_start; j <= j_end; ++j) {
2167 for (Int_t k = k_start; k <= k_end; ++k) {
2168
2169 Int_t bin = GetBin(i, j, k);
2170
2172 Double_t cnt2 = h2->RetrieveBinContent(bin);
2174 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2175
2176 if (e1sq > 0.0) cnt1 = TMath::Floor(cnt1 * cnt1 / e1sq + 0.5); // avoid rounding errors
2177 else cnt1 = 0.0;
2178
2179 if (e2sq > 0.0) cnt2 = TMath::Floor(cnt2 * cnt2 / e2sq + 0.5); // avoid rounding errors
2180 else cnt2 = 0.0;
2181
2182 // sum contents
2183 sum1 += cnt1;
2184 sum2 += cnt2;
2185 sumw1 += e1sq;
2186 sumw2 += e2sq;
2187 }
2188 }
2189 }
2190 if (sumw1 <= 0.0 || sumw2 <= 0.0) {
2191 Error("Chi2TestX", "Cannot use option NORM when one histogram has all zero errors");
2192 return 0.0;
2193 }
2194
2195 } else {
2196 for (Int_t i = i_start; i <= i_end; ++i) {
2197 for (Int_t j = j_start; j <= j_end; ++j) {
2198 for (Int_t k = k_start; k <= k_end; ++k) {
2199
2200 Int_t bin = GetBin(i, j, k);
2201
2202 sum1 += RetrieveBinContent(bin);
2203 sum2 += h2->RetrieveBinContent(bin);
2204
2206 if ( comparisonUW || comparisonWW ) sumw2 += h2->GetBinErrorSqUnchecked(bin);
2207 }
2208 }
2209 }
2210 }
2211 //checks that the histograms are not empty
2212 if (sum1 == 0.0 || sum2 == 0.0) {
2213 Error("Chi2TestX","one histogram is empty");
2214 return 0.0;
2215 }
2216
2217 if ( comparisonWW && ( sumw1 <= 0.0 && sumw2 <= 0.0 ) ){
2218 Error("Chi2TestX","Hist1 and Hist2 have both all zero errors\n");
2219 return 0.0;
2220 }
2221
2222 //THE TEST
2223 Int_t m = 0, n = 0;
2224
2225 //Experiment - experiment comparison
2226 if (comparisonUU) {
2227 Double_t sum = sum1 + sum2;
2228 for (Int_t i = i_start; i <= i_end; ++i) {
2229 for (Int_t j = j_start; j <= j_end; ++j) {
2230 for (Int_t k = k_start; k <= k_end; ++k) {
2231
2232 Int_t bin = GetBin(i, j, k);
2233
2235 Double_t cnt2 = h2->RetrieveBinContent(bin);
2236
2237 if (scaledHistogram) {
2238 // scale bin value to effective bin entries
2240 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2241
2242 if (e1sq > 0) cnt1 = TMath::Floor(cnt1 * cnt1 / e1sq + 0.5); // avoid rounding errors
2243 else cnt1 = 0;
2244
2245 if (e2sq > 0) cnt2 = TMath::Floor(cnt2 * cnt2 / e2sq + 0.5); // avoid rounding errors
2246 else cnt2 = 0;
2247 }
2248
2249 if (Int_t(cnt1) == 0 && Int_t(cnt2) == 0) --ndf; // no data means one degree of freedom less
2250 else {
2251
2254 //Double_t nexp2 = binsum*sum2/sum;
2255
2256 if (res) res[i - i_start] = (cnt1 - nexp1) / TMath::Sqrt(nexp1);
2257
2258 if (cnt1 < 1) ++m;
2259 if (cnt2 < 1) ++n;
2260
2261 //Habermann correction for residuals
2262 Double_t correc = (1. - sum1 / sum) * (1. - cntsum / sum);
2263 if (res) res[i - i_start] /= TMath::Sqrt(correc);
2264
2265 Double_t delta = sum2 * cnt1 - sum1 * cnt2;
2266 chi2 += delta * delta / cntsum;
2267 }
2268 }
2269 }
2270 }
2271 chi2 /= sum1 * sum2;
2272
2273 // flag error only when of the two histogram is zero
2274 if (m) {
2275 igood += 1;
2276 Info("Chi2TestX","There is a bin in h1 with less than 1 event.\n");
2277 }
2278 if (n) {
2279 igood += 2;
2280 Info("Chi2TestX","There is a bin in h2 with less than 1 event.\n");
2281 }
2282
2284 return prob;
2285
2286 }
2287
2288 // unweighted - weighted comparison
2289 // case of error = 0 and content not zero is treated without problems by excluding second chi2 sum
2290 // and can be considered as a data-theory comparison
2291 if ( comparisonUW ) {
2292 for (Int_t i = i_start; i <= i_end; ++i) {
2293 for (Int_t j = j_start; j <= j_end; ++j) {
2294 for (Int_t k = k_start; k <= k_end; ++k) {
2295
2296 Int_t bin = GetBin(i, j, k);
2297
2299 Double_t cnt2 = h2->RetrieveBinContent(bin);
2300 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2301
2302 // case both histogram have zero bin contents
2303 if (cnt1 * cnt1 == 0 && cnt2 * cnt2 == 0) {
2304 --ndf; //no data means one degree of freedom less
2305 continue;
2306 }
2307
2308 // case weighted histogram has zero bin content and error
2309 if (cnt2 * cnt2 == 0 && e2sq == 0) {
2310 if (sumw2 > 0) {
2311 // use as approximated error as 1 scaled by a scaling ratio
2312 // estimated from the total sum weight and sum weight squared
2313 e2sq = sumw2 / sum2;
2314 }
2315 else {
2316 // return error because infinite discrepancy here:
2317 // bin1 != 0 and bin2 =0 in a histogram with all errors zero
2318 Error("Chi2TestX","Hist2 has in bin (%d,%d,%d) zero content and zero errors\n", i, j, k);
2319 chi2 = 0; return 0;
2320 }
2321 }
2322
2323 if (cnt1 < 1) m++;
2324 if (e2sq > 0 && cnt2 * cnt2 / e2sq < 10) n++;
2325
2326 Double_t var1 = sum2 * cnt2 - sum1 * e2sq;
2327 Double_t var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2328
2329 // if cnt1 is zero and cnt2 = 1 and sum1 = sum2 var1 = 0 && var2 == 0
2330 // approximate by incrementing cnt1
2331 // LM (this need to be fixed for numerical errors)
2332 while (var1 * var1 + cnt1 == 0 || var1 + var2 == 0) {
2333 sum1++;
2334 cnt1++;
2335 var1 = sum2 * cnt2 - sum1 * e2sq;
2336 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2337 }
2339
2340 while (var1 + var2 == 0) {
2341 sum1++;
2342 cnt1++;
2343 var1 = sum2 * cnt2 - sum1 * e2sq;
2344 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2345 while (var1 * var1 + cnt1 == 0 || var1 + var2 == 0) {
2346 sum1++;
2347 cnt1++;
2348 var1 = sum2 * cnt2 - sum1 * e2sq;
2349 var2 = var1 * var1 + 4. * sum2 * sum2 * cnt1 * e2sq;
2350 }
2352 }
2353
2354 Double_t probb = (var1 + var2) / (2. * sum2 * sum2);
2355
2358
2361
2362 chi2 += delta1 * delta1 / nexp1;
2363
2364 if (e2sq > 0) {
2365 chi2 += delta2 * delta2 / e2sq;
2366 }
2367
2368 if (res) {
2369 if (e2sq > 0) {
2370 Double_t temp1 = sum2 * e2sq / var2;
2371 Double_t temp2 = 1.0 + (sum1 * e2sq - sum2 * cnt2) / var2;
2372 temp2 = temp1 * temp1 * sum1 * probb * (1.0 - probb) + temp2 * temp2 * e2sq / 4.0;
2373 // invert sign here
2374 res[i - i_start] = - delta2 / TMath::Sqrt(temp2);
2375 }
2376 else
2377 res[i - i_start] = delta1 / TMath::Sqrt(nexp1);
2378 }
2379 }
2380 }
2381 }
2382
2383 if (m) {
2384 igood += 1;
2385 Info("Chi2TestX","There is a bin in h1 with less than 1 event.\n");
2386 }
2387 if (n) {
2388 igood += 2;
2389 Info("Chi2TestX","There is a bin in h2 with less than 10 effective events.\n");
2390 }
2391
2393
2394 return prob;
2395 }
2396
2397 // weighted - weighted comparison
2398 if (comparisonWW) {
2399 for (Int_t i = i_start; i <= i_end; ++i) {
2400 for (Int_t j = j_start; j <= j_end; ++j) {
2401 for (Int_t k = k_start; k <= k_end; ++k) {
2402
2403 Int_t bin = GetBin(i, j, k);
2405 Double_t cnt2 = h2->RetrieveBinContent(bin);
2407 Double_t e2sq = h2->GetBinErrorSqUnchecked(bin);
2408
2409 // case both histogram have zero bin contents
2410 // (use square of content to avoid numerical errors)
2411 if (cnt1 * cnt1 == 0 && cnt2 * cnt2 == 0) {
2412 --ndf; //no data means one degree of freedom less
2413 continue;
2414 }
2415
2416 if (e1sq == 0 && e2sq == 0) {
2417 // cannot treat case of booth histogram have zero zero errors
2418 Error("Chi2TestX","h1 and h2 both have bin %d,%d,%d with all zero errors\n", i,j,k);
2419 chi2 = 0; return 0;
2420 }
2421
2422 Double_t sigma = sum1 * sum1 * e2sq + sum2 * sum2 * e1sq;
2423 Double_t delta = sum2 * cnt1 - sum1 * cnt2;
2424 chi2 += delta * delta / sigma;
2425
2426 if (res) {
2427 Double_t temp = cnt1 * sum1 * e2sq + cnt2 * sum2 * e1sq;
2428 Double_t probb = temp / sigma;
2429 Double_t z = 0;
2430 if (e1sq > e2sq) {
2431 Double_t d1 = cnt1 - sum1 * probb;
2432 Double_t s1 = e1sq * ( 1. - e2sq * sum1 * sum1 / sigma );
2433 z = d1 / TMath::Sqrt(s1);
2434 }
2435 else {
2436 Double_t d2 = cnt2 - sum2 * probb;
2437 Double_t s2 = e2sq * ( 1. - e1sq * sum2 * sum2 / sigma );
2438 z = -d2 / TMath::Sqrt(s2);
2439 }
2440 res[i - i_start] = z;
2441 }
2442
2443 if (e1sq > 0 && cnt1 * cnt1 / e1sq < 10) m++;
2444 if (e2sq > 0 && cnt2 * cnt2 / e2sq < 10) n++;
2445 }
2446 }
2447 }
2448 if (m) {
2449 igood += 1;
2450 Info("Chi2TestX","There is a bin in h1 with less than 10 effective events.\n");
2451 }
2452 if (n) {
2453 igood += 2;
2454 Info("Chi2TestX","There is a bin in h2 with less than 10 effective events.\n");
2455 }
2457 return prob;
2458 }
2459 return 0;
2460}
2461////////////////////////////////////////////////////////////////////////////////
2462/// Compute and return the chisquare of this histogram with respect to a function
2463/// The chisquare is computed by weighting each histogram point by the bin error
2464/// By default the full range of the histogram is used, unless TAxis::SetRange or TAxis::SetRangeUser was called before.
2465/// Use option "R" for restricting the chisquare calculation to the given range of the function
2466/// Use option "L" for using the chisquare based on the poisson likelihood (Baker-Cousins Chisquare)
2467/// Use option "P" for using the Pearson chisquare based on the expected bin errors
2468
2470{
2471 if (!func) {
2472 Error("Chisquare","Function pointer is Null - return -1");
2473 return -1;
2474 }
2475
2476 TString opt(option); opt.ToUpper();
2477 bool useRange = opt.Contains("R");
2478 ROOT::Fit::EChisquareType type = ROOT::Fit::EChisquareType::kNeyman; // default chi2 with observed error
2481
2482 return ROOT::Fit::Chisquare(*this, *func, useRange, type);
2483}
2484
2485////////////////////////////////////////////////////////////////////////////////
2486/// Remove all the content from the underflow and overflow bins, without changing the number of entries
2487/// After calling this method, every undeflow and overflow bins will have content 0.0
2488/// The Sumw2 is also cleared, since there is no more content in the bins
2489
2491{
2492 for (Int_t bin = 0; bin < fNcells; ++bin)
2493 if (IsBinUnderflow(bin) || IsBinOverflow(bin)) {
2494 UpdateBinContent(bin, 0.0);
2495 if (fSumw2.fN) fSumw2.fArray[bin] = 0.0;
2496 }
2497}
2498
2499////////////////////////////////////////////////////////////////////////////////
2500/// Compute integral (normalized cumulative sum of bins) w/o under/overflows
2501/// The result is stored in fIntegral and used by the GetRandom functions.
2502/// This function is automatically called by GetRandom when the fIntegral
2503/// array does not exist or when the number of entries in the histogram
2504/// has changed since the previous call to GetRandom.
2505/// The resulting integral is normalized to 1.
2506/// If the routine is called with the onlyPositive flag set an error will
2507/// be produced in case of negative bin content and a NaN value returned
2508/// \param onlyPositive If set to true, an error will be produced and NaN will be returned
2509/// when a bin with negative number of entries is encountered.
2510/// \param option
2511/// - `""` (default) Compute the cumulative density function assuming current bin contents represent counts.
2512/// - `"width"` Computes the cumulative density function assuming current bin contents represent densities.
2513/// \return 1 if success, 0 if integral is zero, NAN if onlyPositive-test fails
2514
2516{
2517 if (fBuffer) BufferEmpty();
2519 // delete previously computed integral (if any)
2520 if (fIntegral) delete [] fIntegral;
2521
2522 // - Allocate space to store the integral and compute integral
2526 Int_t nbins = nbinsx * nbinsy * nbinsz;
2527
2528 fIntegral = new Double_t[nbins + 2];
2529 Int_t ibin = 0; fIntegral[ibin] = 0;
2530
2531 for (Int_t binz=1; binz <= nbinsz; ++binz) {
2533 for (Int_t biny=1; biny <= nbinsy; ++biny) {
2535 for (Int_t binx=1; binx <= nbinsx; ++binx) {
2537 ++ibin;
2539 if (useArea)
2540 y *= xWidth * yWidth * zWidth;
2541
2542 if (onlyPositive && y < 0) {
2543 Error("ComputeIntegral","Bin content is negative - return a NaN value");
2544 fIntegral[nbins] = TMath::QuietNaN();
2545 break;
2546 }
2547 fIntegral[ibin] = fIntegral[ibin - 1] + y;
2548 }
2549 }
2550 }
2551
2552 // - Normalize integral to 1
2553 if (fIntegral[nbins] == 0 ) {
2554 Error("ComputeIntegral", "Integral = 0, no hits in histogram bins (excluding over/underflow).");
2555 return 0;
2556 }
2557 for (Int_t bin=1; bin <= nbins; ++bin) fIntegral[bin] /= fIntegral[nbins];
2558 fIntegral[nbins+1] = fEntries;
2559 return fIntegral[nbins];
2560}
2561
2562////////////////////////////////////////////////////////////////////////////////
2563/// Return a pointer to the array of bins integral.
2564/// if the pointer fIntegral is null, TH1::ComputeIntegral is called
2565/// The array dimension is the number of bins in the histograms
2566/// including underflow and overflow (fNCells)
2567/// the last value integral[fNCells] is set to the number of entries of
2568/// the histogram
2569
2571{
2572 if (!fIntegral) ComputeIntegral();
2573 return fIntegral;
2574}
2575
2576////////////////////////////////////////////////////////////////////////////////
2577/// Return a pointer to a histogram containing the cumulative content.
2578/// The cumulative can be computed both in the forward (default) or backward
2579/// direction; the name of the new histogram is constructed from
2580/// the name of this histogram with the suffix "suffix" appended provided
2581/// by the user. If not provided a default suffix="_cumulative" is used.
2582///
2583/// The cumulative distribution is formed by filling each bin of the
2584/// resulting histogram with the sum of that bin and all previous
2585/// (forward == kTRUE) or following (forward = kFALSE) bins.
2586///
2587/// Note: while cumulative distributions make sense in one dimension, you
2588/// may not be getting what you expect in more than 1D because the concept
2589/// of a cumulative distribution is much trickier to define; make sure you
2590/// understand the order of summation before you use this method with
2591/// histograms of dimension >= 2.
2592///
2593/// Note 2: By default the cumulative is computed from bin 1 to Nbins
2594/// If an axis range is set, values between the minimum and maximum of the range
2595/// are set.
2596/// Setting an axis range can also be used for including underflow and overflow in
2597/// the cumulative (e.g. by setting h->GetXaxis()->SetRange(0, h->GetNbinsX()+1); )
2599
2600TH1 *TH1::GetCumulative(Bool_t forward, const char* suffix) const
2601{
2602 const Int_t firstX = fXaxis.GetFirst();
2603 const Int_t lastX = fXaxis.GetLast();
2604 const Int_t firstY = (fDimension > 1) ? fYaxis.GetFirst() : 1;
2605 const Int_t lastY = (fDimension > 1) ? fYaxis.GetLast() : 1;
2606 const Int_t firstZ = (fDimension > 1) ? fZaxis.GetFirst() : 1;
2607 const Int_t lastZ = (fDimension > 1) ? fZaxis.GetLast() : 1;
2608
2610 hintegrated->Reset();
2611 Double_t sum = 0.;
2612 Double_t esum = 0;
2613 if (forward) { // Forward computation
2614 for (Int_t binz = firstZ; binz <= lastZ; ++binz) {
2615 for (Int_t biny = firstY; biny <= lastY; ++biny) {
2616 for (Int_t binx = firstX; binx <= lastX; ++binx) {
2617 const Int_t bin = hintegrated->GetBin(binx, biny, binz);
2618 sum += RetrieveBinContent(bin);
2619 hintegrated->AddBinContent(bin, sum);
2620 if (fSumw2.fN) {
2622 hintegrated->fSumw2.fArray[bin] = esum;
2623 }
2624 }
2625 }
2626 }
2627 } else { // Backward computation
2628 for (Int_t binz = lastZ; binz >= firstZ; --binz) {
2629 for (Int_t biny = lastY; biny >= firstY; --biny) {
2630 for (Int_t binx = lastX; binx >= firstX; --binx) {
2631 const Int_t bin = hintegrated->GetBin(binx, biny, binz);
2632 sum += RetrieveBinContent(bin);
2633 hintegrated->AddBinContent(bin, sum);
2634 if (fSumw2.fN) {
2636 hintegrated->fSumw2.fArray[bin] = esum;
2637 }
2638 }
2639 }
2640 }
2641 }
2642 return hintegrated;
2643}
2644
2645////////////////////////////////////////////////////////////////////////////////
2646/// Copy this histogram structure to newth1.
2647///
2648/// Note that this function does not copy the list of associated functions.
2649/// Use TObject::Clone to make a full copy of a histogram.
2650///
2651/// Note also that the histogram it will be created in gDirectory (if AddDirectoryStatus()=true)
2652/// or will not be added to any directory if AddDirectoryStatus()=false
2653/// independently of the current directory stored in the original histogram
2654
2655void TH1::Copy(TObject &obj) const
2656{
2657 if (((TH1&)obj).fDirectory) {
2658 // We are likely to change the hash value of this object
2659 // with TNamed::Copy, to keep things correct, we need to
2660 // clean up its existing entries.
2661 ((TH1&)obj).fDirectory->Remove(&obj);
2662 ((TH1&)obj).fDirectory = nullptr;
2663 }
2664 TNamed::Copy(obj);
2665 ((TH1&)obj).fDimension = fDimension;
2666 ((TH1&)obj).fNormFactor= fNormFactor;
2667 ((TH1&)obj).fNcells = fNcells;
2668 ((TH1&)obj).fBarOffset = fBarOffset;
2669 ((TH1&)obj).fBarWidth = fBarWidth;
2670 ((TH1&)obj).fOption = fOption;
2671 ((TH1&)obj).fBinStatErrOpt = fBinStatErrOpt;
2672 ((TH1&)obj).fBufferSize= fBufferSize;
2673 // copy the Buffer
2674 // delete first a previously existing buffer
2675 if (((TH1&)obj).fBuffer != nullptr) {
2676 delete [] ((TH1&)obj).fBuffer;
2677 ((TH1&)obj).fBuffer = nullptr;
2678 }
2679 if (fBuffer) {
2680 Double_t *buf = new Double_t[fBufferSize];
2681 for (Int_t i=0;i<fBufferSize;i++) buf[i] = fBuffer[i];
2682 // obj.fBuffer has been deleted before
2683 ((TH1&)obj).fBuffer = buf;
2684 }
2685
2686 // copy bin contents (this should be done by the derived classes, since TH1 does not store the bin content)
2687 // Do this in case derived from TArray
2688 TArray* a = dynamic_cast<TArray*>(&obj);
2689 if (a) {
2690 a->Set(fNcells);
2691 for (Int_t i = 0; i < fNcells; i++)
2693 }
2694
2695 ((TH1&)obj).fEntries = fEntries;
2696
2697 // which will call BufferEmpty(0) and set fBuffer[0] to a Maybe one should call
2698 // assignment operator on the TArrayD
2699
2700 ((TH1&)obj).fTsumw = fTsumw;
2701 ((TH1&)obj).fTsumw2 = fTsumw2;
2702 ((TH1&)obj).fTsumwx = fTsumwx;
2703 ((TH1&)obj).fTsumwx2 = fTsumwx2;
2704 ((TH1&)obj).fMaximum = fMaximum;
2705 ((TH1&)obj).fMinimum = fMinimum;
2706
2707 TAttLine::Copy(((TH1&)obj));
2708 TAttFill::Copy(((TH1&)obj));
2709 TAttMarker::Copy(((TH1&)obj));
2710 fXaxis.Copy(((TH1&)obj).fXaxis);
2711 fYaxis.Copy(((TH1&)obj).fYaxis);
2712 fZaxis.Copy(((TH1&)obj).fZaxis);
2713 ((TH1&)obj).fXaxis.SetParent(&obj);
2714 ((TH1&)obj).fYaxis.SetParent(&obj);
2715 ((TH1&)obj).fZaxis.SetParent(&obj);
2716 fContour.Copy(((TH1&)obj).fContour);
2717 fSumw2.Copy(((TH1&)obj).fSumw2);
2718 // fFunctions->Copy(((TH1&)obj).fFunctions);
2719 // when copying an histogram if the AddDirectoryStatus() is true it
2720 // will be added to gDirectory independently of the fDirectory stored.
2721 // and if the AddDirectoryStatus() is false it will not be added to
2722 // any directory (fDirectory = nullptr)
2723 if (fgAddDirectory && gDirectory) {
2724 gDirectory->Append(&obj);
2725 ((TH1&)obj).fFunctions->UseRWLock();
2726 ((TH1&)obj).fDirectory = gDirectory;
2727 } else
2728 ((TH1&)obj).fDirectory = nullptr;
2729
2730}
2731
2732////////////////////////////////////////////////////////////////////////////////
2733/// Make a complete copy of the underlying object. If 'newname' is set,
2734/// the copy's name will be set to that name.
2735
2736TObject* TH1::Clone(const char* newname) const
2737{
2738 TH1* obj = (TH1*)IsA()->GetNew()(nullptr);
2739 Copy(*obj);
2740
2741 // Now handle the parts that Copy doesn't do
2742 if(fFunctions) {
2743 // The Copy above might have published 'obj' to the ListOfCleanups.
2744 // Clone can call RecursiveRemove, for example via TCheckHashRecursiveRemoveConsistency
2745 // when dictionary information is initialized, so we need to
2746 // keep obj->fFunction valid during its execution and
2747 // protect the update with the write lock.
2748
2749 // Reset stats parent - else cloning the stats will clone this histogram, too.
2750 auto oldstats = dynamic_cast<TVirtualPaveStats*>(fFunctions->FindObject("stats"));
2751 TObject *oldparent = nullptr;
2752 if (oldstats) {
2753 oldparent = oldstats->GetParent();
2754 oldstats->SetParent(nullptr);
2755 }
2756
2757 auto newlist = (TList*)fFunctions->Clone();
2758
2759 if (oldstats)
2760 oldstats->SetParent(oldparent);
2761 auto newstats = dynamic_cast<TVirtualPaveStats*>(obj->fFunctions->FindObject("stats"));
2762 if (newstats)
2763 newstats->SetParent(obj);
2764
2765 auto oldlist = obj->fFunctions;
2766 {
2768 obj->fFunctions = newlist;
2769 }
2770 delete oldlist;
2771 }
2772 if(newname && strlen(newname) ) {
2773 obj->SetName(newname);
2774 }
2775 return obj;
2776}
2777
2778////////////////////////////////////////////////////////////////////////////////
2779/// Perform the automatic addition of the histogram to the given directory
2780///
2781/// Note this function is called in place when the semantic requires
2782/// this object to be added to a directory (I.e. when being read from
2783/// a TKey or being Cloned)
2784
2786{
2788 if (addStatus) {
2789 SetDirectory(dir);
2790 if (dir) {
2792 }
2793 }
2794}
2795
2796////////////////////////////////////////////////////////////////////////////////
2797/// Compute distance from point px,py to a line.
2798///
2799/// Compute the closest distance of approach from point px,py to elements
2800/// of a histogram.
2801/// The distance is computed in pixels units.
2802///
2803/// #### Algorithm:
2804/// Currently, this simple model computes the distance from the mouse
2805/// to the histogram contour only.
2806
2808{
2809 if (!fPainter) return 9999;
2810 return fPainter->DistancetoPrimitive(px,py);
2811}
2812
2813////////////////////////////////////////////////////////////////////////////////
2814/// Performs the operation: `this = this/(c1*f1)`
2815/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
2816///
2817/// Only bins inside the function range are recomputed.
2818/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2819/// you should call Sumw2 before making this operation.
2820/// This is particularly important if you fit the histogram after TH1::Divide
2821///
2822/// The function return kFALSE if the divide operation failed
2823
2825{
2826 if (!f1) {
2827 Error("Divide","Attempt to divide by a non-existing function");
2828 return kFALSE;
2829 }
2830
2831 // delete buffer if it is there since it will become invalid
2832 if (fBuffer) BufferEmpty(1);
2833
2834 Int_t nx = GetNbinsX() + 2; // normal bins + uf / of
2835 Int_t ny = GetNbinsY() + 2;
2836 Int_t nz = GetNbinsZ() + 2;
2837 if (fDimension < 2) ny = 1;
2838 if (fDimension < 3) nz = 1;
2839
2840
2841 SetMinimum();
2842 SetMaximum();
2843
2844 // - Loop on bins (including underflows/overflows)
2845 Int_t bin, binx, biny, binz;
2846 Double_t cu, w;
2847 Double_t xx[3];
2848 Double_t *params = nullptr;
2849 f1->InitArgs(xx,params);
2850 for (binz = 0; binz < nz; ++binz) {
2851 xx[2] = fZaxis.GetBinCenter(binz);
2852 for (biny = 0; biny < ny; ++biny) {
2853 xx[1] = fYaxis.GetBinCenter(biny);
2854 for (binx = 0; binx < nx; ++binx) {
2855 xx[0] = fXaxis.GetBinCenter(binx);
2856 if (!f1->IsInside(xx)) continue;
2858 bin = binx + nx * (biny + ny * binz);
2859 cu = c1 * f1->EvalPar(xx);
2860 if (TF1::RejectedPoint()) continue;
2861 if (cu) w = RetrieveBinContent(bin) / cu;
2862 else w = 0;
2863 UpdateBinContent(bin, w);
2864 if (fSumw2.fN) {
2865 if (cu != 0) fSumw2.fArray[bin] = GetBinErrorSqUnchecked(bin) / (cu * cu);
2866 else fSumw2.fArray[bin] = 0;
2867 }
2868 }
2869 }
2870 }
2871 ResetStats();
2872 return kTRUE;
2873}
2874
2875////////////////////////////////////////////////////////////////////////////////
2876/// Divide this histogram by h1.
2877///
2878/// `this = this/h1`
2879/// if errors are defined (see TH1::Sumw2), errors are also recalculated.
2880/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
2881/// if not already set.
2882/// The resulting errors are calculated assuming uncorrelated histograms.
2883/// See the other TH1::Divide that gives the possibility to optionally
2884/// compute binomial errors.
2885///
2886/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2887/// you should call Sumw2 before making this operation.
2888/// This is particularly important if you fit the histogram after TH1::Scale
2889///
2890/// The function return kFALSE if the divide operation failed
2891
2892Bool_t TH1::Divide(const TH1 *h1)
2893{
2894 if (!h1) {
2895 Error("Divide", "Input histogram passed does not exist (NULL).");
2896 return kFALSE;
2897 }
2898
2899 // delete buffer if it is there since it will become invalid
2900 if (fBuffer) BufferEmpty(1);
2901
2902 if (LoggedInconsistency("Divide", this, h1) >= kDifferentNumberOfBins) {
2903 return false;
2904 }
2905
2906 // Create Sumw2 if h1 has Sumw2 set
2907 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
2908
2909 // - Loop on bins (including underflows/overflows)
2910 for (Int_t i = 0; i < fNcells; ++i) {
2913 if (c1) UpdateBinContent(i, c0 / c1);
2914 else UpdateBinContent(i, 0);
2915
2916 if(fSumw2.fN) {
2917 if (c1 == 0) { fSumw2.fArray[i] = 0; continue; }
2918 Double_t c1sq = c1 * c1;
2919 fSumw2.fArray[i] = (GetBinErrorSqUnchecked(i) * c1sq + h1->GetBinErrorSqUnchecked(i) * c0 * c0) / (c1sq * c1sq);
2920 }
2921 }
2922 ResetStats();
2923 return kTRUE;
2924}
2925
2926////////////////////////////////////////////////////////////////////////////////
2927/// Replace contents of this histogram by the division of h1 by h2.
2928///
2929/// `this = c1*h1/(c2*h2)`
2930///
2931/// If errors are defined (see TH1::Sumw2), errors are also recalculated
2932/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
2933/// if not already set.
2934/// The resulting errors are calculated assuming uncorrelated histograms.
2935/// However, if option ="B" is specified, Binomial errors are computed.
2936/// In this case c1 and c2 do not make real sense and they are ignored.
2937///
2938/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
2939/// you should call Sumw2 before making this operation.
2940/// This is particularly important if you fit the histogram after TH1::Divide
2941///
2942/// Please note also that in the binomial case errors are calculated using standard
2943/// binomial statistics, which means when b1 = b2, the error is zero.
2944/// If you prefer to have efficiency errors not going to zero when the efficiency is 1, you must
2945/// use the function TGraphAsymmErrors::BayesDivide, which will return an asymmetric and non-zero lower
2946/// error for the case b1=b2.
2947///
2948/// The function return kFALSE if the divide operation failed
2949
2951{
2952
2953 TString opt = option;
2954 opt.ToLower();
2955 Bool_t binomial = kFALSE;
2956 if (opt.Contains("b")) binomial = kTRUE;
2957 if (!h1 || !h2) {
2958 Error("Divide", "At least one of the input histograms passed does not exist (NULL).");
2959 return kFALSE;
2960 }
2961
2962 // delete buffer if it is there since it will become invalid
2963 if (fBuffer) BufferEmpty(1);
2964
2965 if (LoggedInconsistency("Divide", this, h1) >= kDifferentNumberOfBins ||
2966 LoggedInconsistency("Divide", h1, h2) >= kDifferentNumberOfBins) {
2967 return false;
2968 }
2969
2970 if (!c2) {
2971 Error("Divide","Coefficient of dividing histogram cannot be zero");
2972 return kFALSE;
2973 }
2974
2975 // Create Sumw2 if h1 or h2 have Sumw2 set, or if binomial errors are explicitly requested
2976 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0 || binomial)) Sumw2();
2977
2978 SetMinimum();
2979 SetMaximum();
2980
2981 // - Loop on bins (including underflows/overflows)
2982 for (Int_t i = 0; i < fNcells; ++i) {
2984 Double_t b2 = h2->RetrieveBinContent(i);
2985 if (b2) UpdateBinContent(i, c1 * b1 / (c2 * b2));
2986 else UpdateBinContent(i, 0);
2987
2988 if (fSumw2.fN) {
2989 if (b2 == 0) { fSumw2.fArray[i] = 0; continue; }
2990 Double_t b1sq = b1 * b1; Double_t b2sq = b2 * b2;
2991 Double_t c1sq = c1 * c1; Double_t c2sq = c2 * c2;
2993 Double_t e2sq = h2->GetBinErrorSqUnchecked(i);
2994 if (binomial) {
2995 if (b1 != b2) {
2996 // in the case of binomial statistics c1 and c2 must be 1 otherwise it does not make sense
2997 // c1 and c2 are ignored
2998 //fSumw2.fArray[bin] = TMath::Abs(w*(1-w)/(c2*b2));//this is the formula in Hbook/Hoper1
2999 //fSumw2.fArray[bin] = TMath::Abs(w*(1-w)/b2); // old formula from G. Flucke
3000 // formula which works also for weighted histogram (see http://root-forum.cern.ch/viewtopic.php?t=3753 )
3001 fSumw2.fArray[i] = TMath::Abs( ( (1. - 2.* b1 / b2) * e1sq + b1sq * e2sq / b2sq ) / b2sq );
3002 } else {
3003 //in case b1=b2 error is zero
3004 //use TGraphAsymmErrors::BayesDivide for getting the asymmetric error not equal to zero
3005 fSumw2.fArray[i] = 0;
3006 }
3007 } else {
3008 fSumw2.fArray[i] = c1sq * c2sq * (e1sq * b2sq + e2sq * b1sq) / (c2sq * c2sq * b2sq * b2sq);
3009 }
3010 }
3011 }
3012 ResetStats();
3013 if (binomial)
3014 // in case of binomial division use denominator for number of entries
3015 SetEntries ( h2->GetEntries() );
3016
3017 return kTRUE;
3018}
3019
3020////////////////////////////////////////////////////////////////////////////////
3021/// Draw this histogram with options.
3022///
3023/// Histograms are drawn via the THistPainter class. Each histogram has
3024/// a pointer to its own painter (to be usable in a multithreaded program).
3025/// The same histogram can be drawn with different options in different pads.
3026/// When a histogram drawn in a pad is deleted, the histogram is
3027/// automatically removed from the pad or pads where it was drawn.
3028/// If a histogram is drawn in a pad, then filled again, the new status
3029/// of the histogram will be automatically shown in the pad next time
3030/// the pad is updated. One does not need to redraw the histogram.
3031/// To draw the current version of a histogram in a pad, one can use
3032/// `h->DrawCopy();`
3033/// This makes a clone of the histogram. Once the clone is drawn, the original
3034/// histogram may be modified or deleted without affecting the aspect of the
3035/// clone.
3036/// By default, TH1::Draw clears the current pad.
3037///
3038/// One can use TH1::SetMaximum and TH1::SetMinimum to force a particular
3039/// value for the maximum or the minimum scale on the plot.
3040///
3041/// TH1::UseCurrentStyle can be used to change all histogram graphics
3042/// attributes to correspond to the current selected style.
3043/// This function must be called for each histogram.
3044/// In case one reads and draws many histograms from a file, one can force
3045/// the histograms to inherit automatically the current graphics style
3046/// by calling before gROOT->ForceStyle();
3047///
3048/// See the THistPainter class for a description of all the drawing options.
3049
3051{
3052 TString opt1 = option; opt1.ToLower();
3054 Int_t index = opt1.Index("same");
3055
3056 // Check if the string "same" is part of a TCutg name.
3057 if (index>=0) {
3058 Int_t indb = opt1.Index("[");
3059 if (indb>=0) {
3060 Int_t indk = opt1.Index("]");
3061 if (index>indb && index<indk) index = -1;
3062 }
3063 }
3064
3065 // If there is no pad or an empty pad the "same" option is ignored.
3066 if (gPad) {
3067 if (!gPad->IsEditable()) gROOT->MakeDefCanvas();
3068 if (index>=0) {
3069 if (gPad->GetX1() == 0 && gPad->GetX2() == 1 &&
3070 gPad->GetY1() == 0 && gPad->GetY2() == 1 &&
3071 gPad->GetListOfPrimitives()->GetSize()==0) opt2.Remove(index,4);
3072 } else {
3073 //the following statement is necessary in case one attempts to draw
3074 //a temporary histogram already in the current pad
3075 if (TestBit(kCanDelete)) gPad->Remove(this);
3076 gPad->Clear();
3077 }
3078 gPad->IncrementPaletteColor(1, opt1);
3079 } else {
3080 if (index>=0) opt2.Remove(index,4);
3081 }
3082
3083 AppendPad(opt2.Data());
3084}
3085
3086////////////////////////////////////////////////////////////////////////////////
3087/// Copy this histogram and Draw in the current pad.
3088///
3089/// Once the histogram is drawn into the pad, any further modification
3090/// using graphics input will be made on the copy of the histogram,
3091/// and not to the original object.
3092/// By default a postfix "_copy" is added to the histogram name. Pass an empty postfix in case
3093/// you want to draw a histogram with the same name
3094///
3095/// See Draw for the list of options
3096
3097TH1 *TH1::DrawCopy(Option_t *option, const char * name_postfix) const
3098{
3099 TString opt = option;
3100 opt.ToLower();
3101 if (gPad && !opt.Contains("same")) gPad->Clear();
3103 if (name_postfix) newName.Form("%s%s", GetName(), name_postfix);
3104 TH1 *newth1 = (TH1 *)Clone(newName.Data());
3105 newth1->SetDirectory(nullptr);
3106 newth1->SetBit(kCanDelete);
3107 if (gPad) gPad->IncrementPaletteColor(1, opt);
3108
3109 newth1->AppendPad(option);
3110 return newth1;
3111}
3112
3113////////////////////////////////////////////////////////////////////////////////
3114/// Draw a normalized copy of this histogram.
3115///
3116/// A clone of this histogram is normalized to norm and drawn with option.
3117/// A pointer to the normalized histogram is returned.
3118/// The contents of the histogram copy are scaled such that the new
3119/// sum of weights (excluding under and overflow) is equal to norm.
3120/// Note that the returned normalized histogram is not added to the list
3121/// of histograms in the current directory in memory.
3122/// It is the user's responsibility to delete this histogram.
3123/// The kCanDelete bit is set for the returned object. If a pad containing
3124/// this copy is cleared, the histogram will be automatically deleted.
3125///
3126/// See Draw for the list of options
3127
3129{
3131 if (sum == 0) {
3132 Error("DrawNormalized","Sum of weights is null. Cannot normalize histogram: %s",GetName());
3133 return nullptr;
3134 }
3137 TH1 *h = (TH1*)Clone();
3139 // in case of drawing with error options - scale correctly the error
3140 TString opt(option); opt.ToUpper();
3141 if (fSumw2.fN == 0) {
3142 h->Sumw2();
3143 // do not use in this case the "Error option " for drawing which is enabled by default since the normalized histogram has now errors
3144 if (opt.IsNull() || opt == "SAME") opt += "HIST";
3145 }
3146 h->Scale(norm/sum);
3147 if (TMath::Abs(fMaximum+1111) > 1e-3) h->SetMaximum(fMaximum*norm/sum);
3148 if (TMath::Abs(fMinimum+1111) > 1e-3) h->SetMinimum(fMinimum*norm/sum);
3149 h->Draw(opt);
3151 return h;
3152}
3153
3154////////////////////////////////////////////////////////////////////////////////
3155/// Display a panel with all histogram drawing options.
3156///
3157/// See class TDrawPanelHist for example
3158
3159void TH1::DrawPanel()
3160{
3161 if (!fPainter) {Draw(); if (gPad) gPad->Update();}
3162 if (fPainter) fPainter->DrawPanel();
3163}
3164
3165////////////////////////////////////////////////////////////////////////////////
3166/// Evaluate function f1 at the center of bins of this histogram.
3167///
3168/// - If option "R" is specified, the function is evaluated only
3169/// for the bins included in the function range.
3170/// - If option "A" is specified, the value of the function is added to the
3171/// existing bin contents
3172/// - If option "S" is specified, the value of the function is used to
3173/// generate a value, distributed according to the Poisson
3174/// distribution, with f1 as the mean.
3175
3177{
3178 Double_t x[3];
3179 Int_t range, stat, add;
3180 if (!f1) return;
3181
3182 TString opt = option;
3183 opt.ToLower();
3184 if (opt.Contains("a")) add = 1;
3185 else add = 0;
3186 if (opt.Contains("s")) stat = 1;
3187 else stat = 0;
3188 if (opt.Contains("r")) range = 1;
3189 else range = 0;
3190
3191 // delete buffer if it is there since it will become invalid
3192 if (fBuffer) BufferEmpty(1);
3193
3197 if (!add) Reset();
3198
3199 for (Int_t binz = 1; binz <= nbinsz; ++binz) {
3200 x[2] = fZaxis.GetBinCenter(binz);
3201 for (Int_t biny = 1; biny <= nbinsy; ++biny) {
3202 x[1] = fYaxis.GetBinCenter(biny);
3203 for (Int_t binx = 1; binx <= nbinsx; ++binx) {
3204 Int_t bin = GetBin(binx,biny,binz);
3205 x[0] = fXaxis.GetBinCenter(binx);
3206 if (range && !f1->IsInside(x)) continue;
3207 Double_t fu = f1->Eval(x[0], x[1], x[2]);
3208 if (stat) fu = gRandom->PoissonD(fu);
3209 AddBinContent(bin, fu);
3210 if (fSumw2.fN) fSumw2.fArray[bin] += TMath::Abs(fu);
3211 }
3212 }
3213 }
3214}
3215
3216////////////////////////////////////////////////////////////////////////////////
3217/// Execute action corresponding to one event.
3218///
3219/// This member function is called when a histogram is clicked with the locator
3220///
3221/// If Left button clicked on the bin top value, then the content of this bin
3222/// is modified according to the new position of the mouse when it is released.
3223
3224void TH1::ExecuteEvent(Int_t event, Int_t px, Int_t py)
3225{
3226 if (fPainter) fPainter->ExecuteEvent(event, px, py);
3227}
3228
3229////////////////////////////////////////////////////////////////////////////////
3230/// This function allows to do discrete Fourier transforms of TH1 and TH2.
3231/// Available transform types and flags are described below.
3232///
3233/// To extract more information about the transform, use the function
3234/// TVirtualFFT::GetCurrentTransform() to get a pointer to the current
3235/// transform object.
3236///
3237/// \param[out] h_output histogram for the output. If a null pointer is passed, a new histogram is created
3238/// and returned, otherwise, the provided histogram is used and should be big enough
3239/// \param[in] option option parameters consists of 3 parts:
3240/// - option on what to return
3241/// - "RE" - returns a histogram of the real part of the output
3242/// - "IM" - returns a histogram of the imaginary part of the output
3243/// - "MAG"- returns a histogram of the magnitude of the output
3244/// - "PH" - returns a histogram of the phase of the output
3245/// - option of transform type
3246/// - "R2C" - real to complex transforms - default
3247/// - "R2HC" - real to halfcomplex (special format of storing output data,
3248/// results the same as for R2C)
3249/// - "DHT" - discrete Hartley transform
3250/// real to real transforms (sine and cosine):
3251/// - "R2R_0", "R2R_1", "R2R_2", "R2R_3" - discrete cosine transforms of types I-IV
3252/// - "R2R_4", "R2R_5", "R2R_6", "R2R_7" - discrete sine transforms of types I-IV
3253/// To specify the type of each dimension of a 2-dimensional real to real
3254/// transform, use options of form "R2R_XX", for example, "R2R_02" for a transform,
3255/// which is of type "R2R_0" in 1st dimension and "R2R_2" in the 2nd.
3256/// - option of transform flag
3257/// - "ES" (from "estimate") - no time in preparing the transform, but probably sub-optimal
3258/// performance
3259/// - "M" (from "measure") - some time spend in finding the optimal way to do the transform
3260/// - "P" (from "patient") - more time spend in finding the optimal way to do the transform
3261/// - "EX" (from "exhaustive") - the most optimal way is found
3262/// This option should be chosen depending on how many transforms of the same size and
3263/// type are going to be done. Planning is only done once, for the first transform of this
3264/// size and type. Default is "ES".
3265///
3266/// Examples of valid options: "Mag R2C M" "Re R2R_11" "Im R2C ES" "PH R2HC EX"
3267
3269{
3270
3271 Int_t ndim[3];
3272 ndim[0] = this->GetNbinsX();
3273 ndim[1] = this->GetNbinsY();
3274 ndim[2] = this->GetNbinsZ();
3275
3277 TString opt = option;
3278 opt.ToUpper();
3279 if (!opt.Contains("2R")){
3280 if (!opt.Contains("2C") && !opt.Contains("2HC") && !opt.Contains("DHT")) {
3281 //no type specified, "R2C" by default
3282 opt.Append("R2C");
3283 }
3284 fft = TVirtualFFT::FFT(this->GetDimension(), ndim, opt.Data());
3285 }
3286 else {
3287 //find the kind of transform
3288 Int_t ind = opt.Index("R2R", 3);
3289 Int_t *kind = new Int_t[2];
3290 char t;
3291 t = opt[ind+4];
3292 kind[0] = atoi(&t);
3293 if (h_output->GetDimension()>1) {
3294 t = opt[ind+5];
3295 kind[1] = atoi(&t);
3296 }
3297 fft = TVirtualFFT::SineCosine(this->GetDimension(), ndim, kind, option);
3298 delete [] kind;
3299 }
3300
3301 if (!fft) return nullptr;
3302 Int_t in=0;
3303 for (Int_t binx = 1; binx<=ndim[0]; binx++) {
3304 for (Int_t biny=1; biny<=ndim[1]; biny++) {
3305 for (Int_t binz=1; binz<=ndim[2]; binz++) {
3306 fft->SetPoint(in, this->GetBinContent(binx, biny, binz));
3307 in++;
3308 }
3309 }
3310 }
3311 fft->Transform();
3313 return h_output;
3314}
3315
3316////////////////////////////////////////////////////////////////////////////////
3317/// Increment bin with abscissa X by 1.
3318///
3319/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3320/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3321///
3322/// If the storage of the sum of squares of weights has been triggered,
3323/// via the function Sumw2, then the sum of the squares of weights is incremented
3324/// by 1 in the bin corresponding to x.
3325///
3326/// The function returns the corresponding bin number which has its content incremented by 1
3327
3329{
3330 if (fBuffer) return BufferFill(x,1);
3331
3332 Int_t bin;
3333 fEntries++;
3334 bin =fXaxis.FindBin(x);
3335 if (bin <0) return -1;
3336 AddBinContent(bin);
3337 if (fSumw2.fN) ++fSumw2.fArray[bin];
3338 if (bin == 0 || bin > fXaxis.GetNbins()) {
3339 if (!GetStatOverflowsBehaviour()) return -1;
3340 }
3341 ++fTsumw;
3342 ++fTsumw2;
3343 fTsumwx += x;
3344 fTsumwx2 += x*x;
3345 return bin;
3346}
3347
3348////////////////////////////////////////////////////////////////////////////////
3349/// Increment bin with abscissa X with a weight w.
3350///
3351/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3352/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3353///
3354/// If the weight is not equal to 1, the storage of the sum of squares of
3355/// weights is automatically triggered and the sum of the squares of weights is incremented
3356/// by \f$ w^2 \f$ in the bin corresponding to x.
3357///
3358/// The function returns the corresponding bin number which has its content incremented by w
3359
3361{
3362
3363 if (fBuffer) return BufferFill(x,w);
3364
3365 Int_t bin;
3366 fEntries++;
3367 bin =fXaxis.FindBin(x);
3368 if (bin <0) return -1;
3369 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW) ) Sumw2(); // must be called before AddBinContent
3370 if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
3371 AddBinContent(bin, w);
3372 if (bin == 0 || bin > fXaxis.GetNbins()) {
3373 if (!GetStatOverflowsBehaviour()) return -1;
3374 }
3375 Double_t z= w;
3376 fTsumw += z;
3377 fTsumw2 += z*z;
3378 fTsumwx += z*x;
3379 fTsumwx2 += z*x*x;
3380 return bin;
3381}
3382
3383////////////////////////////////////////////////////////////////////////////////
3384/// Increment bin with namex with a weight w
3385///
3386/// if x is less than the low-edge of the first bin, the Underflow bin is incremented
3387/// if x is equal to or greater than the upper edge of last bin, the Overflow bin is incremented
3388///
3389/// If the weight is not equal to 1, the storage of the sum of squares of
3390/// weights is automatically triggered and the sum of the squares of weights is incremented
3391/// by \f$ w^2 \f$ in the bin corresponding to x.
3392///
3393/// The function returns the corresponding bin number which has its content
3394/// incremented by w.
3395
3396Int_t TH1::Fill(const char *namex, Double_t w)
3397{
3398 Int_t bin;
3399 fEntries++;
3400 bin =fXaxis.FindBin(namex);
3401 if (bin <0) return -1;
3402 if (!fSumw2.fN && w != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2();
3403 if (fSumw2.fN) fSumw2.fArray[bin] += w*w;
3404 AddBinContent(bin, w);
3405 if (bin == 0 || bin > fXaxis.GetNbins()) return -1;
3406 Double_t z= w;
3407 fTsumw += z;
3408 fTsumw2 += z*z;
3409 // this make sense if the histogram is not expanding (the x axis cannot be extended)
3410 if (!fXaxis.CanExtend() || !fXaxis.IsAlphanumeric()) {
3412 fTsumwx += z*x;
3413 fTsumwx2 += z*x*x;
3414 }
3415 return bin;
3416}
3417
3418////////////////////////////////////////////////////////////////////////////////
3419/// Fill this histogram with an array x and weights w.
3420///
3421/// \param[in] ntimes number of entries in arrays x and w (array size must be ntimes*stride)
3422/// \param[in] x array of values to be histogrammed
3423/// \param[in] w array of weighs
3424/// \param[in] stride step size through arrays x and w
3425///
3426/// If the weight is not equal to 1, the storage of the sum of squares of
3427/// weights is automatically triggered and the sum of the squares of weights is incremented
3428/// by \f$ w^2 \f$ in the bin corresponding to x.
3429/// if w is NULL each entry is assumed a weight=1
3430
3431void TH1::FillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride)
3432{
3433 //If a buffer is activated, fill buffer
3434 if (fBuffer) {
3435 ntimes *= stride;
3436 Int_t i = 0;
3437 for (i=0;i<ntimes;i+=stride) {
3438 if (!fBuffer) break; // buffer can be deleted in BufferFill when is empty
3439 if (w) BufferFill(x[i],w[i]);
3440 else BufferFill(x[i], 1.);
3441 }
3442 // fill the remaining entries if the buffer has been deleted
3443 if (i < ntimes && !fBuffer) {
3444 auto weights = w ? &w[i] : nullptr;
3445 DoFillN((ntimes-i)/stride,&x[i],weights,stride);
3446 }
3447 return;
3448 }
3449 // call internal method
3450 DoFillN(ntimes, x, w, stride);
3451}
3452
3453////////////////////////////////////////////////////////////////////////////////
3454/// Internal method to fill histogram content from a vector
3455/// called directly by TH1::BufferEmpty
3456
3457void TH1::DoFillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride)
3458{
3459 Int_t bin,i;
3460
3461 fEntries += ntimes;
3462 Double_t ww = 1;
3463 Int_t nbins = fXaxis.GetNbins();
3464 ntimes *= stride;
3465 for (i=0;i<ntimes;i+=stride) {
3466 bin =fXaxis.FindBin(x[i]);
3467 if (bin <0) continue;
3468 if (w) ww = w[i];
3469 if (!fSumw2.fN && ww != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2();
3470 if (fSumw2.fN) fSumw2.fArray[bin] += ww*ww;
3471 AddBinContent(bin, ww);
3472 if (bin == 0 || bin > nbins) {
3473 if (!GetStatOverflowsBehaviour()) continue;
3474 }
3475 Double_t z= ww;
3476 fTsumw += z;
3477 fTsumw2 += z*z;
3478 fTsumwx += z*x[i];
3479 fTsumwx2 += z*x[i]*x[i];
3480 }
3481}
3482
3483////////////////////////////////////////////////////////////////////////////////
3484/// Fill histogram following distribution in function fname.
3485///
3486/// @param fname : Function name used for filling the histogram
3487/// @param ntimes : number of times the histogram is filled
3488/// @param rng : (optional) Random number generator used to sample
3489///
3490///
3491/// The distribution contained in the function fname (TF1) is integrated
3492/// over the channel contents for the bin range of this histogram.
3493/// It is normalized to 1.
3494///
3495/// Getting one random number implies:
3496/// - Generating a random number between 0 and 1 (say r1)
3497/// - Look in which bin in the normalized integral r1 corresponds to
3498/// - Fill histogram channel
3499/// ntimes random numbers are generated
3500///
3501/// One can also call TF1::GetRandom to get a random variate from a function.
3502
3503void TH1::FillRandom(const char *fname, Int_t ntimes, TRandom * rng)
3504{
3505 // - Search for fname in the list of ROOT defined functions
3506 TF1 *f1 = (TF1*)gROOT->GetFunction(fname);
3507 if (!f1) { Error("FillRandom", "Unknown function: %s",fname); return; }
3508
3511
3513{
3514 Int_t bin, binx, ibin, loop;
3515 Double_t r1, x;
3516
3517 // - Allocate temporary space to store the integral and compute integral
3518
3519 TAxis * xAxis = &fXaxis;
3520
3521 // in case axis of histogram is not defined use the function axis
3522 if (fXaxis.GetXmax() <= fXaxis.GetXmin()) {
3524 f1->GetRange(xmin,xmax);
3525 Info("FillRandom","Using function axis and range [%g,%g]",xmin, xmax);
3526 xAxis = f1->GetHistogram()->GetXaxis();
3527 }
3528
3529 Int_t first = xAxis->GetFirst();
3530 Int_t last = xAxis->GetLast();
3531 Int_t nbinsx = last-first+1;
3532
3533 Double_t *integral = new Double_t[nbinsx+1];
3534 integral[0] = 0;
3535 for (binx=1;binx<=nbinsx;binx++) {
3536 Double_t fint = f1->Integral(xAxis->GetBinLowEdge(binx+first-1),xAxis->GetBinUpEdge(binx+first-1), 0.);
3537 integral[binx] = integral[binx-1] + fint;
3538 }
3539
3540 // - Normalize integral to 1
3541 if (integral[nbinsx] == 0 ) {
3542 delete [] integral;
3543 Error("FillRandom", "Integral = zero"); return;
3544 }
3545 for (bin=1;bin<=nbinsx;bin++) integral[bin] /= integral[nbinsx];
3546
3547 // --------------Start main loop ntimes
3548 for (loop=0;loop<ntimes;loop++) {
3549 r1 = (rng) ? rng->Rndm() : gRandom->Rndm();
3550 ibin = TMath::BinarySearch(nbinsx,&integral[0],r1);
3551 //binx = 1 + ibin;
3552 //x = xAxis->GetBinCenter(binx); //this is not OK when SetBuffer is used
3553 x = xAxis->GetBinLowEdge(ibin+first)
3554 +xAxis->GetBinWidth(ibin+first)*(r1-integral[ibin])/(integral[ibin+1] - integral[ibin]);
3555 Fill(x);
3556 }
3557 delete [] integral;
3558}
3559
3560////////////////////////////////////////////////////////////////////////////////
3561/// Fill histogram following distribution in histogram h.
3562///
3563/// @param h : Histogram pointer used for sampling random number
3564/// @param ntimes : number of times the histogram is filled
3565/// @param rng : (optional) Random number generator used for sampling
3566///
3567/// The distribution contained in the histogram h (TH1) is integrated
3568/// over the channel contents for the bin range of this histogram.
3569/// It is normalized to 1.
3570///
3571/// Getting one random number implies:
3572/// - Generating a random number between 0 and 1 (say r1)
3573/// - Look in which bin in the normalized integral r1 corresponds to
3574/// - Fill histogram channel ntimes random numbers are generated
3575///
3576/// SPECIAL CASE when the target histogram has the same binning as the source.
3577/// in this case we simply use a poisson distribution where
3578/// the mean value per bin = bincontent/integral.
3579
3581{
3582 if (!h) { Error("FillRandom", "Null histogram"); return; }
3583 if (fDimension != h->GetDimension()) {
3584 Error("FillRandom", "Histograms with different dimensions"); return;
3585 }
3586 if (std::isnan(h->ComputeIntegral(true))) {
3587 Error("FillRandom", "Histograms contains negative bins, does not represent probabilities");
3588 return;
3589 }
3590
3591 //in case the target histogram has the same binning and ntimes much greater
3592 //than the number of bins we can use a fast method
3593 Int_t first = fXaxis.GetFirst();
3594 Int_t last = fXaxis.GetLast();
3595 Int_t nbins = last-first+1;
3596 if (ntimes > 10*nbins) {
3597 auto inconsistency = CheckConsistency(this,h);
3598 if (inconsistency != kFullyConsistent) return; // do nothing
3599 Double_t sumw = h->Integral(first,last);
3600 if (sumw == 0) return;
3601 Double_t sumgen = 0;
3602 for (Int_t bin=first;bin<=last;bin++) {
3603 Double_t mean = h->RetrieveBinContent(bin)*ntimes/sumw;
3604 Double_t cont = (rng) ? rng->Poisson(mean) : gRandom->Poisson(mean);
3605 sumgen += cont;
3606 AddBinContent(bin,cont);
3607 if (fSumw2.fN) fSumw2.fArray[bin] += cont;
3608 }
3609
3610 // fix for the fluctuations in the total number n
3611 // since we use Poisson instead of multinomial
3612 // add a correction to have ntimes as generated entries
3613 Int_t i;
3614 if (sumgen < ntimes) {
3615 // add missing entries
3616 for (i = Int_t(sumgen+0.5); i < ntimes; ++i)
3617 {
3618 Double_t x = h->GetRandom();
3619 Fill(x);
3620 }
3621 }
3622 else if (sumgen > ntimes) {
3623 // remove extra entries
3624 i = Int_t(sumgen+0.5);
3625 while( i > ntimes) {
3626 Double_t x = h->GetRandom(rng);
3629 // skip in case bin is empty
3630 if (y > 0) {
3631 SetBinContent(ibin, y-1.);
3632 i--;
3633 }
3634 }
3635 }
3636
3637 ResetStats();
3638 return;
3639 }
3640 // case of different axis and not too large ntimes
3641
3642 if (h->ComputeIntegral() ==0) return;
3643 Int_t loop;
3644 Double_t x;
3645 for (loop=0;loop<ntimes;loop++) {
3646 x = h->GetRandom();
3647 Fill(x);
3648 }
3649}
3650
3651////////////////////////////////////////////////////////////////////////////////
3652/// Return Global bin number corresponding to x,y,z
3653///
3654/// 2-D and 3-D histograms are represented with a one dimensional
3655/// structure. This has the advantage that all existing functions, such as
3656/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
3657/// This function tries to extend the axis if the given point belongs to an
3658/// under-/overflow bin AND if CanExtendAllAxes() is true.
3659///
3660/// See also TH1::GetBin, TAxis::FindBin and TAxis::FindFixBin
3661
3663{
3664 if (GetDimension() < 2) {
3665 return fXaxis.FindBin(x);
3666 }
3667 if (GetDimension() < 3) {
3668 Int_t nx = fXaxis.GetNbins()+2;
3671 return binx + nx*biny;
3672 }
3673 if (GetDimension() < 4) {
3674 Int_t nx = fXaxis.GetNbins()+2;
3675 Int_t ny = fYaxis.GetNbins()+2;
3678 Int_t binz = fZaxis.FindBin(z);
3679 return binx + nx*(biny +ny*binz);
3680 }
3681 return -1;
3682}
3683
3684////////////////////////////////////////////////////////////////////////////////
3685/// Return Global bin number corresponding to x,y,z.
3686///
3687/// 2-D and 3-D histograms are represented with a one dimensional
3688/// structure. This has the advantage that all existing functions, such as
3689/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
3690/// This function DOES NOT try to extend the axis if the given point belongs
3691/// to an under-/overflow bin.
3692///
3693/// See also TH1::GetBin, TAxis::FindBin and TAxis::FindFixBin
3694
3696{
3697 if (GetDimension() < 2) {
3698 return fXaxis.FindFixBin(x);
3699 }
3700 if (GetDimension() < 3) {
3701 Int_t nx = fXaxis.GetNbins()+2;
3704 return binx + nx*biny;
3705 }
3706 if (GetDimension() < 4) {
3707 Int_t nx = fXaxis.GetNbins()+2;
3708 Int_t ny = fYaxis.GetNbins()+2;
3712 return binx + nx*(biny +ny*binz);
3713 }
3714 return -1;
3715}
3716
3717////////////////////////////////////////////////////////////////////////////////
3718/// Find first bin with content > threshold for axis (1=x, 2=y, 3=z)
3719/// if no bins with content > threshold is found the function returns -1.
3720/// The search will occur between the specified first and last bin. Specifying
3721/// the value of the last bin to search to less than zero will search until the
3722/// last defined bin.
3723
3725{
3726 if (fBuffer) ((TH1*)this)->BufferEmpty();
3727
3728 if (axis < 1 || (axis > 1 && GetDimension() == 1 ) ||
3729 ( axis > 2 && GetDimension() == 2 ) || ( axis > 3 && GetDimension() > 3 ) ) {
3730 Warning("FindFirstBinAbove","Invalid axis number : %d, axis x assumed\n",axis);
3731 axis = 1;
3732 }
3733 if (firstBin < 1) {
3734 firstBin = 1;
3735 }
3737 Int_t nbinsy = (GetDimension() > 1 ) ? fYaxis.GetNbins() : 1;
3738 Int_t nbinsz = (GetDimension() > 2 ) ? fZaxis.GetNbins() : 1;
3739
3740 if (axis == 1) {
3743 }
3744 for (Int_t binx = firstBin; binx <= lastBin; binx++) {
3745 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3746 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3748 }
3749 }
3750 }
3751 }
3752 else if (axis == 2) {
3755 }
3756 for (Int_t biny = firstBin; biny <= lastBin; biny++) {
3757 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3758 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3760 }
3761 }
3762 }
3763 }
3764 else if (axis == 3) {
3767 }
3768 for (Int_t binz = firstBin; binz <= lastBin; binz++) {
3769 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3770 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3772 }
3773 }
3774 }
3775 }
3776
3777 return -1;
3778}
3779
3780////////////////////////////////////////////////////////////////////////////////
3781/// Find last bin with content > threshold for axis (1=x, 2=y, 3=z)
3782/// if no bins with content > threshold is found the function returns -1.
3783/// The search will occur between the specified first and last bin. Specifying
3784/// the value of the last bin to search to less than zero will search until the
3785/// last defined bin.
3786
3788{
3789 if (fBuffer) ((TH1*)this)->BufferEmpty();
3790
3791
3792 if (axis < 1 || ( axis > 1 && GetDimension() == 1 ) ||
3793 ( axis > 2 && GetDimension() == 2 ) || ( axis > 3 && GetDimension() > 3) ) {
3794 Warning("FindFirstBinAbove","Invalid axis number : %d, axis x assumed\n",axis);
3795 axis = 1;
3796 }
3797 if (firstBin < 1) {
3798 firstBin = 1;
3799 }
3801 Int_t nbinsy = (GetDimension() > 1 ) ? fYaxis.GetNbins() : 1;
3802 Int_t nbinsz = (GetDimension() > 2 ) ? fZaxis.GetNbins() : 1;
3803
3804 if (axis == 1) {
3807 }
3808 for (Int_t binx = lastBin; binx >= firstBin; binx--) {
3809 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3810 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3812 }
3813 }
3814 }
3815 }
3816 else if (axis == 2) {
3819 }
3820 for (Int_t biny = lastBin; biny >= firstBin; biny--) {
3821 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3822 for (Int_t binz = 1; binz <= nbinsz; binz++) {
3824 }
3825 }
3826 }
3827 }
3828 else if (axis == 3) {
3831 }
3832 for (Int_t binz = lastBin; binz >= firstBin; binz--) {
3833 for (Int_t binx = 1; binx <= nbinsx; binx++) {
3834 for (Int_t biny = 1; biny <= nbinsy; biny++) {
3836 }
3837 }
3838 }
3839 }
3840
3841 return -1;
3842}
3843
3844////////////////////////////////////////////////////////////////////////////////
3845/// Search object named name in the list of functions.
3846
3847TObject *TH1::FindObject(const char *name) const
3848{
3849 if (fFunctions) return fFunctions->FindObject(name);
3850 return nullptr;
3851}
3852
3853////////////////////////////////////////////////////////////////////////////////
3854/// Search object obj in the list of functions.
3855
3856TObject *TH1::FindObject(const TObject *obj) const
3857{
3858 if (fFunctions) return fFunctions->FindObject(obj);
3859 return nullptr;
3860}
3861
3862////////////////////////////////////////////////////////////////////////////////
3863/// Fit histogram with function fname.
3864///
3865///
3866/// fname is the name of a function available in the global ROOT list of functions
3867/// `gROOT->GetListOfFunctions`
3868/// The list include any TF1 object created by the user plus some pre-defined functions
3869/// which are automatically created by ROOT the first time a pre-defined function is requested from `gROOT`
3870/// (i.e. when calling `gROOT->GetFunction(const char *name)`).
3871/// These pre-defined functions are:
3872/// - `gaus, gausn` where gausn is the normalized Gaussian
3873/// - `landau, landaun`
3874/// - `expo`
3875/// - `pol1,...9, chebyshev1,...9`.
3876///
3877/// For printing the list of all available functions do:
3878///
3879/// TF1::InitStandardFunctions(); // not needed if `gROOT->GetFunction` is called before
3880/// TF2::InitStandardFunctions(); TF3::InitStandardFunctions(); // For 2D or 3D
3881/// gROOT->GetListOfFunctions()->ls()
3882///
3883/// `fname` can also be a formula that is accepted by the linear fitter containing the special operator `++`,
3884/// representing linear components separated by `++` sign, for example `x++sin(x)` for fitting `[0]*x+[1]*sin(x)`
3885///
3886/// This function finds a pointer to the TF1 object with name `fname` and calls TH1::Fit(TF1 *, Option_t *, Option_t *,
3887/// Double_t, Double_t). See there for the fitting options and the details about fitting histograms
3888
3890{
3891 char *linear;
3892 linear= (char*)strstr(fname, "++");
3893 Int_t ndim=GetDimension();
3894 if (linear){
3895 if (ndim<2){
3897 return Fit(&f1,option,goption,xxmin,xxmax);
3898 }
3899 else if (ndim<3){
3900 TF2 f2(fname, fname);
3901 return Fit(&f2,option,goption,xxmin,xxmax);
3902 }
3903 else{
3904 TF3 f3(fname, fname);
3905 return Fit(&f3,option,goption,xxmin,xxmax);
3906 }
3907 }
3908 else{
3909 TF1 * f1 = (TF1*)gROOT->GetFunction(fname);
3910 if (!f1) { Printf("Unknown function: %s",fname); return -1; }
3911 return Fit(f1,option,goption,xxmin,xxmax);
3912 }
3913}
3914
3915////////////////////////////////////////////////////////////////////////////////
3916/// Fit histogram with the function pointer f1.
3917///
3918/// \param[in] f1 pointer to the function object
3919/// \param[in] option string defining the fit options (see table below).
3920/// \param[in] goption specify a list of graphics options. See TH1::Draw for a complete list of these options.
3921/// \param[in] xxmin lower fitting range
3922/// \param[in] xxmax upper fitting range
3923/// \return A smart pointer to the TFitResult class
3924///
3925/// \anchor HFitOpt
3926/// ### Histogram Fitting Options
3927///
3928/// Here is the full list of fit options that can be given in the parameter `option`.
3929/// Several options can be used together by concatanating the strings without the need of any delimiters.
3930///
3931/// option | description
3932/// -------|------------
3933/// "L" | Uses a log likelihood method (default is chi-square method). To be used when the histogram represents counts.
3934/// "WL" | Weighted log likelihood method. To be used when the histogram has been filled with weights different than 1. This is needed for getting correct parameter uncertainties for weighted fits.
3935/// "P" | Uses Pearson chi-square method. Uses expected errors instead of the observed one (default case). The expected error is instead estimated from the square-root of the bin function value.
3936/// "MULTI" | Uses Loglikelihood method based on multi-nomial distribution. In this case the function must be normalized and one fits only the function shape.
3937/// "W" | Fit using the chi-square method and ignoring the bin uncertainties and skip empty bins.
3938/// "WW" | Fit using the chi-square method and ignoring the bin uncertainties and include the empty bins.
3939/// "I" | Uses the integral of function in the bin instead of the default bin center value.
3940/// "F" | Uses the default minimizer (e.g. Minuit) when fitting a linear function (e.g. polN) instead of the linear fitter.
3941/// "U" | Uses a user specified objective function (e.g. user providedlikelihood function) defined using `TVirtualFitter::SetFCN`
3942/// "E" | Performs a better parameter errors estimation using the Minos technique for all fit parameters.
3943/// "M" | Uses the IMPROVE algorithm (available only in TMinuit). This algorithm attempts improve the found local minimum by searching for a better one.
3944/// "S" | The full result of the fit is returned in the `TFitResultPtr`. This is needed to get the covariance matrix of the fit. See `TFitResult` and the base class `ROOT::Math::FitResult`.
3945/// "Q" | Quiet mode (minimum printing)
3946/// "V" | Verbose mode (default is between Q and V)
3947/// "+" | Adds this new fitted function to the list of fitted functions. By default, the previous function is deleted and only the last one is kept.
3948/// "N" | Does not store the graphics function, does not draw the histogram with the function after fitting.
3949/// "0" | Does not draw the histogram and the fitted function after fitting, but in contrast to option "N", it stores the fitted function in the histogram list of functions.
3950/// "R" | Fit using a fitting range specified in the function range with `TF1::SetRange`.
3951/// "B" | Use this option when you want to fix or set limits on one or more parameters and the fitting function is a predefined one (e.g gaus, expo,..), otherwise in case of pre-defined functions, some default initial values and limits will be used.
3952/// "C" | In case of linear fitting, do no calculate the chisquare (saves CPU time).
3953/// "G" | Uses the gradient implemented in `TF1::GradientPar` for the minimization. This allows to use Automatic Differentiation when it is supported by the provided TF1 function.
3954/// "WIDTH" | Scales the histogran bin content by the bin width (useful for variable bins histograms)
3955/// "SERIAL" | Runs in serial mode. By default if ROOT is built with MT support and MT is enables, the fit is perfomed in multi-thread - "E" Perform better Errors estimation using Minos technique
3956/// "MULTITHREAD" | Forces usage of multi-thread execution whenever possible
3957///
3958/// The default fitting of an histogram (when no option is given) is perfomed as following:
3959/// - a chi-square fit (see below Chi-square Fits) computed using the bin histogram errors and excluding bins with zero errors (empty bins);
3960/// - the full range of the histogram is used, unless TAxis::SetRange or TAxis::SetRangeUser was called before;
3961/// - the default Minimizer with its default configuration is used (see below Minimizer Configuration) except for linear function;
3962/// - for linear functions (`polN`, `chenbyshev` or formula expressions combined using operator `++`) a linear minimization is used.
3963/// - only the status of the fit is returned;
3964/// - the fit is performed in Multithread whenever is enabled in ROOT;
3965/// - only the last fitted function is saved in the histogram;
3966/// - the histogram is drawn after fitting overalyed with the resulting fitting function
3967///
3968/// \anchor HFitMinimizer
3969/// ### Minimizer Configuration
3970///
3971/// The Fit is perfomed using the default Minimizer, defined in the `ROOT::Math::MinimizerOptions` class.
3972/// It is possible to change the default minimizer and its configuration parameters by calling these static functions before fitting (before calling `TH1::Fit`):
3973/// - `ROOT::Math::MinimizerOptions::SetDefaultMinimizer(minimizerName, minimizerAgorithm)` for changing the minmizer and/or the corresponding algorithm.
3974/// For example `ROOT::Math::MinimizerOptions::SetDefaultMinimizer("GSLMultiMin","BFGS");` will set the usage of the BFGS algorithm of the GSL multi-dimensional minimization
3975/// The current defaults are ("Minuit","Migrad").
3976/// See the documentation of the `ROOT::Math::MinimizerOptions` for the available minimizers in ROOT and their corresponding algorithms.
3977/// - `ROOT::Math::MinimizerOptions::SetDefaultTolerance` for setting a different tolerance value for the minimization.
3978/// - `ROOT::Math::MinimizerOptions::SetDefaultMaxFunctionCalls` for setting the maximum number of function calls.
3979/// - `ROOT::Math::MinimizerOptions::SetDefaultPrintLevel` for changing the minimizer print level from level=0 (minimal printing) to level=3 maximum printing
3980///
3981/// Other options are possible depending on the Minimizer used, see the corresponding documentation.
3982/// The default minimizer can be also set in the resource file in etc/system.rootrc. For example
3983///
3984/// ~~~ {.cpp}
3985/// Root.Fitter: Minuit2
3986/// ~~~
3987///
3988/// \anchor HFitChi2
3989/// ### Chi-square Fits
3990///
3991/// By default a chi-square (least-square) fit is performed on the histogram. The so-called modified least-square method
3992/// is used where the residual for each bin is computed using as error the observed value (the bin error) returned by `TH1::GetBinError`
3993///
3994/// \f[
3995/// Chi2 = \sum_{i}{ \left(\frac{y(i) - f(x(i) | p )}{e(i)} \right)^2 }
3996/// \f]
3997///
3998/// where `y(i)` is the bin content for each bin `i`, `x(i)` is the bin center and `e(i)` is the bin error (`sqrt(y(i)` for
3999/// an un-weighted histogram). Bins with zero errors are excluded from the fit. See also later the note on the treatment
4000/// of empty bins. When using option "I" the residual is computed not using the function value at the bin center, `f(x(i)|p)`,
4001/// but the integral of the function in the bin, Integral{ f(x|p)dx }, divided by the bin volume.
4002/// When using option `P` (Pearson chi2), the expected error computed as `e(i) = sqrt(f(x(i)|p))` is used.
4003/// In this case empty bins are considered in the fit.
4004/// Both chi-square methods should not be used when the bin content represent counts, especially in case of low bin statistics,
4005/// because they could return a biased result.
4006///
4007/// \anchor HFitNLL
4008/// ### Likelihood Fits
4009///
4010/// When using option "L" a likelihood fit is used instead of the default chi-square fit.
4011/// The likelihood is built assuming a Poisson probability density function for each bin.
4012/// The negative log-likelihood to be minimized is
4013///
4014/// \f[
4015/// NLL = - \sum_{i}{ \log {\mathrm P} ( y(i) | f(x(i) | p ) ) }
4016/// \f]
4017/// where `P(y|f)` is the Poisson distribution of observing a count `y(i)` in the bin when the expected count is `f(x(i)|p)`.
4018/// The exact likelihood used is the Poisson likelihood described in this paper:
4019/// S. Baker and R. D. Cousins, “Clarification of the use of chi-square and likelihood functions in fits to histograms,”
4020/// Nucl. Instrum. Meth. 221 (1984) 437.
4021///
4022/// \f[
4023/// NLL = \sum_{i}{( f(x(i) | p ) + y(i)\log(y(i)/ f(x(i) | p )) - y(i)) }
4024/// \f]
4025/// By using this formulation, `2*NLL` can be interpreted as the chi-square resulting from the fit.
4026///
4027/// This method should be always used when the bin content represents counts (i.e. errors are sqrt(N) ).
4028/// The likelihood method has the advantage of treating correctly bins with low statistics. In case of high
4029/// statistics/bin the distribution of the bin content becomes a normal distribution and the likelihood and the chi2 fit
4030/// give the same result.
4031///
4032/// The likelihood method, although a bit slower, it is therefore the recommended method,
4033/// when the histogram represent counts (Poisson statistics), where the chi-square methods may
4034/// give incorrect results, especially in case of low statistics.
4035/// In case of a weighted histogram, it is possible to perform also a likelihood fit by using the
4036/// option "WL". Note a weighted histogram is a histogram which has been filled with weights and it
4037/// has the information on the sum of the weight square for each bin ( TH1::Sumw2() has been called).
4038/// The bin error for a weighted histogram is the square root of the sum of the weight square.
4039///
4040/// \anchor HFitRes
4041/// ### Fit Result
4042///
4043/// The function returns a TFitResultPtr which can hold a pointer to a TFitResult object.
4044/// By default the TFitResultPtr contains only the status of the fit which is return by an
4045/// automatic conversion of the TFitResultPtr to an integer. One can write in this case directly:
4046///
4047/// ~~~ {.cpp}
4048/// Int_t fitStatus = h->Fit(myFunc);
4049/// ~~~
4050///
4051/// If the option "S" is instead used, TFitResultPtr behaves as a smart
4052/// pointer to the TFitResult object. This is useful for retrieving the full result information from the fit, such as the covariance matrix,
4053/// as shown in this example code:
4054///
4055/// ~~~ {.cpp}
4056/// TFitResultPtr r = h->Fit(myFunc,"S");
4057/// TMatrixDSym cov = r->GetCovarianceMatrix(); // to access the covariance matrix
4058/// Double_t chi2 = r->Chi2(); // to retrieve the fit chi2
4059/// Double_t par0 = r->Parameter(0); // retrieve the value for the parameter 0
4060/// Double_t err0 = r->ParError(0); // retrieve the error for the parameter 0
4061/// r->Print("V"); // print full information of fit including covariance matrix
4062/// r->Write(); // store the result in a file
4063/// ~~~
4064///
4065/// The fit parameters, error and chi-square (but not covariance matrix) can be retrieved also
4066/// directly from the fitted function that is passed to this call.
4067/// Given a pointer to an associated fitted function `myfunc`, one can retrieve the function/fit
4068/// parameters with calls such as:
4069///
4070/// ~~~ {.cpp}
4071/// Double_t chi2 = myfunc->GetChisquare();
4072/// Double_t par0 = myfunc->GetParameter(0); //value of 1st parameter
4073/// Double_t err0 = myfunc->GetParError(0); //error on first parameter
4074/// ~~~
4075///
4076/// ##### Associated functions
4077///
4078/// One or more objects (typically a TF1*) can be added to the list
4079/// of functions (fFunctions) associated to each histogram.
4080/// When TH1::Fit is invoked, the fitted function is added to the histogram list of functions (fFunctions).
4081/// If the histogram is made persistent, the list of associated functions is also persistent.
4082/// Given a histogram h, one can retrieve an associated function with:
4083///
4084/// ~~~ {.cpp}
4085/// TF1 *myfunc = h->GetFunction("myfunc");
4086/// ~~~
4087/// or by quering directly the list obtained by calling `TH1::GetListOfFunctions`.
4088///
4089/// \anchor HFitStatus
4090/// ### Fit status
4091///
4092/// The status of the fit is obtained converting the TFitResultPtr to an integer
4093/// independently if the fit option "S" is used or not:
4094///
4095/// ~~~ {.cpp}
4096/// TFitResultPtr r = h->Fit(myFunc,opt);
4097/// Int_t fitStatus = r;
4098/// ~~~
4099///
4100/// - `status = 0` : the fit has been performed successfully (i.e no error occurred).
4101/// - `status < 0` : there is an error not connected with the minimization procedure, for example when a wrong function is used.
4102/// - `status > 0` : return status from Minimizer, depends on used Minimizer. For example for TMinuit and Minuit2 we have:
4103/// - `status = migradStatus + 10*minosStatus + 100*hesseStatus + 1000*improveStatus`.
4104/// TMinuit returns 0 (for migrad, minos, hesse or improve) in case of success and 4 in case of error (see the documentation of TMinuit::mnexcm). For example, for an error
4105/// only in Minos but not in Migrad a fitStatus of 40 will be returned.
4106/// Minuit2 returns 0 in case of success and different values in migrad,minos or
4107/// hesse depending on the error. See in this case the documentation of
4108/// Minuit2Minimizer::Minimize for the migrad return status, Minuit2Minimizer::GetMinosError for the
4109/// minos return status and Minuit2Minimizer::Hesse for the hesse return status.
4110/// If other minimizers are used see their specific documentation for the status code returned.
4111/// For example in the case of Fumili, see TFumili::Minimize.
4112///
4113/// \anchor HFitRange
4114/// ### Fitting in a range
4115///
4116/// In order to fit in a sub-range of the histogram you have two options:
4117/// - pass to this function the lower (`xxmin`) and upper (`xxmax`) values for the fitting range;
4118/// - define a specific range in the fitted function and use the fitting option "R".
4119/// For example, if your histogram has a defined range between -4 and 4 and you want to fit a gaussian
4120/// only in the interval 1 to 3, you can do:
4121///
4122/// ~~~ {.cpp}
4123/// TF1 *f1 = new TF1("f1", "gaus", 1, 3);
4124/// histo->Fit("f1", "R");
4125/// ~~~
4126///
4127/// The fitting range is also limited by the histogram range defined using TAxis::SetRange
4128/// or TAxis::SetRangeUser. Therefore the fitting range is the smallest range between the
4129/// histogram one and the one defined by one of the two previous options described above.
4130///
4131/// \anchor HFitInitial
4132/// ### Setting initial conditions
4133///
4134/// Parameters must be initialized before invoking the Fit function.
4135/// The setting of the parameter initial values is automatic for the
4136/// predefined functions such as poln, expo, gaus, landau. One can however disable
4137/// this automatic computation by using the option "B".
4138/// Note that if a predefined function is defined with an argument,
4139/// eg, gaus(0), expo(1), you must specify the initial values for
4140/// the parameters.
4141/// You can specify boundary limits for some or all parameters via
4142///
4143/// ~~~ {.cpp}
4144/// f1->SetParLimits(p_number, parmin, parmax);
4145/// ~~~
4146///
4147/// if `parmin >= parmax`, the parameter is fixed
4148/// Note that you are not forced to fix the limits for all parameters.
4149/// For example, if you fit a function with 6 parameters, you can do:
4150///
4151/// ~~~ {.cpp}
4152/// func->SetParameters(0, 3.1, 1.e-6, -8, 0, 100);
4153/// func->SetParLimits(3, -10, -4);
4154/// func->FixParameter(4, 0);
4155/// func->SetParLimits(5, 1, 1);
4156/// ~~~
4157///
4158/// With this setup, parameters 0->2 can vary freely
4159/// Parameter 3 has boundaries [-10,-4] with initial value -8
4160/// Parameter 4 is fixed to 0
4161/// Parameter 5 is fixed to 100.
4162/// When the lower limit and upper limit are equal, the parameter is fixed.
4163/// However to fix a parameter to 0, one must call the FixParameter function.
4164///
4165/// \anchor HFitStatBox
4166/// ### Fit Statistics Box
4167///
4168/// The statistics box can display the result of the fit.
4169/// You can change the statistics box to display the fit parameters with
4170/// the TStyle::SetOptFit(mode) method. This mode has four digits.
4171/// mode = pcev (default = 0111)
4172///
4173/// v = 1; print name/values of parameters
4174/// e = 1; print errors (if e=1, v must be 1)
4175/// c = 1; print Chisquare/Number of degrees of freedom
4176/// p = 1; print Probability
4177///
4178/// For example: gStyle->SetOptFit(1011);
4179/// prints the fit probability, parameter names/values, and errors.
4180/// You can change the position of the statistics box with these lines
4181/// (where g is a pointer to the TGraph):
4182///
4183/// TPaveStats *st = (TPaveStats*)g->GetListOfFunctions()->FindObject("stats");
4184/// st->SetX1NDC(newx1); //new x start position
4185/// st->SetX2NDC(newx2); //new x end position
4186///
4187/// \anchor HFitExtra
4188/// ### Additional Notes on Fitting
4189///
4190/// #### Fitting a histogram of dimension N with a function of dimension N-1
4191///
4192/// It is possible to fit a TH2 with a TF1 or a TH3 with a TF2.
4193/// In this case the chi-square is computed from the squared error distance between the function values and the bin centers weighted by the bin content.
4194/// For correct error scaling, the obtained parameter error are corrected as in the case when the
4195/// option "W" is used.
4196///
4197/// #### User defined objective functions
4198///
4199/// By default when fitting a chi square function is used for fitting. When option "L" is used
4200/// a Poisson likelihood function is used. Using option "MULTI" a multinomial likelihood fit is used.
4201/// Thes functions are defined in the header Fit/Chi2Func.h or Fit/PoissonLikelihoodFCN and they
4202/// are implemented using the routines FitUtil::EvaluateChi2 or FitUtil::EvaluatePoissonLogL in
4203/// the file math/mathcore/src/FitUtil.cxx.
4204/// It is possible to specify a user defined fitting function, using option "U" and
4205/// calling the following functions:
4206///
4207/// ~~~ {.cpp}
4208/// TVirtualFitter::Fitter(myhist)->SetFCN(MyFittingFunction);
4209/// ~~~
4210///
4211/// where MyFittingFunction is of type:
4212///
4213/// ~~~ {.cpp}
4214/// extern void MyFittingFunction(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag);
4215/// ~~~
4216///
4217/// #### Note on treatment of empty bins
4218///
4219/// Empty bins, which have the content equal to zero AND error equal to zero,
4220/// are excluded by default from the chi-square fit, but they are considered in the likelihood fit.
4221/// since they affect the likelihood if the function value in these bins is not negligible.
4222/// Note that if the histogram is having bins with zero content and non zero-errors they are considered as
4223/// any other bins in the fit. Instead bins with zero error and non-zero content are by default excluded in the chi-squared fit.
4224/// In general, one should not fit a histogram with non-empty bins and zero errors.
4225///
4226/// If the bin errors are not known, one should use the fit option "W", which gives a weight=1 for each bin (it is an unweighted least-square
4227/// fit). When using option "WW" the empty bins will be also considered in the chi-square fit with an error of 1.
4228/// Note that in this fitting case (option "W" or "WW") the resulting fitted parameter errors
4229/// are corrected by the obtained chi2 value using this scaling expression:
4230/// `errorp *= sqrt(chisquare/(ndf-1))` as it is done when fitting a TGraph with
4231/// no point errors.
4232///
4233/// #### Excluding points
4234///
4235/// You can use TF1::RejectPoint inside your fitting function to exclude some points
4236/// within a certain range from the fit. See the tutorial `fit/fitExclude.C`.
4237///
4238///
4239/// #### Warning when using the option "0"
4240///
4241/// When selecting the option "0", the fitted function is added to
4242/// the list of functions of the histogram, but it is not drawn when the histogram is drawn.
4243/// You can undo this behaviour resetting its corresponding bit in the TF1 object as following:
4244///
4245/// ~~~ {.cpp}
4246/// h.Fit("myFunction", "0"); // fit, store function but do not draw
4247/// h.Draw(); // function is not drawn
4248/// h.GetFunction("myFunction")->ResetBit(TF1::kNotDraw);
4249/// h.Draw(); // function is visible again
4250/// ~~~
4252
4254{
4255 // implementation of Fit method is in file hist/src/HFitImpl.cxx
4258
4259 // create range and minimizer options with default values
4262
4263 // need to empty the buffer before
4264 // (t.b.d. do a ML unbinned fit with buffer data)
4265 if (fBuffer) BufferEmpty();
4266
4268}
4269
4270////////////////////////////////////////////////////////////////////////////////
4271/// Display a panel with all histogram fit options.
4272///
4273/// See class TFitPanel for example
4274
4275void TH1::FitPanel()
4276{
4277 if (!gPad)
4278 gROOT->MakeDefCanvas();
4279
4280 if (!gPad) {
4281 Error("FitPanel", "Unable to create a default canvas");
4282 return;
4283 }
4284
4285
4286 // use plugin manager to create instance of TFitEditor
4287 TPluginHandler *handler = gROOT->GetPluginManager()->FindHandler("TFitEditor");
4288 if (handler && handler->LoadPlugin() != -1) {
4289 if (handler->ExecPlugin(2, gPad, this) == 0)
4290 Error("FitPanel", "Unable to create the FitPanel");
4291 }
4292 else
4293 Error("FitPanel", "Unable to find the FitPanel plug-in");
4294}
4295
4296////////////////////////////////////////////////////////////////////////////////
4297/// Return a histogram containing the asymmetry of this histogram with h2,
4298/// where the asymmetry is defined as:
4299///
4300/// ~~~ {.cpp}
4301/// Asymmetry = (h1 - h2)/(h1 + h2) where h1 = this
4302/// ~~~
4303///
4304/// works for 1D, 2D, etc. histograms
4305/// c2 is an optional argument that gives a relative weight between the two
4306/// histograms, and dc2 is the error on this weight. This is useful, for example,
4307/// when forming an asymmetry between two histograms from 2 different data sets that
4308/// need to be normalized to each other in some way. The function calculates
4309/// the errors assuming Poisson statistics on h1 and h2 (that is, dh = sqrt(h)).
4310///
4311/// example: assuming 'h1' and 'h2' are already filled
4312///
4313/// ~~~ {.cpp}
4314/// h3 = h1->GetAsymmetry(h2)
4315/// ~~~
4316///
4317/// then 'h3' is created and filled with the asymmetry between 'h1' and 'h2';
4318/// h1 and h2 are left intact.
4319///
4320/// Note that it is the user's responsibility to manage the created histogram.
4321/// The name of the returned histogram will be `Asymmetry_nameOfh1-nameOfh2`
4322///
4323/// code proposed by Jason Seely (seely@mit.edu) and adapted by R.Brun
4324///
4325/// clone the histograms so top and bottom will have the
4326/// correct dimensions:
4327/// Sumw2 just makes sure the errors will be computed properly
4328/// when we form sums and ratios below.
4329
4331{
4332 TH1 *h1 = this;
4333 TString name = TString::Format("Asymmetry_%s-%s",h1->GetName(),h2->GetName() );
4334 TH1 *asym = (TH1*)Clone(name);
4335
4336 // set also the title
4337 TString title = TString::Format("(%s - %s)/(%s+%s)",h1->GetName(),h2->GetName(),h1->GetName(),h2->GetName() );
4338 asym->SetTitle(title);
4339
4340 asym->Sumw2();
4343 TH1 *top = (TH1*)asym->Clone();
4344 TH1 *bottom = (TH1*)asym->Clone();
4346
4347 // form the top and bottom of the asymmetry, and then divide:
4348 top->Add(h1,h2,1,-c2);
4349 bottom->Add(h1,h2,1,c2);
4350 asym->Divide(top,bottom);
4351
4352 Int_t xmax = asym->GetNbinsX();
4353 Int_t ymax = asym->GetNbinsY();
4354 Int_t zmax = asym->GetNbinsZ();
4355
4356 if (h1->fBuffer) h1->BufferEmpty(1);
4357 if (h2->fBuffer) h2->BufferEmpty(1);
4358 if (bottom->fBuffer) bottom->BufferEmpty(1);
4359
4360 // now loop over bins to calculate the correct errors
4361 // the reason this error calculation looks complex is because of c2
4362 for(Int_t i=1; i<= xmax; i++){
4363 for(Int_t j=1; j<= ymax; j++){
4364 for(Int_t k=1; k<= zmax; k++){
4365 Int_t bin = GetBin(i, j, k);
4366 // here some bin contents are written into variables to make the error
4367 // calculation a little more legible:
4369 Double_t b = h2->RetrieveBinContent(bin);
4370 Double_t bot = bottom->RetrieveBinContent(bin);
4371
4372 // make sure there are some events, if not, then the errors are set = 0
4373 // automatically.
4374 //if(bot < 1){} was changed to the next line from recommendation of Jason Seely (28 Nov 2005)
4375 if(bot < 1e-6){}
4376 else{
4377 // computation of errors by Christos Leonidopoulos
4379 Double_t dbsq = h2->GetBinErrorSqUnchecked(bin);
4380 Double_t error = 2*TMath::Sqrt(a*a*c2*c2*dbsq + c2*c2*b*b*dasq+a*a*b*b*dc2*dc2)/(bot*bot);
4381 asym->SetBinError(i,j,k,error);
4382 }
4383 }
4384 }
4385 }
4386 delete top;
4387 delete bottom;
4388
4389 return asym;
4390}
4391
4392////////////////////////////////////////////////////////////////////////////////
4393/// Static function
4394/// return the default buffer size for automatic histograms
4395/// the parameter fgBufferSize may be changed via SetDefaultBufferSize
4396
4398{
4399 return fgBufferSize;
4400}
4401
4402////////////////////////////////////////////////////////////////////////////////
4403/// Return kTRUE if TH1::Sumw2 must be called when creating new histograms.
4404/// see TH1::SetDefaultSumw2.
4405
4407{
4408 return fgDefaultSumw2;
4409}
4410
4411////////////////////////////////////////////////////////////////////////////////
4412/// Return the current number of entries.
4413
4415{
4416 if (fBuffer) {
4417 Int_t nentries = (Int_t) fBuffer[0];
4418 if (nentries > 0) return nentries;
4419 }
4420
4421 return fEntries;
4422}
4423
4424////////////////////////////////////////////////////////////////////////////////
4425/// Number of effective entries of the histogram.
4426///
4427/// \f[
4428/// neff = \frac{(\sum Weights )^2}{(\sum Weight^2 )}
4429/// \f]
4430///
4431/// In case of an unweighted histogram this number is equivalent to the
4432/// number of entries of the histogram.
4433/// For a weighted histogram, this number corresponds to the hypothetical number of unweighted entries
4434/// a histogram would need to have the same statistical power as this weighted histogram.
4435/// Note: The underflow/overflow are included if one has set the TH1::StatOverFlows flag
4436/// and if the statistics has been computed at filling time.
4437/// If a range is set in the histogram the number is computed from the given range.
4438
4440{
4441 Stat_t s[kNstat];
4442 this->GetStats(s);// s[1] sum of squares of weights, s[0] sum of weights
4443 return (s[1] ? s[0]*s[0]/s[1] : TMath::Abs(s[0]) );
4444}
4445
4446////////////////////////////////////////////////////////////////////////////////
4447/// Shortcut to set the three histogram colors with a single call.
4448///
4449/// By default: linecolor = markercolor = fillcolor = -1
4450/// If a color is < 0 this method does not change the corresponding color if positive or null it set the color.
4451///
4452/// For instance:
4453/// ~~~ {.cpp}
4454/// h->SetColors(kRed, kRed);
4455/// ~~~
4456/// will set the line color and the marker color to red.
4457
4459{
4460 if (linecolor >= 0)
4462 if (markercolor >= 0)
4464 if (fillcolor >= 0)
4466}
4467
4468
4469////////////////////////////////////////////////////////////////////////////////
4470/// Set highlight (enable/disable) mode for the histogram
4471/// by default highlight mode is disable
4472
4473void TH1::SetHighlight(Bool_t set)
4474{
4475 if (IsHighlight() == set)
4476 return;
4477 if (fDimension > 2) {
4478 Info("SetHighlight", "Supported only 1-D or 2-D histograms");
4479 return;
4480 }
4481
4482 SetBit(kIsHighlight, set);
4483
4484 if (fPainter)
4486}
4487
4488////////////////////////////////////////////////////////////////////////////////
4489/// Redefines TObject::GetObjectInfo.
4490/// Displays the histogram info (bin number, contents, integral up to bin
4491/// corresponding to cursor position px,py
4492
4493char *TH1::GetObjectInfo(Int_t px, Int_t py) const
4494{
4495 return ((TH1*)this)->GetPainter()->GetObjectInfo(px,py);
4496}
4497
4498////////////////////////////////////////////////////////////////////////////////
4499/// Return pointer to painter.
4500/// If painter does not exist, it is created
4501
4503{
4504 if (!fPainter) {
4505 TString opt = option;
4506 opt.ToLower();
4507 if (opt.Contains("gl") || gStyle->GetCanvasPreferGL()) {
4508 //try to create TGLHistPainter
4509 TPluginHandler *handler = gROOT->GetPluginManager()->FindHandler("TGLHistPainter");
4510
4511 if (handler && handler->LoadPlugin() != -1)
4512 fPainter = reinterpret_cast<TVirtualHistPainter *>(handler->ExecPlugin(1, this));
4513 }
4514 }
4515
4517
4518 return fPainter;
4519}
4520
4521////////////////////////////////////////////////////////////////////////////////
4522/// Compute Quantiles for this histogram.
4523/// A quantile x_p := Q(p) is defined as the value x_p such that the cumulative
4524/// probability distribution Function F of variable X yields:
4525///
4526/// ~~~ {.cpp}
4527/// F(x_p) = Pr(X <= x_p) = p with 0 <= p <= 1.
4528/// x_p = Q(p) = F_inv(p)
4529/// ~~~
4530///
4531/// For instance the median x_0.5 of a distribution is defined as that value
4532/// of the random variable X for which the distribution function equals 0.5:
4533///
4534/// ~~~ {.cpp}
4535/// F(x_0.5) = Probability(X < x_0.5) = 0.5
4536/// x_0.5 = Q(0.5)
4537/// ~~~
4538///
4539/// \author Eddy Offermann
4540/// code from Eddy Offermann, Renaissance
4541///
4542/// \param[in] n maximum size of the arrays xp and p (if given)
4543/// \param[out] xp array to be filled with nq quantiles evaluated at (p). Memory has to be preallocated by caller.
4544/// - If `p == nullptr`, the quantiles are computed at the (first `n`) probabilities p given by the CDF of the histogram;
4545/// `n` must thus be smaller or equal Nbins+1, otherwise the extra values of `xp` will not be filled and `nq` will be smaller than `n`.
4546/// If all bins have non-zero entries, the quantiles happen to be the bin centres.
4547/// Empty bins will, however, be skipped in the quantiles.
4548/// If the CDF is e.g. [0., 0., 0.1, ...], the quantiles would be, [3., 3., 3., ...], with the third bin starting
4549/// at 3.
4550/// \param[in] p array of cumulative probabilities where quantiles should be evaluated.
4551/// - if `p == nullptr`, the CDF of the histogram will be used to compute the quantiles, and will
4552/// have a size of n.
4553/// - Otherwise, it is assumed to contain at least n values.
4554/// \return number of quantiles computed
4555/// \note Unlike in TF1::GetQuantiles, `p` is here an optional argument
4556///
4557/// Note that the Integral of the histogram is automatically recomputed
4558/// if the number of entries is different of the number of entries when
4559/// the integral was computed last time. In case you do not use the Fill
4560/// functions to fill your histogram, but SetBinContent, you must call
4561/// TH1::ComputeIntegral before calling this function.
4562///
4563/// Getting quantiles xp from two histograms and storing results in a TGraph,
4564/// a so-called QQ-plot
4565///
4566/// ~~~ {.cpp}
4567/// TGraph *gr = new TGraph(nprob);
4568/// h1->GetQuantiles(nprob,gr->GetX());
4569/// h2->GetQuantiles(nprob,gr->GetY());
4570/// gr->Draw("alp");
4571/// ~~~
4572///
4573/// Example:
4574///
4575/// ~~~ {.cpp}
4576/// void quantiles() {
4577/// // demo for quantiles
4578/// const Int_t nq = 20;
4579/// TH1F *h = new TH1F("h","demo quantiles",100,-3,3);
4580/// h->FillRandom("gaus",5000);
4581/// h->GetXaxis()->SetTitle("x");
4582/// h->GetYaxis()->SetTitle("Counts");
4583///
4584/// Double_t p[nq]; // probabilities where to evaluate the quantiles in [0,1]
4585/// Double_t xp[nq]; // array of positions X to store the resulting quantiles
4586/// for (Int_t i=0;i<nq;i++) p[i] = Float_t(i+1)/nq;
4587/// h->GetQuantiles(nq,xp,p);
4588///
4589/// //show the original histogram in the top pad
4590/// TCanvas *c1 = new TCanvas("c1","demo quantiles",10,10,700,900);
4591/// c1->Divide(1,2);
4592/// c1->cd(1);
4593/// h->Draw();
4594///
4595/// // show the quantiles in the bottom pad
4596/// c1->cd(2);
4597/// gPad->SetGrid();
4598/// TGraph *gr = new TGraph(nq,p,xp);
4599/// gr->SetMarkerStyle(21);
4600/// gr->GetXaxis()->SetTitle("p");
4601/// gr->GetYaxis()->SetTitle("x");
4602/// gr->Draw("alp");
4603/// }
4604/// ~~~
4605
4607{
4608 if (GetDimension() > 1) {
4609 Error("GetQuantiles","Only available for 1-d histograms");
4610 return 0;
4611 }
4612
4613 const Int_t nbins = GetXaxis()->GetNbins();
4614 if (!fIntegral) ComputeIntegral();
4615 if (fIntegral[nbins+1] != fEntries) ComputeIntegral();
4616
4617 Int_t i, ibin;
4618 Int_t nq = n;
4619 std::unique_ptr<Double_t[]> localProb;
4620 if (p == nullptr) {
4621 nq = nbins+1;
4622 localProb.reset(new Double_t[nq]);
4623 localProb[0] = 0;
4624 for (i=1;i<nq;i++) {
4625 localProb[i] = fIntegral[i] / fIntegral[nbins];
4626 }
4627 }
4628 Double_t const *const prob = p ? p : localProb.get();
4629
4630 for (i = 0; i < nq; i++) {
4632 if (fIntegral[ibin] == prob[i]) {
4633 if (prob[i] == 0.) {
4634 for (; ibin+1 <= nbins && fIntegral[ibin+1] == 0.; ++ibin) {
4635
4636 }
4637 xp[i] = fXaxis.GetBinUpEdge(ibin);
4638 }
4639 else if (prob[i] == 1.) {
4640 xp[i] = fXaxis.GetBinUpEdge(ibin);
4641 }
4642 else {
4643 // Find equal integral in later bins (ie their entries are zero)
4644 Double_t width = 0;
4645 for (Int_t j = ibin+1; j <= nbins; ++j) {
4646 if (prob[i] == fIntegral[j]) {
4648 }
4649 else
4650 break;
4651 }
4653 }
4654 }
4655 else {
4656 xp[i] = GetBinLowEdge(ibin+1);
4658 if (dint > 0) xp[i] += GetBinWidth(ibin+1)*(prob[i]-fIntegral[ibin])/dint;
4659 }
4660 }
4661
4662 return nq;
4663}
4664
4665////////////////////////////////////////////////////////////////////////////////
4671 return 1;
4672}
4673
4674////////////////////////////////////////////////////////////////////////////////
4675/// Compute Initial values of parameters for a gaussian.
4676
4677void H1InitGaus()
4678{
4679 Double_t allcha, sumx, sumx2, x, val, stddev, mean;
4680 Int_t bin;
4681 const Double_t sqrtpi = 2.506628;
4682
4683 // - Compute mean value and StdDev of the histogram in the given range
4685 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4686 Int_t hxfirst = hFitter->GetXfirst();
4687 Int_t hxlast = hFitter->GetXlast();
4688 Double_t valmax = curHist->GetBinContent(hxfirst);
4689 Double_t binwidx = curHist->GetBinWidth(hxfirst);
4690 allcha = sumx = sumx2 = 0;
4691 for (bin=hxfirst;bin<=hxlast;bin++) {
4692 x = curHist->GetBinCenter(bin);
4693 val = TMath::Abs(curHist->GetBinContent(bin));
4694 if (val > valmax) valmax = val;
4695 sumx += val*x;
4696 sumx2 += val*x*x;
4697 allcha += val;
4698 }
4699 if (allcha == 0) return;
4700 mean = sumx/allcha;
4701 stddev = sumx2/allcha - mean*mean;
4702 if (stddev > 0) stddev = TMath::Sqrt(stddev);
4703 else stddev = 0;
4704 if (stddev == 0) stddev = binwidx*(hxlast-hxfirst+1)/4;
4705 //if the distribution is really gaussian, the best approximation
4706 //is binwidx*allcha/(sqrtpi*stddev)
4707 //However, in case of non-gaussian tails, this underestimates
4708 //the normalisation constant. In this case the maximum value
4709 //is a better approximation.
4710 //We take the average of both quantities
4712
4713 //In case the mean value is outside the histo limits and
4714 //the StdDev is bigger than the range, we take
4715 // mean = center of bins
4716 // stddev = half range
4717 Double_t xmin = curHist->GetXaxis()->GetXmin();
4718 Double_t xmax = curHist->GetXaxis()->GetXmax();
4719 if ((mean < xmin || mean > xmax) && stddev > (xmax-xmin)) {
4720 mean = 0.5*(xmax+xmin);
4721 stddev = 0.5*(xmax-xmin);
4722 }
4723 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4725 f1->SetParameter(1,mean);
4727 f1->SetParLimits(2,0,10*stddev);
4728}
4729
4730////////////////////////////////////////////////////////////////////////////////
4731/// Compute Initial values of parameters for an exponential.
4732
4733void H1InitExpo()
4734{
4736 Int_t ifail;
4738 Int_t hxfirst = hFitter->GetXfirst();
4739 Int_t hxlast = hFitter->GetXlast();
4740 Int_t nchanx = hxlast - hxfirst + 1;
4741
4743
4744 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4746 f1->SetParameter(1,slope);
4747
4748}
4749
4750////////////////////////////////////////////////////////////////////////////////
4751/// Compute Initial values of parameters for a polynom.
4752
4753void H1InitPolynom()
4754{
4755 Double_t fitpar[25];
4756
4758 TF1 *f1 = (TF1*)hFitter->GetUserFunc();
4759 Int_t hxfirst = hFitter->GetXfirst();
4760 Int_t hxlast = hFitter->GetXlast();
4761 Int_t nchanx = hxlast - hxfirst + 1;
4762 Int_t npar = f1->GetNpar();
4763
4764 if (nchanx <=1 || npar == 1) {
4765 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4766 fitpar[0] = curHist->GetSumOfWeights()/Double_t(nchanx);
4767 } else {
4769 }
4770 for (Int_t i=0;i<npar;i++) f1->SetParameter(i, fitpar[i]);
4771}
4772
4773////////////////////////////////////////////////////////////////////////////////
4774/// Least squares lpolynomial fitting without weights.
4775///
4776/// \param[in] n number of points to fit
4777/// \param[in] m number of parameters
4778/// \param[in] a array of parameters
4779///
4780/// based on CERNLIB routine LSQ: Translated to C++ by Rene Brun
4781/// (E.Keil. revised by B.Schorr, 23.10.1981.)
4782
4784{
4785 const Double_t zero = 0.;
4786 const Double_t one = 1.;
4787 const Int_t idim = 20;
4788
4789 Double_t b[400] /* was [20][20] */;
4790 Int_t i, k, l, ifail;
4792 Double_t da[20], xk, yk;
4793
4794 if (m <= 2) {
4795 H1LeastSquareLinearFit(n, a[0], a[1], ifail);
4796 return;
4797 }
4798 if (m > idim || m > n) return;
4799 b[0] = Double_t(n);
4800 da[0] = zero;
4801 for (l = 2; l <= m; ++l) {
4802 b[l-1] = zero;
4803 b[m + l*20 - 21] = zero;
4804 da[l-1] = zero;
4805 }
4807 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4808 Int_t hxfirst = hFitter->GetXfirst();
4809 Int_t hxlast = hFitter->GetXlast();
4810 for (k = hxfirst; k <= hxlast; ++k) {
4811 xk = curHist->GetBinCenter(k);
4812 yk = curHist->GetBinContent(k);
4813 power = one;
4814 da[0] += yk;
4815 for (l = 2; l <= m; ++l) {
4816 power *= xk;
4817 b[l-1] += power;
4818 da[l-1] += power*yk;
4819 }
4820 for (l = 2; l <= m; ++l) {
4821 power *= xk;
4822 b[m + l*20 - 21] += power;
4823 }
4824 }
4825 for (i = 3; i <= m; ++i) {
4826 for (k = i; k <= m; ++k) {
4827 b[k - 1 + (i-1)*20 - 21] = b[k + (i-2)*20 - 21];
4828 }
4829 }
4831
4832 for (i=0; i<m; ++i) a[i] = da[i];
4833
4834}
4835
4836////////////////////////////////////////////////////////////////////////////////
4837/// Least square linear fit without weights.
4838///
4839/// extracted from CERNLIB LLSQ: Translated to C++ by Rene Brun
4840/// (added to LSQ by B. Schorr, 15.02.1982.)
4841
4843{
4845 Int_t i, n;
4847 Double_t fn, xk, yk;
4848 Double_t det;
4849
4850 n = TMath::Abs(ndata);
4851 ifail = -2;
4852 xbar = ybar = x2bar = xybar = 0;
4854 TH1 *curHist = (TH1*)hFitter->GetObjectFit();
4855 Int_t hxfirst = hFitter->GetXfirst();
4856 Int_t hxlast = hFitter->GetXlast();
4857 for (i = hxfirst; i <= hxlast; ++i) {
4858 xk = curHist->GetBinCenter(i);
4859 yk = curHist->GetBinContent(i);
4860 if (ndata < 0) {
4861 if (yk <= 0) yk = 1e-9;
4862 yk = TMath::Log(yk);
4863 }
4864 xbar += xk;
4865 ybar += yk;
4866 x2bar += xk*xk;
4867 xybar += xk*yk;
4868 }
4869 fn = Double_t(n);
4870 det = fn*x2bar - xbar*xbar;
4871 ifail = -1;
4872 if (det <= 0) {
4873 a0 = ybar/fn;
4874 a1 = 0;
4875 return;
4876 }
4877 ifail = 0;
4878 a0 = (x2bar*ybar - xbar*xybar) / det;
4879 a1 = (fn*xybar - xbar*ybar) / det;
4880
4881}
4882
4883////////////////////////////////////////////////////////////////////////////////
4884/// Extracted from CERN Program library routine DSEQN.
4885///
4886/// Translated to C++ by Rene Brun
4887
4889{
4891 Int_t nmjp1, i, j, l;
4892 Int_t im1, jp1, nm1, nmi;
4893 Double_t s1, s21, s22;
4894 const Double_t one = 1.;
4895
4896 /* Parameter adjustments */
4897 b_dim1 = idim;
4898 b_offset = b_dim1 + 1;
4899 b -= b_offset;
4900 a_dim1 = idim;
4901 a_offset = a_dim1 + 1;
4902 a -= a_offset;
4903
4904 if (idim < n) return;
4905
4906 ifail = 0;
4907 for (j = 1; j <= n; ++j) {
4908 if (a[j + j*a_dim1] <= 0) { ifail = -1; return; }
4909 a[j + j*a_dim1] = one / a[j + j*a_dim1];
4910 if (j == n) continue;
4911 jp1 = j + 1;
4912 for (l = jp1; l <= n; ++l) {
4913 a[j + l*a_dim1] = a[j + j*a_dim1] * a[l + j*a_dim1];
4914 s1 = -a[l + (j+1)*a_dim1];
4915 for (i = 1; i <= j; ++i) { s1 = a[l + i*a_dim1] * a[i + (j+1)*a_dim1] + s1; }
4916 a[l + (j+1)*a_dim1] = -s1;
4917 }
4918 }
4919 if (k <= 0) return;
4920
4921 for (l = 1; l <= k; ++l) {
4922 b[l*b_dim1 + 1] = a[a_dim1 + 1]*b[l*b_dim1 + 1];
4923 }
4924 if (n == 1) return;
4925 for (l = 1; l <= k; ++l) {
4926 for (i = 2; i <= n; ++i) {
4927 im1 = i - 1;
4928 s21 = -b[i + l*b_dim1];
4929 for (j = 1; j <= im1; ++j) {
4930 s21 = a[i + j*a_dim1]*b[j + l*b_dim1] + s21;
4931 }
4932 b[i + l*b_dim1] = -a[i + i*a_dim1]*s21;
4933 }
4934 nm1 = n - 1;
4935 for (i = 1; i <= nm1; ++i) {
4936 nmi = n - i;
4937 s22 = -b[nmi + l*b_dim1];
4938 for (j = 1; j <= i; ++j) {
4939 nmjp1 = n - j + 1;
4940 s22 = a[nmi + nmjp1*a_dim1]*b[nmjp1 + l*b_dim1] + s22;
4941 }
4942 b[nmi + l*b_dim1] = -s22;
4943 }
4944 }
4945}
4946
4947////////////////////////////////////////////////////////////////////////////////
4948/// Return Global bin number corresponding to binx,y,z.
4949///
4950/// 2-D and 3-D histograms are represented with a one dimensional
4951/// structure.
4952/// This has the advantage that all existing functions, such as
4953/// GetBinContent, GetBinError, GetBinFunction work for all dimensions.
4954///
4955/// In case of a TH1x, returns binx directly.
4956/// see TH1::GetBinXYZ for the inverse transformation.
4957///
4958/// Convention for numbering bins
4959///
4960/// For all histogram types: nbins, xlow, xup
4961///
4962/// - bin = 0; underflow bin
4963/// - bin = 1; first bin with low-edge xlow INCLUDED
4964/// - bin = nbins; last bin with upper-edge xup EXCLUDED
4965/// - bin = nbins+1; overflow bin
4966///
4967/// In case of 2-D or 3-D histograms, a "global bin" number is defined.
4968/// For example, assuming a 3-D histogram with binx,biny,binz, the function
4969///
4970/// ~~~ {.cpp}
4971/// Int_t bin = h->GetBin(binx,biny,binz);
4972/// ~~~
4973///
4974/// returns a global/linearized bin number. This global bin is useful
4975/// to access the bin information independently of the dimension.
4976
4978{
4979 Int_t ofx = fXaxis.GetNbins() + 1; // overflow bin
4980 if (binx < 0) binx = 0;
4981 if (binx > ofx) binx = ofx;
4982
4983 return binx;
4984}
4985
4986////////////////////////////////////////////////////////////////////////////////
4987/// Return binx, biny, binz corresponding to the global bin number globalbin
4988/// see TH1::GetBin function above
4989
4991{
4992 Int_t nx = fXaxis.GetNbins()+2;
4993 Int_t ny = fYaxis.GetNbins()+2;
4994
4995 if (GetDimension() == 1) {
4996 binx = binglobal%nx;
4997 biny = 0;
4998 binz = 0;
4999 return;
5000 }
5001 if (GetDimension() == 2) {
5002 binx = binglobal%nx;
5003 biny = ((binglobal-binx)/nx)%ny;
5004 binz = 0;
5005 return;
5006 }
5007 if (GetDimension() == 3) {
5008 binx = binglobal%nx;
5009 biny = ((binglobal-binx)/nx)%ny;
5010 binz = ((binglobal-binx)/nx -biny)/ny;
5011 }
5012}
5013
5014////////////////////////////////////////////////////////////////////////////////
5015/// Return a random number distributed according the histogram bin contents.
5016/// This function checks if the bins integral exists. If not, the integral
5017/// is evaluated, normalized to one.
5018///
5019/// @param rng (optional) Random number generator pointer used (default is gRandom)
5020/// @param option (optional) Set it to "width" if your non-uniform bin contents represent a density rather than counts
5021///
5022/// The integral is automatically recomputed if the number of entries
5023/// is not the same then when the integral was computed.
5024/// @note Only valid for 1-d histograms. Use GetRandom2 or GetRandom3 otherwise.
5025/// If the histogram has a bin with negative content, a NaN is returned.
5026
5028{
5029 if (fDimension > 1) {
5030 Error("GetRandom","Function only valid for 1-d histograms");
5031 return 0;
5032 }
5034 Double_t integral = 0;
5035 // compute integral checking that all bins have positive content (see ROOT-5894)
5036 if (fIntegral) {
5037 if (fIntegral[nbinsx + 1] != fEntries)
5038 integral = const_cast<TH1 *>(this)->ComputeIntegral(true, option);
5039 else integral = fIntegral[nbinsx];
5040 } else {
5041 integral = const_cast<TH1 *>(this)->ComputeIntegral(true, option);
5042 }
5043 if (integral == 0) return 0;
5044 // return a NaN in case some bins have negative content
5045 if (integral == TMath::QuietNaN() ) return TMath::QuietNaN();
5046
5047 Double_t r1 = (rng) ? rng->Rndm() : gRandom->Rndm();
5050 if (r1 > fIntegral[ibin]) x +=
5052 return x;
5053}
5054
5055////////////////////////////////////////////////////////////////////////////////
5056/// Return content of bin number bin.
5057///
5058/// Implemented in TH1C,S,F,D
5059///
5060/// Convention for numbering bins
5061///
5062/// For all histogram types: nbins, xlow, xup
5063///
5064/// - bin = 0; underflow bin
5065/// - bin = 1; first bin with low-edge xlow INCLUDED
5066/// - bin = nbins; last bin with upper-edge xup EXCLUDED
5067/// - bin = nbins+1; overflow bin
5068///
5069/// In case of 2-D or 3-D histograms, a "global bin" number is defined.
5070/// For example, assuming a 3-D histogram with binx,biny,binz, the function
5071///
5072/// ~~~ {.cpp}
5073/// Int_t bin = h->GetBin(binx,biny,binz);
5074/// ~~~
5075///
5076/// returns a global/linearized bin number. This global bin is useful
5077/// to access the bin information independently of the dimension.
5078
5080{
5081 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
5082 if (bin < 0) bin = 0;
5083 if (bin >= fNcells) bin = fNcells-1;
5084
5085 return RetrieveBinContent(bin);
5086}
5087
5088////////////////////////////////////////////////////////////////////////////////
5089/// Compute first binx in the range [firstx,lastx] for which
5090/// diff = abs(bin_content-c) <= maxdiff
5091///
5092/// In case several bins in the specified range with diff=0 are found
5093/// the first bin found is returned in binx.
5094/// In case several bins in the specified range satisfy diff <=maxdiff
5095/// the bin with the smallest difference is returned in binx.
5096/// In all cases the function returns the smallest difference.
5097///
5098/// NOTE1: if firstx <= 0, firstx is set to bin 1
5099/// if (lastx < firstx then firstx is set to the number of bins
5100/// ie if firstx=0 and lastx=0 (default) the search is on all bins.
5101///
5102/// NOTE2: if maxdiff=0 (default), the first bin with content=c is returned.
5103
5105{
5106 if (fDimension > 1) {
5107 binx = 0;
5108 Error("GetBinWithContent","function is only valid for 1-D histograms");
5109 return 0;
5110 }
5111
5112 if (fBuffer) ((TH1*)this)->BufferEmpty();
5113
5114 if (firstx <= 0) firstx = 1;
5115 if (lastx < firstx) lastx = fXaxis.GetNbins();
5116 Int_t binminx = 0;
5117 Double_t diff, curmax = 1.e240;
5118 for (Int_t i=firstx;i<=lastx;i++) {
5120 if (diff <= 0) {binx = i; return diff;}
5121 if (diff < curmax && diff <= maxdiff) {curmax = diff, binminx=i;}
5122 }
5123 binx = binminx;
5124 return curmax;
5125}
5126
5127////////////////////////////////////////////////////////////////////////////////
5128/// Given a point x, approximates the value via linear interpolation
5129/// based on the two nearest bin centers
5130///
5131/// Andy Mastbaum 10/21/08
5132
5134{
5135 if (fBuffer) ((TH1*)this)->BufferEmpty();
5136
5138 Double_t x0,x1,y0,y1;
5139
5140 if(x<=GetBinCenter(1)) {
5141 return RetrieveBinContent(1);
5142 } else if(x>=GetBinCenter(GetNbinsX())) {
5143 return RetrieveBinContent(GetNbinsX());
5144 } else {
5145 if(x<=GetBinCenter(xbin)) {
5147 x0 = GetBinCenter(xbin-1);
5149 x1 = GetBinCenter(xbin);
5150 } else {
5152 x0 = GetBinCenter(xbin);
5154 x1 = GetBinCenter(xbin+1);
5155 }
5156 return y0 + (x-x0)*((y1-y0)/(x1-x0));
5157 }
5158}
5159
5160////////////////////////////////////////////////////////////////////////////////
5161/// 2d Interpolation. Not yet implemented.
5162
5164{
5165 Error("Interpolate","This function must be called with 1 argument for a TH1");
5166 return 0;
5167}
5168
5169////////////////////////////////////////////////////////////////////////////////
5170/// 3d Interpolation. Not yet implemented.
5171
5173{
5174 Error("Interpolate","This function must be called with 1 argument for a TH1");
5175 return 0;
5176}
5177
5178///////////////////////////////////////////////////////////////////////////////
5179/// Check if a histogram is empty
5180/// (this is a protected method used mainly by TH1Merger )
5181
5182Bool_t TH1::IsEmpty() const
5183{
5184 // if fTsumw or fentries are not zero histogram is not empty
5185 // need to use GetEntries() instead of fEntries in case of bugger histograms
5186 // so we will flash the buffer
5187 if (fTsumw != 0) return kFALSE;
5188 if (GetEntries() != 0) return kFALSE;
5189 // case fTSumw == 0 amd entries are also zero
5190 // this should not really happening, but if one sets content by hand
5191 // it can happen. a call to ResetStats() should be done in such cases
5192 double sumw = 0;
5193 for (int i = 0; i< GetNcells(); ++i) sumw += RetrieveBinContent(i);
5194 return (sumw != 0) ? kFALSE : kTRUE;
5195}
5196
5197////////////////////////////////////////////////////////////////////////////////
5198/// Return true if the bin is overflow.
5199
5201{
5202 Int_t binx, biny, binz;
5203 GetBinXYZ(bin, binx, biny, binz);
5204
5205 if (iaxis == 0) {
5206 if ( fDimension == 1 )
5207 return binx >= GetNbinsX() + 1;
5208 if ( fDimension == 2 )
5209 return (binx >= GetNbinsX() + 1) ||
5210 (biny >= GetNbinsY() + 1);
5211 if ( fDimension == 3 )
5212 return (binx >= GetNbinsX() + 1) ||
5213 (biny >= GetNbinsY() + 1) ||
5214 (binz >= GetNbinsZ() + 1);
5215 return kFALSE;
5216 }
5217 if (iaxis == 1)
5218 return binx >= GetNbinsX() + 1;
5219 if (iaxis == 2)
5220 return biny >= GetNbinsY() + 1;
5221 if (iaxis == 3)
5222 return binz >= GetNbinsZ() + 1;
5223
5224 Error("IsBinOverflow","Invalid axis value");
5225 return kFALSE;
5226}
5227
5228////////////////////////////////////////////////////////////////////////////////
5229/// Return true if the bin is underflow.
5230/// If iaxis = 0 make OR with all axes otherwise check only for the given axis
5231
5233{
5234 Int_t binx, biny, binz;
5235 GetBinXYZ(bin, binx, biny, binz);
5236
5237 if (iaxis == 0) {
5238 if ( fDimension == 1 )
5239 return (binx <= 0);
5240 else if ( fDimension == 2 )
5241 return (binx <= 0 || biny <= 0);
5242 else if ( fDimension == 3 )
5243 return (binx <= 0 || biny <= 0 || binz <= 0);
5244 else
5245 return kFALSE;
5246 }
5247 if (iaxis == 1)
5248 return (binx <= 0);
5249 if (iaxis == 2)
5250 return (biny <= 0);
5251 if (iaxis == 3)
5252 return (binz <= 0);
5253
5254 Error("IsBinUnderflow","Invalid axis value");
5255 return kFALSE;
5256}
5257
5258////////////////////////////////////////////////////////////////////////////////
5259/// Reduce the number of bins for the axis passed in the option to the number of bins having a label.
5260/// The method will remove only the extra bins existing after the last "labeled" bin.
5261/// Note that if there are "un-labeled" bins present between "labeled" bins they will not be removed
5262
5264{
5266 TAxis *axis = nullptr;
5267 if (iaxis == 1) axis = GetXaxis();
5268 if (iaxis == 2) axis = GetYaxis();
5269 if (iaxis == 3) axis = GetZaxis();
5270 if (!axis) {
5271 Error("LabelsDeflate","Invalid axis option %s",ax);
5272 return;
5273 }
5274 if (!axis->GetLabels()) return;
5275
5276 // find bin with last labels
5277 // bin number is object ID in list of labels
5278 // therefore max bin number is number of bins of the deflated histograms
5279 TIter next(axis->GetLabels());
5280 TObject *obj;
5281 Int_t nbins = 0;
5282 while ((obj = next())) {
5283 Int_t ibin = obj->GetUniqueID();
5284 if (ibin > nbins) nbins = ibin;
5285 }
5286 if (nbins < 1) nbins = 1;
5287
5288 // Do nothing in case it was the last bin
5289 if (nbins==axis->GetNbins()) return;
5290
5291 TH1 *hold = (TH1*)IsA()->New();
5292 R__ASSERT(hold);
5293 hold->SetDirectory(nullptr);
5294 Copy(*hold);
5295
5296 Bool_t timedisp = axis->GetTimeDisplay();
5297 Double_t xmin = axis->GetXmin();
5298 Double_t xmax = axis->GetBinUpEdge(nbins);
5299 if (xmax <= xmin) xmax = xmin +nbins;
5300 axis->SetRange(0,0);
5301 axis->Set(nbins,xmin,xmax);
5302 SetBinsLength(-1); // reset the number of cells
5304 if (errors) fSumw2.Set(fNcells);
5305 axis->SetTimeDisplay(timedisp);
5306 // reset histogram content
5307 Reset("ICE");
5308
5309 //now loop on all bins and refill
5310 // NOTE that if the bins without labels have content
5311 // it will be put in the underflow/overflow.
5312 // For this reason we use AddBinContent method
5314 Int_t bin,binx,biny,binz;
5315 for (bin=0; bin < hold->fNcells; ++bin) {
5316 hold->GetBinXYZ(bin,binx,biny,binz);
5318 Double_t cu = hold->RetrieveBinContent(bin);
5320 if (errors) {
5321 fSumw2.fArray[ibin] += hold->fSumw2.fArray[bin];
5322 }
5323 }
5325 delete hold;
5326}
5327
5328////////////////////////////////////////////////////////////////////////////////
5329/// Double the number of bins for axis.
5330/// Refill histogram.
5331/// This function is called by TAxis::FindBin(const char *label)
5332
5334{
5336 TAxis *axis = nullptr;
5337 if (iaxis == 1) axis = GetXaxis();
5338 if (iaxis == 2) axis = GetYaxis();
5339 if (iaxis == 3) axis = GetZaxis();
5340 if (!axis) return;
5341
5342 TH1 *hold = (TH1*)IsA()->New();
5343 hold->SetDirectory(nullptr);
5344 Copy(*hold);
5345 hold->ResetBit(kMustCleanup);
5346
5347 Bool_t timedisp = axis->GetTimeDisplay();
5348 Int_t nbins = axis->GetNbins();
5349 Double_t xmin = axis->GetXmin();
5350 Double_t xmax = axis->GetXmax();
5351 xmax = xmin + 2*(xmax-xmin);
5352 axis->SetRange(0,0);
5353 // double the bins and recompute ncells
5354 axis->Set(2*nbins,xmin,xmax);
5355 SetBinsLength(-1);
5357 if (errors) fSumw2.Set(fNcells);
5358 axis->SetTimeDisplay(timedisp);
5359
5360 Reset("ICE"); // reset content and error
5361
5362 //now loop on all bins and refill
5364 Int_t bin,ibin,binx,biny,binz;
5365 for (ibin =0; ibin < hold->fNcells; ibin++) {
5366 // get the binx,y,z values . The x-y-z (axis) bin values will stay the same between new-old after the expanding
5367 hold->GetBinXYZ(ibin,binx,biny,binz);
5368 bin = GetBin(binx,biny,binz);
5369
5370 // underflow and overflow will be cleaned up because their meaning has been altered
5371 if (hold->IsBinUnderflow(ibin,iaxis) || hold->IsBinOverflow(ibin,iaxis)) {
5372 continue;
5373 }
5374 else {
5375 AddBinContent(bin, hold->RetrieveBinContent(ibin));
5376 if (errors) fSumw2.fArray[bin] += hold->fSumw2.fArray[ibin];
5377 }
5378 }
5380 delete hold;
5381}
5382
5383////////////////////////////////////////////////////////////////////////////////
5384/// Sort bins with labels or set option(s) to draw axis with labels
5385/// \param[in] option
5386/// - "a" sort by alphabetic order
5387/// - ">" sort by decreasing values
5388/// - "<" sort by increasing values
5389/// - "h" draw labels horizontal
5390/// - "v" draw labels vertical
5391/// - "u" draw labels up (end of label right adjusted)
5392/// - "d" draw labels down (start of label left adjusted)
5393///
5394/// In case not all bins have labels sorting will work only in the case
5395/// the first `n` consecutive bins have all labels and sorting will be performed on
5396/// those label bins.
5397///
5398/// \param[in] ax axis
5399
5401{
5403 TAxis *axis = nullptr;
5404 if (iaxis == 1)
5405 axis = GetXaxis();
5406 if (iaxis == 2)
5407 axis = GetYaxis();
5408 if (iaxis == 3)
5409 axis = GetZaxis();
5410 if (!axis)
5411 return;
5412 THashList *labels = axis->GetLabels();
5413 if (!labels) {
5414 Warning("LabelsOption", "Axis %s has no labels!",axis->GetName());
5415 return;
5416 }
5417 TString opt = option;
5418 opt.ToLower();
5419 Int_t iopt = -1;
5420 if (opt.Contains("h")) {
5425 iopt = 0;
5426 }
5427 if (opt.Contains("v")) {
5432 iopt = 1;
5433 }
5434 if (opt.Contains("u")) {
5435 axis->SetBit(TAxis::kLabelsUp);
5439 iopt = 2;
5440 }
5441 if (opt.Contains("d")) {
5446 iopt = 3;
5447 }
5448 Int_t sort = -1;
5449 if (opt.Contains("a"))
5450 sort = 0;
5451 if (opt.Contains(">"))
5452 sort = 1;
5453 if (opt.Contains("<"))
5454 sort = 2;
5455 if (sort < 0) {
5456 if (iopt < 0)
5457 Error("LabelsOption", "%s is an invalid label placement option!",opt.Data());
5458 return;
5459 }
5460
5461 // Code works only if first n bins have labels if we uncomment following line
5462 // but we don't want to support this special case
5463 // Int_t n = TMath::Min(axis->GetNbins(), labels->GetSize());
5464
5465 // support only cases where each bin has a labels (should be when axis is alphanumeric)
5466 Int_t n = labels->GetSize();
5467 if (n != axis->GetNbins()) {
5468 // check if labels are all consecutive and starts from the first bin
5469 // in that case the current code will work fine
5470 Int_t firstLabelBin = axis->GetNbins()+1;
5471 Int_t lastLabelBin = -1;
5472 for (Int_t i = 0; i < n; ++i) {
5473 Int_t bin = labels->At(i)->GetUniqueID();
5474 if (bin < firstLabelBin) firstLabelBin = bin;
5475 if (bin > lastLabelBin) lastLabelBin = bin;
5476 }
5477 if (firstLabelBin != 1 || lastLabelBin-firstLabelBin +1 != n) {
5478 Error("LabelsOption", "%s of Histogram %s contains bins without labels. Sorting will not work correctly - return",
5479 axis->GetName(), GetName());
5480 return;
5481 }
5482 // case where label bins are consecutive starting from first bin will work
5483 // calling before a TH1::LabelsDeflate() will avoid this error message
5484 Warning("LabelsOption", "axis %s of Histogram %s has extra following bins without labels. Sorting will work only for first label bins",
5485 axis->GetName(), GetName());
5486 }
5487 std::vector<Int_t> a(n);
5488 std::vector<Int_t> b(n);
5489
5490
5491 Int_t i, j, k;
5492 std::vector<Double_t> cont;
5493 std::vector<Double_t> errors2;
5494 THashList *labold = new THashList(labels->GetSize(), 1);
5495 TIter nextold(labels);
5496 TObject *obj = nullptr;
5497 labold->AddAll(labels);
5498 labels->Clear();
5499
5500 // delete buffer if it is there since bins will be reordered.
5501 if (fBuffer)
5502 BufferEmpty(1);
5503
5504 if (sort > 0) {
5505 //---sort by values of bins
5506 if (GetDimension() == 1) {
5507 cont.resize(n);
5508 if (fSumw2.fN)
5509 errors2.resize(n);
5510 for (i = 0; i < n; i++) {
5511 cont[i] = RetrieveBinContent(i + 1);
5512 if (!errors2.empty())
5513 errors2[i] = GetBinErrorSqUnchecked(i + 1);
5514 b[i] = labold->At(i)->GetUniqueID(); // this is the bin corresponding to the label
5515 a[i] = i;
5516 }
5517 if (sort == 1)
5518 TMath::Sort(n, cont.data(), a.data(), kTRUE); // sort by decreasing values
5519 else
5520 TMath::Sort(n, cont.data(), a.data(), kFALSE); // sort by increasing values
5521 for (i = 0; i < n; i++) {
5522 // use UpdateBinCOntent to not screw up histogram entries
5523 UpdateBinContent(i + 1, cont[b[a[i]] - 1]); // b[a[i]] returns bin number. .we need to subtract 1
5524 if (gDebug)
5525 Info("LabelsOption","setting bin %d value %f from bin %d label %s at pos %d ",
5526 i+1,cont[b[a[i]] - 1],b[a[i]],labold->At(a[i])->GetName(),a[i]);
5527 if (!errors2.empty())
5528 fSumw2.fArray[i + 1] = errors2[b[a[i]] - 1];
5529 }
5530 for (i = 0; i < n; i++) {
5531 obj = labold->At(a[i]);
5532 labels->Add(obj);
5533 obj->SetUniqueID(i + 1);
5534 }
5535 } else if (GetDimension() == 2) {
5536 std::vector<Double_t> pcont(n + 2);
5537 Int_t nx = fXaxis.GetNbins() + 2;
5538 Int_t ny = fYaxis.GetNbins() + 2;
5539 cont.resize((nx + 2) * (ny + 2));
5540 if (fSumw2.fN)
5541 errors2.resize((nx + 2) * (ny + 2));
5542 for (i = 0; i < nx; i++) {
5543 for (j = 0; j < ny; j++) {
5544 Int_t bin = GetBin(i,j);
5545 cont[i + nx * j] = RetrieveBinContent(bin);
5546 if (!errors2.empty())
5547 errors2[i + nx * j] = GetBinErrorSqUnchecked(bin);
5548 if (axis == GetXaxis())
5549 k = i - 1;
5550 else
5551 k = j - 1;
5552 if (k >= 0 && k < n) { // we consider underflow/overflows in y for ordering the bins
5553 pcont[k] += cont[i + nx * j];
5554 a[k] = k;
5555 }
5556 }
5557 }
5558 if (sort == 1)
5559 TMath::Sort(n, pcont.data(), a.data(), kTRUE); // sort by decreasing values
5560 else
5561 TMath::Sort(n, pcont.data(), a.data(), kFALSE); // sort by increasing values
5562 for (i = 0; i < n; i++) {
5563 // iterate on old label list to find corresponding bin match
5564 TIter next(labold);
5565 UInt_t bin = a[i] + 1;
5566 while ((obj = next())) {
5567 if (obj->GetUniqueID() == (UInt_t)bin)
5568 break;
5569 else
5570 obj = nullptr;
5571 }
5572 if (!obj) {
5573 // this should not really happen
5574 R__ASSERT("LabelsOption - No corresponding bin found when ordering labels");
5575 return;
5576 }
5577
5578 labels->Add(obj);
5579 if (gDebug)
5580 std::cout << " set label " << obj->GetName() << " to bin " << i + 1 << " from order " << a[i] << " bin "
5581 << b[a[i]] << "content " << pcont[a[i]] << std::endl;
5582 }
5583 // need to set here new ordered labels - otherwise loop before does not work since labold and labels list
5584 // contain same objects
5585 for (i = 0; i < n; i++) {
5586 labels->At(i)->SetUniqueID(i + 1);
5587 }
5588 // set now the bin contents
5589 if (axis == GetXaxis()) {
5590 for (i = 0; i < n; i++) {
5591 Int_t ix = a[i] + 1;
5592 for (j = 0; j < ny; j++) {
5593 Int_t bin = GetBin(i + 1, j);
5594 UpdateBinContent(bin, cont[ix + nx * j]);
5595 if (!errors2.empty())
5596 fSumw2.fArray[bin] = errors2[ix + nx * j];
5597 }
5598 }
5599 } else {
5600 // using y axis
5601 for (i = 0; i < nx; i++) {
5602 for (j = 0; j < n; j++) {
5603 Int_t iy = a[j] + 1;
5604 Int_t bin = GetBin(i, j + 1);
5605 UpdateBinContent(bin, cont[i + nx * iy]);
5606 if (!errors2.empty())
5607 fSumw2.fArray[bin] = errors2[i + nx * iy];
5608 }
5609 }
5610 }
5611 } else {
5612 // sorting histograms: 3D case
5613 std::vector<Double_t> pcont(n + 2);
5614 Int_t nx = fXaxis.GetNbins() + 2;
5615 Int_t ny = fYaxis.GetNbins() + 2;
5616 Int_t nz = fZaxis.GetNbins() + 2;
5617 Int_t l = 0;
5618 cont.resize((nx + 2) * (ny + 2) * (nz + 2));
5619 if (fSumw2.fN)
5620 errors2.resize((nx + 2) * (ny + 2) * (nz + 2));
5621 for (i = 0; i < nx; i++) {
5622 for (j = 0; j < ny; j++) {
5623 for (k = 0; k < nz; k++) {
5624 Int_t bin = GetBin(i,j,k);
5626 if (axis == GetXaxis())
5627 l = i - 1;
5628 else if (axis == GetYaxis())
5629 l = j - 1;
5630 else
5631 l = k - 1;
5632 if (l >= 0 && l < n) { // we consider underflow/overflows in y for ordering the bins
5633 pcont[l] += c;
5634 a[l] = l;
5635 }
5636 cont[i + nx * (j + ny * k)] = c;
5637 if (!errors2.empty())
5638 errors2[i + nx * (j + ny * k)] = GetBinErrorSqUnchecked(bin);
5639 }
5640 }
5641 }
5642 if (sort == 1)
5643 TMath::Sort(n, pcont.data(), a.data(), kTRUE); // sort by decreasing values
5644 else
5645 TMath::Sort(n, pcont.data(), a.data(), kFALSE); // sort by increasing values
5646 for (i = 0; i < n; i++) {
5647 // iterate on the old label list to find corresponding bin match
5648 TIter next(labold);
5649 UInt_t bin = a[i] + 1;
5650 obj = nullptr;
5651 while ((obj = next())) {
5652 if (obj->GetUniqueID() == (UInt_t)bin) {
5653 break;
5654 }
5655 else
5656 obj = nullptr;
5657 }
5658 if (!obj) {
5659 R__ASSERT("LabelsOption - No corresponding bin found when ordering labels");
5660 return;
5661 }
5662 labels->Add(obj);
5663 if (gDebug)
5664 std::cout << " set label " << obj->GetName() << " to bin " << i + 1 << " from bin " << a[i] << "content "
5665 << pcont[a[i]] << std::endl;
5666 }
5667
5668 // need to set here new ordered labels - otherwise loop before does not work since labold and llabels list
5669 // contain same objects
5670 for (i = 0; i < n; i++) {
5671 labels->At(i)->SetUniqueID(i + 1);
5672 }
5673 // set now the bin contents
5674 if (axis == GetXaxis()) {
5675 for (i = 0; i < n; i++) {
5676 Int_t ix = a[i] + 1;
5677 for (j = 0; j < ny; j++) {
5678 for (k = 0; k < nz; k++) {
5679 Int_t bin = GetBin(i + 1, j, k);
5680 UpdateBinContent(bin, cont[ix + nx * (j + ny * k)]);
5681 if (!errors2.empty())
5682 fSumw2.fArray[bin] = errors2[ix + nx * (j + ny * k)];
5683 }
5684 }
5685 }
5686 } else if (axis == GetYaxis()) {
5687 // using y axis
5688 for (i = 0; i < nx; i++) {
5689 for (j = 0; j < n; j++) {
5690 Int_t iy = a[j] + 1;
5691 for (k = 0; k < nz; k++) {
5692 Int_t bin = GetBin(i, j + 1, k);
5693 UpdateBinContent(bin, cont[i + nx * (iy + ny * k)]);
5694 if (!errors2.empty())
5695 fSumw2.fArray[bin] = errors2[i + nx * (iy + ny * k)];
5696 }
5697 }
5698 }
5699 } else {
5700 // using z axis
5701 for (i = 0; i < nx; i++) {
5702 for (j = 0; j < ny; j++) {
5703 for (k = 0; k < n; k++) {
5704 Int_t iz = a[k] + 1;
5705 Int_t bin = GetBin(i, j , k +1);
5706 UpdateBinContent(bin, cont[i + nx * (j + ny * iz)]);
5707 if (!errors2.empty())
5708 fSumw2.fArray[bin] = errors2[i + nx * (j + ny * iz)];
5709 }
5710 }
5711 }
5712 }
5713 }
5714 } else {
5715 //---alphabetic sort
5716 // sort labels using vector of strings and TMath::Sort
5717 // I need to array because labels order in list is not necessary that of the bins
5718 std::vector<std::string> vecLabels(n);
5719 for (i = 0; i < n; i++) {
5720 vecLabels[i] = labold->At(i)->GetName();
5721 b[i] = labold->At(i)->GetUniqueID(); // this is the bin corresponding to the label
5722 a[i] = i;
5723 }
5724 // sort in ascending order for strings
5725 TMath::Sort(n, vecLabels.data(), a.data(), kFALSE);
5726 // set the new labels
5727 for (i = 0; i < n; i++) {
5728 TObject *labelObj = labold->At(a[i]);
5729 labels->Add(labold->At(a[i]));
5730 // set the corresponding bin. NB bin starts from 1
5731 labelObj->SetUniqueID(i + 1);
5732 if (gDebug)
5733 std::cout << "bin " << i + 1 << " setting new labels for axis " << labold->At(a[i])->GetName() << " from "
5734 << b[a[i]] << std::endl;
5735 }
5736
5737 if (GetDimension() == 1) {
5738 cont.resize(n + 2);
5739 if (fSumw2.fN)
5740 errors2.resize(n + 2);
5741 for (i = 0; i < n; i++) {
5742 cont[i] = RetrieveBinContent(b[a[i]]);
5743 if (!errors2.empty())
5745 }
5746 for (i = 0; i < n; i++) {
5747 UpdateBinContent(i + 1, cont[i]);
5748 if (!errors2.empty())
5749 fSumw2.fArray[i+1] = errors2[i];
5750 }
5751 } else if (GetDimension() == 2) {
5752 Int_t nx = fXaxis.GetNbins() + 2;
5753 Int_t ny = fYaxis.GetNbins() + 2;
5754 cont.resize(nx * ny);
5755 if (fSumw2.fN)
5756 errors2.resize(nx * ny);
5757 // copy old bin contents and then set to new ordered bins
5758 // N.B. bin in histograms starts from 1, but in y we consider under/overflows
5759 for (i = 0; i < nx; i++) {
5760 for (j = 0; j < ny; j++) { // ny is nbins+2
5761 Int_t bin = GetBin(i, j);
5762 cont[i + nx * j] = RetrieveBinContent(bin);
5763 if (!errors2.empty())
5764 errors2[i + nx * j] = GetBinErrorSqUnchecked(bin);
5765 }
5766 }
5767 if (axis == GetXaxis()) {
5768 for (i = 0; i < n; i++) {
5769 for (j = 0; j < ny; j++) {
5770 Int_t bin = GetBin(i + 1 , j);
5771 UpdateBinContent(bin, cont[b[a[i]] + nx * j]);
5772 if (!errors2.empty())
5773 fSumw2.fArray[bin] = errors2[b[a[i]] + nx * j];
5774 }
5775 }
5776 } else {
5777 for (i = 0; i < nx; i++) {
5778 for (j = 0; j < n; j++) {
5779 Int_t bin = GetBin(i, j + 1);
5780 UpdateBinContent(bin, cont[i + nx * b[a[j]]]);
5781 if (!errors2.empty())
5782 fSumw2.fArray[bin] = errors2[i + nx * b[a[j]]];
5783 }
5784 }
5785 }
5786 } else {
5787 // case of 3D (needs to be tested)
5788 Int_t nx = fXaxis.GetNbins() + 2;
5789 Int_t ny = fYaxis.GetNbins() + 2;
5790 Int_t nz = fZaxis.GetNbins() + 2;
5791 cont.resize(nx * ny * nz);
5792 if (fSumw2.fN)
5793 errors2.resize(nx * ny * nz);
5794 for (i = 0; i < nx; i++) {
5795 for (j = 0; j < ny; j++) {
5796 for (k = 0; k < nz; k++) {
5797 Int_t bin = GetBin(i, j, k);
5798 cont[i + nx * (j + ny * k)] = RetrieveBinContent(bin);
5799 if (!errors2.empty())
5800 errors2[i + nx * (j + ny * k)] = GetBinErrorSqUnchecked(bin);
5801 }
5802 }
5803 }
5804 if (axis == GetXaxis()) {
5805 // labels on x axis
5806 for (i = 0; i < n; i++) { // for x we loop only on bins with the labels
5807 for (j = 0; j < ny; j++) {
5808 for (k = 0; k < nz; k++) {
5809 Int_t bin = GetBin(i + 1, j, k);
5810 UpdateBinContent(bin, cont[b[a[i]] + nx * (j + ny * k)]);
5811 if (!errors2.empty())
5812 fSumw2.fArray[bin] = errors2[b[a[i]] + nx * (j + ny * k)];
5813 }
5814 }
5815 }
5816 } else if (axis == GetYaxis()) {
5817 // labels on y axis
5818 for (i = 0; i < nx; i++) {
5819 for (j = 0; j < n; j++) {
5820 for (k = 0; k < nz; k++) {
5821 Int_t bin = GetBin(i, j+1, k);
5822 UpdateBinContent(bin, cont[i + nx * (b[a[j]] + ny * k)]);
5823 if (!errors2.empty())
5824 fSumw2.fArray[bin] = errors2[i + nx * (b[a[j]] + ny * k)];
5825 }
5826 }
5827 }
5828 } else {
5829 // labels on z axis
5830 for (i = 0; i < nx; i++) {
5831 for (j = 0; j < ny; j++) {
5832 for (k = 0; k < n; k++) {
5833 Int_t bin = GetBin(i, j, k+1);
5834 UpdateBinContent(bin, cont[i + nx * (j + ny * b[a[k]])]);
5835 if (!errors2.empty())
5836 fSumw2.fArray[bin] = errors2[i + nx * (j + ny * b[a[k]])];
5837 }
5838 }
5839 }
5840 }
5841 }
5842 }
5843 // need to set to zero the statistics if axis has been sorted
5844 // see for example TH3::PutStats for definition of s vector
5845 bool labelsAreSorted = kFALSE;
5846 for (i = 0; i < n; ++i) {
5847 if (a[i] != i) {
5849 break;
5850 }
5851 }
5852 if (labelsAreSorted) {
5853 double s[TH1::kNstat];
5854 GetStats(s);
5855 if (iaxis == 1) {
5856 s[2] = 0; // fTsumwx
5857 s[3] = 0; // fTsumwx2
5858 s[6] = 0; // fTsumwxy
5859 s[9] = 0; // fTsumwxz
5860 } else if (iaxis == 2) {
5861 s[4] = 0; // fTsumwy
5862 s[5] = 0; // fTsumwy2
5863 s[6] = 0; // fTsumwxy
5864 s[10] = 0; // fTsumwyz
5865 } else if (iaxis == 3) {
5866 s[7] = 0; // fTsumwz
5867 s[8] = 0; // fTsumwz2
5868 s[9] = 0; // fTsumwxz
5869 s[10] = 0; // fTsumwyz
5870 }
5871 PutStats(s);
5872 }
5873 delete labold;
5874}
5875
5876////////////////////////////////////////////////////////////////////////////////
5877/// Test if two double are almost equal.
5878
5879static inline Bool_t AlmostEqual(Double_t a, Double_t b, Double_t epsilon = 0.00000001)
5880{
5881 return TMath::Abs(a - b) < epsilon;
5882}
5883
5884////////////////////////////////////////////////////////////////////////////////
5885/// Test if a double is almost an integer.
5886
5887static inline Bool_t AlmostInteger(Double_t a, Double_t epsilon = 0.00000001)
5888{
5889 return AlmostEqual(a - TMath::Floor(a), 0, epsilon) ||
5890 AlmostEqual(a - TMath::Floor(a), 1, epsilon);
5891}
5892
5893////////////////////////////////////////////////////////////////////////////////
5894/// Test if the binning is equidistant.
5895
5896static inline bool IsEquidistantBinning(const TAxis& axis)
5897{
5898 // check if axis bin are equals
5899 if (!axis.GetXbins()->fN) return true; //
5900 // not able to check if there is only one axis entry
5901 bool isEquidistant = true;
5902 const Double_t firstBinWidth = axis.GetBinWidth(1);
5903 for (int i = 1; i < axis.GetNbins(); ++i) {
5904 const Double_t binWidth = axis.GetBinWidth(i);
5905 const bool match = TMath::AreEqualRel(firstBinWidth, binWidth, 1.E-10);
5906 isEquidistant &= match;
5907 if (!match)
5908 break;
5909 }
5910 return isEquidistant;
5911}
5912
5913////////////////////////////////////////////////////////////////////////////////
5914/// Same limits and bins.
5915
5917 return axis1.GetNbins() == axis2.GetNbins() &&
5918 TMath::AreEqualAbs(axis1.GetXmin(), axis2.GetXmin(), axis1.GetBinWidth(axis1.GetNbins()) * 1.E-10) &&
5919 TMath::AreEqualAbs(axis1.GetXmax(), axis2.GetXmax(), axis1.GetBinWidth(axis1.GetNbins()) * 1.E-10);
5920}
5921
5922////////////////////////////////////////////////////////////////////////////////
5923/// Finds new limits for the axis for the Merge function.
5924/// returns false if the limits are incompatible
5925
5927{
5929 return kTRUE;
5930
5932 return kFALSE; // not equidistant user binning not supported
5933
5934 Double_t width1 = destAxis.GetBinWidth(0);
5935 Double_t width2 = anAxis.GetBinWidth(0);
5936 if (width1 == 0 || width2 == 0)
5937 return kFALSE; // no binning not supported
5938
5939 Double_t xmin = TMath::Min(destAxis.GetXmin(), anAxis.GetXmin());
5940 Double_t xmax = TMath::Max(destAxis.GetXmax(), anAxis.GetXmax());
5942
5943 // check the bin size
5945 return kFALSE;
5946
5947 // std::cout << "Find new limit using given axis " << anAxis.GetXmin() << " , " << anAxis.GetXmax() << " bin width " << width2 << std::endl;
5948 // std::cout << " and destination axis " << destAxis.GetXmin() << " , " << destAxis.GetXmax() << " bin width " << width1 << std::endl;
5949
5950
5951 // check the limits
5952 Double_t delta;
5953 delta = (destAxis.GetXmin() - xmin)/width1;
5954 if (!AlmostInteger(delta))
5955 xmin -= (TMath::Ceil(delta) - delta)*width1;
5956
5957 delta = (anAxis.GetXmin() - xmin)/width2;
5958 if (!AlmostInteger(delta))
5959 xmin -= (TMath::Ceil(delta) - delta)*width2;
5960
5961
5962 delta = (destAxis.GetXmin() - xmin)/width1;
5963 if (!AlmostInteger(delta))
5964 return kFALSE;
5965
5966
5967 delta = (xmax - destAxis.GetXmax())/width1;
5968 if (!AlmostInteger(delta))
5969 xmax += (TMath::Ceil(delta) - delta)*width1;
5970
5971
5972 delta = (xmax - anAxis.GetXmax())/width2;
5973 if (!AlmostInteger(delta))
5974 xmax += (TMath::Ceil(delta) - delta)*width2;
5975
5976
5977 delta = (xmax - destAxis.GetXmax())/width1;
5978 if (!AlmostInteger(delta))
5979 return kFALSE;
5980#ifdef DEBUG
5981 if (!AlmostInteger((xmax - xmin) / width)) { // unnecessary check
5982 printf("TH1::RecomputeAxisLimits - Impossible\n");
5983 return kFALSE;
5984 }
5985#endif
5986
5987
5989
5990 //std::cout << "New re-computed axis : [ " << xmin << " , " << xmax << " ] width = " << width << " nbins " << destAxis.GetNbins() << std::endl;
5991
5992 return kTRUE;
5993}
5994
5995////////////////////////////////////////////////////////////////////////////////
5996/// Add all histograms in the collection to this histogram.
5997/// This function computes the min/max for the x axis,
5998/// compute a new number of bins, if necessary,
5999/// add bin contents, errors and statistics.
6000/// If all histograms have bin labels, bins with identical labels
6001/// will be merged, no matter what their order is.
6002/// If overflows are present and limits are different the function will fail.
6003/// The function returns the total number of entries in the result histogram
6004/// if the merge is successful, -1 otherwise.
6005///
6006/// Possible option:
6007/// -NOL : the merger will ignore the labels and merge the histograms bin by bin using bin center values to match bins
6008/// -NOCHECK: the histogram will not perform a check for duplicate labels in case of axes with labels. The check
6009/// (enabled by default) slows down the merging
6010///
6011/// IMPORTANT remark. The axis x may have different number
6012/// of bins and different limits, BUT the largest bin width must be
6013/// a multiple of the smallest bin width and the upper limit must also
6014/// be a multiple of the bin width.
6015/// Example:
6016///
6017/// ~~~ {.cpp}
6018/// void atest() {
6019/// TH1F *h1 = new TH1F("h1","h1",110,-110,0);
6020/// TH1F *h2 = new TH1F("h2","h2",220,0,110);
6021/// TH1F *h3 = new TH1F("h3","h3",330,-55,55);
6022/// TRandom r;
6023/// for (Int_t i=0;i<10000;i++) {
6024/// h1->Fill(r.Gaus(-55,10));
6025/// h2->Fill(r.Gaus(55,10));
6026/// h3->Fill(r.Gaus(0,10));
6027/// }
6028///
6029/// TList *list = new TList;
6030/// list->Add(h1);
6031/// list->Add(h2);
6032/// list->Add(h3);
6033/// TH1F *h = (TH1F*)h1->Clone("h");
6034/// h->Reset();
6035/// h->Merge(list);
6036/// h->Draw();
6037/// }
6038/// ~~~
6039
6041{
6042 if (!li) return 0;
6043 if (li->IsEmpty()) return (Long64_t) GetEntries();
6044
6045 // use TH1Merger class
6046 TH1Merger merger(*this,*li,opt);
6047 Bool_t ret = merger();
6048
6049 return (ret) ? GetEntries() : -1;
6050}
6051
6052
6053////////////////////////////////////////////////////////////////////////////////
6054/// Performs the operation:
6055///
6056/// `this = this*c1*f1`
6057///
6058/// If errors are defined (see TH1::Sumw2), errors are also recalculated.
6059///
6060/// Only bins inside the function range are recomputed.
6061/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
6062/// you should call Sumw2 before making this operation.
6063/// This is particularly important if you fit the histogram after TH1::Multiply
6064///
6065/// The function return kFALSE if the Multiply operation failed
6066
6068{
6069 if (!f1) {
6070 Error("Multiply","Attempt to multiply by a non-existing function");
6071 return kFALSE;
6072 }
6073
6074 // delete buffer if it is there since it will become invalid
6075 if (fBuffer) BufferEmpty(1);
6076
6077 Int_t nx = GetNbinsX() + 2; // normal bins + uf / of (cells)
6078 Int_t ny = GetNbinsY() + 2;
6079 Int_t nz = GetNbinsZ() + 2;
6080 if (fDimension < 2) ny = 1;
6081 if (fDimension < 3) nz = 1;
6082
6083 // reset min-maximum
6084 SetMinimum();
6085 SetMaximum();
6086
6087 // - Loop on bins (including underflows/overflows)
6088 Double_t xx[3];
6089 Double_t *params = nullptr;
6090 f1->InitArgs(xx,params);
6091
6092 for (Int_t binz = 0; binz < nz; ++binz) {
6093 xx[2] = fZaxis.GetBinCenter(binz);
6094 for (Int_t biny = 0; biny < ny; ++biny) {
6095 xx[1] = fYaxis.GetBinCenter(biny);
6096 for (Int_t binx = 0; binx < nx; ++binx) {
6097 xx[0] = fXaxis.GetBinCenter(binx);
6098 if (!f1->IsInside(xx)) continue;
6100 Int_t bin = binx + nx * (biny + ny *binz);
6101 Double_t cu = c1*f1->EvalPar(xx);
6102 if (TF1::RejectedPoint()) continue;
6104 if (fSumw2.fN) {
6105 fSumw2.fArray[bin] = cu * cu * GetBinErrorSqUnchecked(bin);
6106 }
6107 }
6108 }
6109 }
6110 ResetStats();
6111 return kTRUE;
6112}
6113
6114////////////////////////////////////////////////////////////////////////////////
6115/// Multiply this histogram by h1.
6116///
6117/// `this = this*h1`
6118///
6119/// If errors of this are available (TH1::Sumw2), errors are recalculated.
6120/// Note that if h1 has Sumw2 set, Sumw2 is automatically called for this
6121/// if not already set.
6122///
6123/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
6124/// you should call Sumw2 before making this operation.
6125/// This is particularly important if you fit the histogram after TH1::Multiply
6126///
6127/// The function return kFALSE if the Multiply operation failed
6128
6129Bool_t TH1::Multiply(const TH1 *h1)
6130{
6131 if (!h1) {
6132 Error("Multiply","Attempt to multiply by a non-existing histogram");
6133 return kFALSE;
6134 }
6135
6136 // delete buffer if it is there since it will become invalid
6137 if (fBuffer) BufferEmpty(1);
6138
6139 if (LoggedInconsistency("Multiply", this, h1) >= kDifferentNumberOfBins) {
6140 return false;
6141 }
6142
6143 // Create Sumw2 if h1 has Sumw2 set
6144 if (fSumw2.fN == 0 && h1->GetSumw2N() != 0) Sumw2();
6145
6146 // - Reset min- maximum
6147 SetMinimum();
6148 SetMaximum();
6149
6150 // - Loop on bins (including underflows/overflows)
6151 for (Int_t i = 0; i < fNcells; ++i) {
6154 UpdateBinContent(i, c0 * c1);
6155 if (fSumw2.fN) {
6157 }
6158 }
6159 ResetStats();
6160 return kTRUE;
6161}
6162
6163////////////////////////////////////////////////////////////////////////////////
6164/// Replace contents of this histogram by multiplication of h1 by h2.
6165///
6166/// `this = (c1*h1)*(c2*h2)`
6167///
6168/// If errors of this are available (TH1::Sumw2), errors are recalculated.
6169/// Note that if h1 or h2 have Sumw2 set, Sumw2 is automatically called for this
6170/// if not already set.
6171///
6172/// IMPORTANT NOTE: If you intend to use the errors of this histogram later
6173/// you should call Sumw2 before making this operation.
6174/// This is particularly important if you fit the histogram after TH1::Multiply
6175///
6176/// The function return kFALSE if the Multiply operation failed
6177
6179{
6180 TString opt = option;
6181 opt.ToLower();
6182 // Bool_t binomial = kFALSE;
6183 // if (opt.Contains("b")) binomial = kTRUE;
6184 if (!h1 || !h2) {
6185 Error("Multiply","Attempt to multiply by a non-existing histogram");
6186 return kFALSE;
6187 }
6188
6189 // delete buffer if it is there since it will become invalid
6190 if (fBuffer) BufferEmpty(1);
6191
6192 if (LoggedInconsistency("Multiply", this, h1) >= kDifferentNumberOfBins ||
6193 LoggedInconsistency("Multiply", h1, h2) >= kDifferentNumberOfBins) {
6194 return false;
6195 }
6196
6197 // Create Sumw2 if h1 or h2 have Sumw2 set
6198 if (fSumw2.fN == 0 && (h1->GetSumw2N() != 0 || h2->GetSumw2N() != 0)) Sumw2();
6199
6200 // - Reset min - maximum
6201 SetMinimum();
6202 SetMaximum();
6203
6204 // - Loop on bins (including underflows/overflows)
6205 Double_t c1sq = c1 * c1; Double_t c2sq = c2 * c2;
6206 for (Int_t i = 0; i < fNcells; ++i) {
6208 Double_t b2 = h2->RetrieveBinContent(i);
6209 UpdateBinContent(i, c1 * b1 * c2 * b2);
6210 if (fSumw2.fN) {
6211 fSumw2.fArray[i] = c1sq * c2sq * (h1->GetBinErrorSqUnchecked(i) * b2 * b2 + h2->GetBinErrorSqUnchecked(i) * b1 * b1);
6212 }
6213 }
6214 ResetStats();
6215 return kTRUE;
6216}
6217
6218////////////////////////////////////////////////////////////////////////////////
6219/// @brief Normalize a histogram to its integral or to its maximum.
6220/// @note Works for TH1, TH2, TH3, ...
6221/// @param option: normalization strategy ("", "max" or "sum")
6222/// - "": Scale to `1/(sum*bin_width)`.
6223/// - max: Scale to `1/GetMaximum()`
6224/// - sum: Scale to `1/sum`.
6225///
6226/// In case the norm is zero, it raises an error.
6227/// @sa https://root-forum.cern.ch/t/different-ways-of-normalizing-histograms/15582/
6228
6230{
6231 TString opt = option;
6232 opt.ToLower();
6233 if (!opt.IsNull() && (opt != "max") && (opt != "sum")) {
6234 Error("Normalize", "Unrecognized option %s", option);
6235 return;
6236 }
6237
6238 const Double_t norm = (opt == "max") ? GetMaximum() : Integral(opt.IsNull() ? "width" : "");
6239
6240 if (norm == 0) {
6241 Error("Normalize", "Attempt to normalize histogram with zero integral");
6242 } else {
6243 Scale(1.0 / norm, "");
6244 // An alternative could have been to call Integral("") and Scale(1/norm, "width"), but this
6245 // will lead to a different value of GetEntries.
6246 // Instead, doing simultaneously Integral("width") and Scale(1/norm, "width") leads to an error since you are
6247 // dividing twice by bin width.
6248 }
6249}
6250
6251////////////////////////////////////////////////////////////////////////////////
6252/// Control routine to paint any kind of histograms.
6253///
6254/// This function is automatically called by TCanvas::Update.
6255/// (see TH1::Draw for the list of options)
6256
6258{
6260
6261 if (fPainter) {
6262 if (option && strlen(option) > 0)
6264 else
6266 }
6267}
6268
6269////////////////////////////////////////////////////////////////////////////////
6270/// Rebin this histogram
6271///
6272/// #### case 1 xbins=0
6273///
6274/// If newname is blank (default), the current histogram is modified and
6275/// a pointer to it is returned.
6276///
6277/// If newname is not blank, the current histogram is not modified, and a
6278/// new histogram is returned which is a Clone of the current histogram
6279/// with its name set to newname.
6280///
6281/// The parameter ngroup indicates how many bins of this have to be merged
6282/// into one bin of the result.
6283///
6284/// If the original histogram has errors stored (via Sumw2), the resulting
6285/// histograms has new errors correctly calculated.
6286///
6287/// examples: if h1 is an existing TH1F histogram with 100 bins
6288///
6289/// ~~~ {.cpp}
6290/// h1->Rebin(); //merges two bins in one in h1: previous contents of h1 are lost
6291/// h1->Rebin(5); //merges five bins in one in h1
6292/// TH1F *hnew = dynamic_cast<TH1F*>(h1->Rebin(5,"hnew")); // creates a new histogram hnew
6293/// // merging 5 bins of h1 in one bin
6294/// ~~~
6295///
6296/// NOTE: If ngroup is not an exact divider of the number of bins,
6297/// the top limit of the rebinned histogram is reduced
6298/// to the upper edge of the last bin that can make a complete
6299/// group. The remaining bins are added to the overflow bin.
6300/// Statistics will be recomputed from the new bin contents.
6301///
6302/// #### case 2 xbins!=0
6303///
6304/// A new histogram is created (you should specify newname).
6305/// The parameter ngroup is the number of variable size bins in the created histogram.
6306/// The array xbins must contain ngroup+1 elements that represent the low-edges
6307/// of the bins.
6308/// If the original histogram has errors stored (via Sumw2), the resulting
6309/// histograms has new errors correctly calculated.
6310///
6311/// NOTE: The bin edges specified in xbins should correspond to bin edges
6312/// in the original histogram. If a bin edge in the new histogram is
6313/// in the middle of a bin in the original histogram, all entries in
6314/// the split bin in the original histogram will be transferred to the
6315/// lower of the two possible bins in the new histogram. This is
6316/// probably not what you want. A warning message is emitted in this
6317/// case
6318///
6319/// examples: if h1 is an existing TH1F histogram with 100 bins
6320///
6321/// ~~~ {.cpp}
6322/// Double_t xbins[25] = {...} array of low-edges (xbins[25] is the upper edge of last bin
6323/// h1->Rebin(24,"hnew",xbins); //creates a new variable bin size histogram hnew
6324/// ~~~
6325
6326TH1 *TH1::Rebin(Int_t ngroup, const char*newname, const Double_t *xbins)
6327{
6328 Int_t nbins = fXaxis.GetNbins();
6331 if ((ngroup <= 0) || (ngroup > nbins)) {
6332 Error("Rebin", "Illegal value of ngroup=%d",ngroup);
6333 return nullptr;
6334 }
6335
6336 if (fDimension > 1 || InheritsFrom(TProfile::Class())) {
6337 Error("Rebin", "Operation valid on 1-D histograms only");
6338 return nullptr;
6339 }
6340 if (!newname && xbins) {
6341 Error("Rebin","if xbins is specified, newname must be given");
6342 return nullptr;
6343 }
6344
6345 Int_t newbins = nbins/ngroup;
6346 if (!xbins) {
6347 Int_t nbg = nbins/ngroup;
6348 if (nbg*ngroup != nbins) {
6349 Warning("Rebin", "ngroup=%d is not an exact divider of nbins=%d.",ngroup,nbins);
6350 }
6351 }
6352 else {
6353 // in the case that xbins is given (rebinning in variable bins), ngroup is
6354 // the new number of bins and number of grouped bins is not constant.
6355 // when looping for setting the contents for the new histogram we
6356 // need to loop on all bins of original histogram. Then set ngroup=nbins
6357 newbins = ngroup;
6358 ngroup = nbins;
6359 }
6360
6361 // Save old bin contents into a new array
6362 Double_t entries = fEntries;
6363 Double_t *oldBins = new Double_t[nbins+2];
6364 Int_t bin, i;
6365 for (bin=0;bin<nbins+2;bin++) oldBins[bin] = RetrieveBinContent(bin);
6366 Double_t *oldErrors = nullptr;
6367 if (fSumw2.fN != 0) {
6368 oldErrors = new Double_t[nbins+2];
6369 for (bin=0;bin<nbins+2;bin++) oldErrors[bin] = GetBinError(bin);
6370 }
6371 // rebin will not include underflow/overflow if new axis range is larger than old axis range
6372 if (xbins) {
6373 if (xbins[0] < fXaxis.GetXmin() && oldBins[0] != 0 )
6374 Warning("Rebin","underflow entries will not be used when rebinning");
6375 if (xbins[newbins] > fXaxis.GetXmax() && oldBins[nbins+1] != 0 )
6376 Warning("Rebin","overflow entries will not be used when rebinning");
6377 }
6378
6379
6380 // create a clone of the old histogram if newname is specified
6381 TH1 *hnew = this;
6382 if ((newname && strlen(newname) > 0) || xbins) {
6383 hnew = (TH1*)Clone(newname);
6384 }
6385
6386 //reset can extend bit to avoid an axis extension in SetBinContent
6387 UInt_t oldExtendBitMask = hnew->SetCanExtend(kNoAxis);
6388
6389 // save original statistics
6390 Double_t stat[kNstat];
6391 GetStats(stat);
6392 bool resetStat = false;
6393 // change axis specs and rebuild bin contents array::RebinAx
6394 if(!xbins && (newbins*ngroup != nbins)) {
6396 resetStat = true; //stats must be reset because top bins will be moved to overflow bin
6397 }
6398 // save the TAttAxis members (reset by SetBins)
6410
6411 if(!xbins && (fXaxis.GetXbins()->GetSize() > 0)){ // variable bin sizes
6412 Double_t *bins = new Double_t[newbins+1];
6413 for(i = 0; i <= newbins; ++i) bins[i] = fXaxis.GetBinLowEdge(1+i*ngroup);
6414 hnew->SetBins(newbins,bins); //this also changes errors array (if any)
6415 delete [] bins;
6416 } else if (xbins) {
6417 hnew->SetBins(newbins,xbins);
6418 } else {
6419 hnew->SetBins(newbins,xmin,xmax);
6420 }
6421
6422 // Restore axis attributes
6434
6435 // copy merged bin contents (ignore under/overflows)
6436 // Start merging only once the new lowest edge is reached
6437 Int_t startbin = 1;
6438 const Double_t newxmin = hnew->GetXaxis()->GetBinLowEdge(1);
6439 while( fXaxis.GetBinCenter(startbin) < newxmin && startbin <= nbins ) {
6440 startbin++;
6441 }
6444 for (bin = 1;bin<=newbins;bin++) {
6445 binContent = 0;
6446 binError = 0;
6447 Int_t imax = ngroup;
6448 Double_t xbinmax = hnew->GetXaxis()->GetBinUpEdge(bin);
6449 // check bin edges for the cases when we provide an array of bins
6450 // be careful in case bins can have zero width
6452 hnew->GetXaxis()->GetBinLowEdge(bin),
6453 TMath::Max(1.E-8 * fXaxis.GetBinWidth(oldbin), 1.E-16 )) )
6454 {
6455 Warning("Rebin","Bin edge %d of rebinned histogram does not match any bin edges of the old histogram. Result can be inconsistent",bin);
6456 }
6457 for (i=0;i<ngroup;i++) {
6458 if( (oldbin+i > nbins) ||
6459 ( hnew != this && (fXaxis.GetBinCenter(oldbin+i) > xbinmax)) ) {
6460 imax = i;
6461 break;
6462 }
6465 }
6466 hnew->SetBinContent(bin,binContent);
6467 if (oldErrors) hnew->SetBinError(bin,TMath::Sqrt(binError));
6468 oldbin += imax;
6469 }
6470
6471 // sum underflow and overflow contents until startbin
6472 binContent = 0;
6473 binError = 0;
6474 for (i = 0; i < startbin; ++i) {
6475 binContent += oldBins[i];
6476 if (oldErrors) binError += oldErrors[i]*oldErrors[i];
6477 }
6478 hnew->SetBinContent(0,binContent);
6479 if (oldErrors) hnew->SetBinError(0,TMath::Sqrt(binError));
6480 // sum overflow
6481 binContent = 0;
6482 binError = 0;
6483 for (i = oldbin; i <= nbins+1; ++i) {
6484 binContent += oldBins[i];
6485 if (oldErrors) binError += oldErrors[i]*oldErrors[i];
6486 }
6487 hnew->SetBinContent(newbins+1,binContent);
6488 if (oldErrors) hnew->SetBinError(newbins+1,TMath::Sqrt(binError));
6489
6490 hnew->SetCanExtend(oldExtendBitMask); // restore previous state
6491
6492 // restore statistics and entries modified by SetBinContent
6493 hnew->SetEntries(entries);
6494 if (!resetStat) hnew->PutStats(stat);
6495 delete [] oldBins;
6496 if (oldErrors) delete [] oldErrors;
6497 return hnew;
6498}
6499
6500////////////////////////////////////////////////////////////////////////////////
6501/// finds new limits for the axis so that *point* is within the range and
6502/// the limits are compatible with the previous ones (see TH1::Merge).
6503/// new limits are put into *newMin* and *newMax* variables.
6504/// axis - axis whose limits are to be recomputed
6505/// point - point that should fit within the new axis limits
6506/// newMin - new minimum will be stored here
6507/// newMax - new maximum will be stored here.
6508/// false if failed (e.g. if the initial axis limits are wrong
6509/// or the new range is more than \f$ 2^{64} \f$ times the old one).
6510
6512{
6513 Double_t xmin = axis->GetXmin();
6514 Double_t xmax = axis->GetXmax();
6515 if (xmin >= xmax) return kFALSE;
6517
6518 //recompute new axis limits by doubling the current range
6519 Int_t ntimes = 0;
6520 while (point < xmin) {
6521 if (ntimes++ > 64)
6522 return kFALSE;
6523 xmin = xmin - range;
6524 range *= 2;
6525 }
6526 while (point >= xmax) {
6527 if (ntimes++ > 64)
6528 return kFALSE;
6529 xmax = xmax + range;
6530 range *= 2;
6531 }
6532 newMin = xmin;
6533 newMax = xmax;
6534 // Info("FindNewAxisLimits", "OldAxis: (%lf, %lf), new: (%lf, %lf), point: %lf",
6535 // axis->GetXmin(), axis->GetXmax(), xmin, xmax, point);
6536
6537 return kTRUE;
6538}
6539
6540////////////////////////////////////////////////////////////////////////////////
6541/// Histogram is resized along axis such that x is in the axis range.
6542/// The new axis limits are recomputed by doubling iteratively
6543/// the current axis range until the specified value x is within the limits.
6544/// The algorithm makes a copy of the histogram, then loops on all bins
6545/// of the old histogram to fill the extended histogram.
6546/// Takes into account errors (Sumw2) if any.
6547/// The algorithm works for 1-d, 2-D and 3-D histograms.
6548/// The axis must be extendable before invoking this function.
6549/// Ex:
6550///
6551/// ~~~ {.cpp}
6552/// h->GetXaxis()->SetCanExtend(kTRUE);
6553/// ~~~
6554
6555void TH1::ExtendAxis(Double_t x, TAxis *axis)
6556{
6557 if (!axis->CanExtend()) return;
6558 if (TMath::IsNaN(x)) { // x may be a NaN
6560 return;
6561 }
6562
6563 if (axis->GetXmin() >= axis->GetXmax()) return;
6564 if (axis->GetNbins() <= 0) return;
6565
6567 if (!FindNewAxisLimits(axis, x, xmin, xmax))
6568 return;
6569
6570 //save a copy of this histogram
6571 TH1 *hold = (TH1*)IsA()->New();
6572 hold->SetDirectory(nullptr);
6573 Copy(*hold);
6574 //set new axis limits
6575 axis->SetLimits(xmin,xmax);
6576
6577
6578 //now loop on all bins and refill
6580
6581 Reset("ICE"); //reset only Integral, contents and Errors
6582
6583 int iaxis = 0;
6584 if (axis == &fXaxis) iaxis = 1;
6585 if (axis == &fYaxis) iaxis = 2;
6586 if (axis == &fZaxis) iaxis = 3;
6587 bool firstw = kTRUE;
6588 Int_t binx,biny, binz = 0;
6589 Int_t ix = 0,iy = 0,iz = 0;
6590 Double_t bx,by,bz;
6591 Int_t ncells = hold->GetNcells();
6592 for (Int_t bin = 0; bin < ncells; ++bin) {
6593 hold->GetBinXYZ(bin,binx,biny,binz);
6594 bx = hold->GetXaxis()->GetBinCenter(binx);
6595 ix = fXaxis.FindFixBin(bx);
6596 if (fDimension > 1) {
6597 by = hold->GetYaxis()->GetBinCenter(biny);
6598 iy = fYaxis.FindFixBin(by);
6599 if (fDimension > 2) {
6600 bz = hold->GetZaxis()->GetBinCenter(binz);
6601 iz = fZaxis.FindFixBin(bz);
6602 }
6603 }
6604 // exclude underflow/overflow
6605 double content = hold->RetrieveBinContent(bin);
6606 if (content == 0) continue;
6607 if (IsBinUnderflow(bin,iaxis) || IsBinOverflow(bin,iaxis) ) {
6608 if (firstw) {
6609 Warning("ExtendAxis","Histogram %s has underflow or overflow in the axis that is extendable"
6610 " their content will be lost",GetName() );
6611 firstw= kFALSE;
6612 }
6613 continue;
6614 }
6615 Int_t ibin= GetBin(ix,iy,iz);
6617 if (errors) {
6618 fSumw2.fArray[ibin] += hold->GetBinErrorSqUnchecked(bin);
6619 }
6620 }
6621 delete hold;
6622}
6623
6624////////////////////////////////////////////////////////////////////////////////
6625/// Recursively remove object from the list of functions
6626
6628{
6629 // Rely on TROOT::RecursiveRemove to take the readlock.
6630
6631 if (fFunctions) {
6633 }
6634}
6635
6636////////////////////////////////////////////////////////////////////////////////
6637/// Multiply this histogram by a constant c1.
6638///
6639/// `this = c1*this`
6640///
6641/// Note that both contents and errors (if any) are scaled.
6642/// This function uses the services of TH1::Add
6643///
6644/// IMPORTANT NOTE: Sumw2() is called automatically when scaling.
6645/// If you are not interested in the histogram statistics you can call
6646/// Sumw2(kFALSE) or use the option "nosw2"
6647///
6648/// One can scale a histogram such that the bins integral is equal to
6649/// the normalization parameter via TH1::Scale(Double_t norm), where norm
6650/// is the desired normalization divided by the integral of the histogram.
6651///
6652/// If option contains "width" the bin contents and errors are divided
6653/// by the bin width.
6654
6656{
6657
6658 TString opt = option; opt.ToLower();
6659 // store bin errors when scaling since cannot anymore be computed as sqrt(N)
6660 if (!opt.Contains("nosw2") && GetSumw2N() == 0) Sumw2();
6661 if (opt.Contains("width")) Add(this, this, c1, -1);
6662 else {
6663 if (fBuffer) BufferEmpty(1);
6664 for(Int_t i = 0; i < fNcells; ++i) UpdateBinContent(i, c1 * RetrieveBinContent(i));
6665 if (fSumw2.fN) for(Int_t i = 0; i < fNcells; ++i) fSumw2.fArray[i] *= (c1 * c1); // update errors
6666 // update global histograms statistics
6667 Double_t s[kNstat] = {0};
6668 GetStats(s);
6669 for (Int_t i=0 ; i < kNstat; i++) {
6670 if (i == 1) s[i] = c1*c1*s[i];
6671 else s[i] = c1*s[i];
6672 }
6673 PutStats(s);
6674 SetMinimum(); SetMaximum(); // minimum and maximum value will be recalculated the next time
6675 }
6676
6677 // if contours set, must also scale contours
6679 if (ncontours == 0) return;
6681 for (Int_t i = 0; i < ncontours; ++i) levels[i] *= c1;
6682}
6683
6684////////////////////////////////////////////////////////////////////////////////
6685/// Returns true if all axes are extendable.
6686
6688{
6690 if (GetDimension() > 1) canExtend &= fYaxis.CanExtend();
6691 if (GetDimension() > 2) canExtend &= fZaxis.CanExtend();
6692
6693 return canExtend;
6694}
6695
6696////////////////////////////////////////////////////////////////////////////////
6697/// Make the histogram axes extendable / not extendable according to the bit mask
6698/// returns the previous bit mask specifying which axes are extendable
6699
6701{
6703
6707
6708 if (GetDimension() > 1) {
6712 }
6713
6714 if (GetDimension() > 2) {
6718 }
6719
6720 return oldExtendBitMask;
6721}
6722
6723///////////////////////////////////////////////////////////////////////////////
6724/// Internal function used in TH1::Fill to see which axis is full alphanumeric,
6725/// i.e. can be extended and is alphanumeric
6727{
6731 bitMask |= kYaxis;
6733 bitMask |= kZaxis;
6734
6735 return bitMask;
6736}
6737
6738////////////////////////////////////////////////////////////////////////////////
6739/// Static function to set the default buffer size for automatic histograms.
6740/// When a histogram is created with one of its axis lower limit greater
6741/// or equal to its upper limit, the function SetBuffer is automatically
6742/// called with the default buffer size.
6743
6745{
6746 fgBufferSize = bufsize > 0 ? bufsize : 0;
6747}
6748
6749////////////////////////////////////////////////////////////////////////////////
6750/// When this static function is called with `sumw2=kTRUE`, all new
6751/// histograms will automatically activate the storage
6752/// of the sum of squares of errors, ie TH1::Sumw2 is automatically called.
6753
6755{
6757}
6758
6759////////////////////////////////////////////////////////////////////////////////
6760/// Change/set the title.
6761///
6762/// If title is in the form `stringt;stringx;stringy;stringz;stringc`
6763/// the histogram title is set to `stringt`, the x axis title to `stringx`,
6764/// the y axis title to `stringy`, the z axis title to `stringz`, and the c
6765/// axis title for the palette is ignored at this stage.
6766/// Note that you can use e.g. `stringt;stringx` if you only want to specify
6767/// title and x axis title.
6768///
6769/// To insert the character `;` in one of the titles, one should use `#;`
6770/// or `#semicolon`.
6771
6772void TH1::SetTitle(const char *title)
6773{
6774 fTitle = title;
6775 fTitle.ReplaceAll("#;",2,"#semicolon",10);
6776
6777 // Decode fTitle. It may contain X, Y and Z titles
6779 Int_t isc = str1.Index(";");
6780 Int_t lns = str1.Length();
6781
6782 if (isc >=0 ) {
6783 fTitle = str1(0,isc);
6784 str1 = str1(isc+1, lns);
6785 isc = str1.Index(";");
6786 if (isc >=0 ) {
6787 str2 = str1(0,isc);
6788 str2.ReplaceAll("#semicolon",10,";",1);
6789 fXaxis.SetTitle(str2.Data());
6790 lns = str1.Length();
6791 str1 = str1(isc+1, lns);
6792 isc = str1.Index(";");
6793 if (isc >=0 ) {
6794 str2 = str1(0,isc);
6795 str2.ReplaceAll("#semicolon",10,";",1);
6796 fYaxis.SetTitle(str2.Data());
6797 lns = str1.Length();
6798 str1 = str1(isc+1, lns);
6799 isc = str1.Index(";");
6800 if (isc >=0 ) {
6801 str2 = str1(0,isc);
6802 str2.ReplaceAll("#semicolon",10,";",1);
6803 fZaxis.SetTitle(str2.Data());
6804 } else {
6805 str1.ReplaceAll("#semicolon",10,";",1);
6806 fZaxis.SetTitle(str1.Data());
6807 }
6808 } else {
6809 str1.ReplaceAll("#semicolon",10,";",1);
6810 fYaxis.SetTitle(str1.Data());
6811 }
6812 } else {
6813 str1.ReplaceAll("#semicolon",10,";",1);
6814 fXaxis.SetTitle(str1.Data());
6815 }
6816 }
6817
6818 fTitle.ReplaceAll("#semicolon",10,";",1);
6819
6820 if (gPad && TestBit(kMustCleanup)) gPad->Modified();
6821}
6822
6823////////////////////////////////////////////////////////////////////////////////
6824/// Smooth array xx, translation of Hbook routine `hsmoof.F`.
6825/// Based on algorithm 353QH twice presented by J. Friedman
6826/// in [Proc. of the 1974 CERN School of Computing, Norway, 11-24 August, 1974](https://cds.cern.ch/record/186223).
6827/// See also Section 4.2 in [J. Friedman, Data Analysis Techniques for High Energy Physics](https://www.slac.stanford.edu/pubs/slacreports/reports16/slac-r-176.pdf).
6828
6830{
6831 if (nn < 3 ) {
6832 ::Error("SmoothArray","Need at least 3 points for smoothing: n = %d",nn);
6833 return;
6834 }
6835
6836 Int_t ii;
6837 std::array<double, 3> hh{};
6838
6839 std::vector<double> yy(nn);
6840 std::vector<double> zz(nn);
6841 std::vector<double> rr(nn);
6842
6843 for (Int_t pass=0;pass<ntimes;pass++) {
6844 // first copy original data into temp array
6845 std::copy(xx, xx+nn, zz.begin() );
6846
6847 for (int noent = 0; noent < 2; ++noent) { // run algorithm two times
6848
6849 // do 353 i.e. running median 3, 5, and 3 in a single loop
6850 for (int kk = 0; kk < 3; kk++) {
6851 std::copy(zz.begin(), zz.end(), yy.begin());
6852 int medianType = (kk != 1) ? 3 : 5;
6853 int ifirst = (kk != 1 ) ? 1 : 2;
6854 int ilast = (kk != 1 ) ? nn-1 : nn -2;
6855 //nn2 = nn - ik - 1;
6856 // do all elements beside the first and last point for median 3
6857 // and first two and last 2 for median 5
6858 for ( ii = ifirst; ii < ilast; ii++) {
6859 zz[ii] = TMath::Median(medianType, yy.data() + ii - ifirst);
6860 }
6861
6862 if (kk == 0) { // first median 3
6863 // first point
6864 hh[0] = zz[1];
6865 hh[1] = zz[0];
6866 hh[2] = 3*zz[1] - 2*zz[2];
6867 zz[0] = TMath::Median(3, hh.data());
6868 // last point
6869 hh[0] = zz[nn - 2];
6870 hh[1] = zz[nn - 1];
6871 hh[2] = 3*zz[nn - 2] - 2*zz[nn - 3];
6872 zz[nn - 1] = TMath::Median(3, hh.data());
6873 }
6874
6875 if (kk == 1) { // median 5
6876 // second point with window length 3
6877 zz[1] = TMath::Median(3, yy.data());
6878 // second-to-last point with window length 3
6879 zz[nn - 2] = TMath::Median(3, yy.data() + nn - 3);
6880 }
6881
6882 // In the third iteration (kk == 2), the first and last point stay
6883 // the same (see paper linked in the documentation).
6884 }
6885
6886 std::copy ( zz.begin(), zz.end(), yy.begin() );
6887
6888 // quadratic interpolation for flat segments
6889 for (ii = 2; ii < (nn - 2); ii++) {
6890 if (zz[ii - 1] != zz[ii]) continue;
6891 if (zz[ii] != zz[ii + 1]) continue;
6892 const double tmp0 = zz[ii - 2] - zz[ii];
6893 const double tmp1 = zz[ii + 2] - zz[ii];
6894 if (tmp0 * tmp1 <= 0) continue;
6895 int jk = 1;
6896 if ( std::abs(tmp1) > std::abs(tmp0) ) jk = -1;
6897 yy[ii] = -0.5*zz[ii - 2*jk] + zz[ii]/0.75 + zz[ii + 2*jk] /6.;
6898 yy[ii + jk] = 0.5*(zz[ii + 2*jk] - zz[ii - 2*jk]) + zz[ii];
6899 }
6900
6901 // running means
6902 //std::copy(zz.begin(), zz.end(), yy.begin());
6903 for (ii = 1; ii < nn - 1; ii++) {
6904 zz[ii] = 0.25*yy[ii - 1] + 0.5*yy[ii] + 0.25*yy[ii + 1];
6905 }
6906 zz[0] = yy[0];
6907 zz[nn - 1] = yy[nn - 1];
6908
6909 if (noent == 0) {
6910
6911 // save computed values
6912 std::copy(zz.begin(), zz.end(), rr.begin());
6913
6914 // COMPUTE residuals
6915 for (ii = 0; ii < nn; ii++) {
6916 zz[ii] = xx[ii] - zz[ii];
6917 }
6918 }
6919
6920 } // end loop on noent
6921
6922
6923 double xmin = TMath::MinElement(nn,xx);
6924 for (ii = 0; ii < nn; ii++) {
6925 if (xmin < 0) xx[ii] = rr[ii] + zz[ii];
6926 // make smoothing defined positive - not better using 0 ?
6927 else xx[ii] = std::max((rr[ii] + zz[ii]),0.0 );
6928 }
6929 }
6930}
6931
6932////////////////////////////////////////////////////////////////////////////////
6933/// Smooth bin contents of this histogram.
6934/// if option contains "R" smoothing is applied only to the bins
6935/// defined in the X axis range (default is to smooth all bins)
6936/// Bin contents are replaced by their smooth values.
6937/// Errors (if any) are not modified.
6938/// the smoothing procedure is repeated ntimes (default=1)
6939
6941{
6942 if (fDimension != 1) {
6943 Error("Smooth","Smooth only supported for 1-d histograms");
6944 return;
6945 }
6946 Int_t nbins = fXaxis.GetNbins();
6947 if (nbins < 3) {
6948 Error("Smooth","Smooth only supported for histograms with >= 3 bins. Nbins = %d",nbins);
6949 return;
6950 }
6951
6952 // delete buffer if it is there since it will become invalid
6953 if (fBuffer) BufferEmpty(1);
6954
6955 Int_t firstbin = 1, lastbin = nbins;
6956 TString opt = option;
6957 opt.ToLower();
6958 if (opt.Contains("r")) {
6961 }
6962 nbins = lastbin - firstbin + 1;
6963 Double_t *xx = new Double_t[nbins];
6965 Int_t i;
6966 for (i=0;i<nbins;i++) {
6968 }
6969
6970 TH1::SmoothArray(nbins,xx,ntimes);
6971
6972 for (i=0;i<nbins;i++) {
6974 }
6975 fEntries = nent;
6976 delete [] xx;
6977
6978 if (gPad) gPad->Modified();
6979}
6980
6981////////////////////////////////////////////////////////////////////////////////
6982/// if flag=kTRUE, underflows and overflows are used by the Fill functions
6983/// in the computation of statistics (mean value, StdDev).
6984/// By default, underflows or overflows are not used.
6985
6987{
6989}
6990
6991////////////////////////////////////////////////////////////////////////////////
6992/// Stream a class object.
6993
6994void TH1::Streamer(TBuffer &b)
6995{
6996 if (b.IsReading()) {
6997 UInt_t R__s, R__c;
6998 Version_t R__v = b.ReadVersion(&R__s, &R__c);
6999 if (fDirectory) fDirectory->Remove(this);
7000 fDirectory = nullptr;
7001 if (R__v > 2) {
7002 b.ReadClassBuffer(TH1::Class(), this, R__v, R__s, R__c);
7003
7005 fXaxis.SetParent(this);
7006 fYaxis.SetParent(this);
7007 fZaxis.SetParent(this);
7008 TIter next(fFunctions);
7009 TObject *obj;
7010 while ((obj=next())) {
7011 if (obj->InheritsFrom(TF1::Class())) ((TF1*)obj)->SetParent(this);
7012 }
7013 return;
7014 }
7015 //process old versions before automatic schema evolution
7020 b >> fNcells;
7021 fXaxis.Streamer(b);
7022 fYaxis.Streamer(b);
7023 fZaxis.Streamer(b);
7024 fXaxis.SetParent(this);
7025 fYaxis.SetParent(this);
7026 fZaxis.SetParent(this);
7027 b >> fBarOffset;
7028 b >> fBarWidth;
7029 b >> fEntries;
7030 b >> fTsumw;
7031 b >> fTsumw2;
7032 b >> fTsumwx;
7033 b >> fTsumwx2;
7034 if (R__v < 2) {
7036 Float_t *contour=nullptr;
7037 b >> maximum; fMaximum = maximum;
7038 b >> minimum; fMinimum = minimum;
7039 b >> norm; fNormFactor = norm;
7040 Int_t n = b.ReadArray(contour);
7041 fContour.Set(n);
7042 for (Int_t i=0;i<n;i++) fContour.fArray[i] = contour[i];
7043 delete [] contour;
7044 } else {
7045 b >> fMaximum;
7046 b >> fMinimum;
7047 b >> fNormFactor;
7049 }
7050 fSumw2.Streamer(b);
7052 fFunctions->Delete();
7054 b.CheckByteCount(R__s, R__c, TH1::IsA());
7055
7056 } else {
7057 b.WriteClassBuffer(TH1::Class(),this);
7058 }
7059}
7060
7061////////////////////////////////////////////////////////////////////////////////
7062/// Print some global quantities for this histogram.
7063/// \param[in] option
7064/// - "base" is given, number of bins and ranges are also printed
7065/// - "range" is given, bin contents and errors are also printed
7066/// for all bins in the current range (default 1-->nbins)
7067/// - "all" is given, bin contents and errors are also printed
7068/// for all bins including under and overflows.
7069
7070void TH1::Print(Option_t *option) const
7071{
7072 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
7073 printf( "TH1.Print Name = %s, Entries= %d, Total sum= %g\n",GetName(),Int_t(fEntries),GetSumOfWeights());
7074 TString opt = option;
7075 opt.ToLower();
7076 Int_t all;
7077 if (opt.Contains("all")) all = 0;
7078 else if (opt.Contains("range")) all = 1;
7079 else if (opt.Contains("base")) all = 2;
7080 else return;
7081
7082 Int_t bin, binx, biny, binz;
7084 if (all == 0) {
7085 lastx = fXaxis.GetNbins()+1;
7086 if (fDimension > 1) lasty = fYaxis.GetNbins()+1;
7087 if (fDimension > 2) lastz = fZaxis.GetNbins()+1;
7088 } else {
7090 if (fDimension > 1) {firsty = fYaxis.GetFirst(); lasty = fYaxis.GetLast();}
7091 if (fDimension > 2) {firstz = fZaxis.GetFirst(); lastz = fZaxis.GetLast();}
7092 }
7093
7094 if (all== 2) {
7095 printf(" Title = %s\n", GetTitle());
7096 printf(" NbinsX= %d, xmin= %g, xmax=%g", fXaxis.GetNbins(), fXaxis.GetXmin(), fXaxis.GetXmax());
7097 if( fDimension > 1) printf(", NbinsY= %d, ymin= %g, ymax=%g", fYaxis.GetNbins(), fYaxis.GetXmin(), fYaxis.GetXmax());
7098 if( fDimension > 2) printf(", NbinsZ= %d, zmin= %g, zmax=%g", fZaxis.GetNbins(), fZaxis.GetXmin(), fZaxis.GetXmax());
7099 printf("\n");
7100 return;
7101 }
7102
7103 Double_t w,e;
7104 Double_t x,y,z;
7105 if (fDimension == 1) {
7106 for (binx=firstx;binx<=lastx;binx++) {
7109 e = GetBinError(binx);
7110 if(fSumw2.fN) printf(" fSumw[%d]=%g, x=%g, error=%g\n",binx,w,x,e);
7111 else printf(" fSumw[%d]=%g, x=%g\n",binx,w,x);
7112 }
7113 }
7114 if (fDimension == 2) {
7115 for (biny=firsty;biny<=lasty;biny++) {
7117 for (binx=firstx;binx<=lastx;binx++) {
7118 bin = GetBin(binx,biny);
7120 w = RetrieveBinContent(bin);
7121 e = GetBinError(bin);
7122 if(fSumw2.fN) printf(" fSumw[%d][%d]=%g, x=%g, y=%g, error=%g\n",binx,biny,w,x,y,e);
7123 else printf(" fSumw[%d][%d]=%g, x=%g, y=%g\n",binx,biny,w,x,y);
7124 }
7125 }
7126 }
7127 if (fDimension == 3) {
7128 for (binz=firstz;binz<=lastz;binz++) {
7130 for (biny=firsty;biny<=lasty;biny++) {
7132 for (binx=firstx;binx<=lastx;binx++) {
7133 bin = GetBin(binx,biny,binz);
7135 w = RetrieveBinContent(bin);
7136 e = GetBinError(bin);
7137 if(fSumw2.fN) printf(" fSumw[%d][%d][%d]=%g, x=%g, y=%g, z=%g, error=%g\n",binx,biny,binz,w,x,y,z,e);
7138 else printf(" fSumw[%d][%d][%d]=%g, x=%g, y=%g, z=%g\n",binx,biny,binz,w,x,y,z);
7139 }
7140 }
7141 }
7142 }
7143}
7144
7145////////////////////////////////////////////////////////////////////////////////
7146/// Using the current bin info, recompute the arrays for contents and errors
7147
7148void TH1::Rebuild(Option_t *)
7149{
7150 SetBinsLength();
7151 if (fSumw2.fN) {
7153 }
7154}
7155
7156////////////////////////////////////////////////////////////////////////////////
7157/// Reset this histogram: contents, errors, etc.
7158/// \param[in] option
7159/// - if "ICE" is specified, resets only Integral, Contents and Errors.
7160/// - if "ICES" is specified, resets only Integral, Contents, Errors and Statistics
7161/// This option is used
7162/// - if "M" is specified, resets also Minimum and Maximum
7163
7165{
7166 // The option "ICE" is used when extending the histogram (in ExtendAxis, LabelInflate, etc..)
7167 // The option "ICES is used in combination with the buffer (see BufferEmpty and BufferFill)
7168
7169 TString opt = option;
7170 opt.ToUpper();
7171 fSumw2.Reset();
7172 if (fIntegral) {
7173 delete [] fIntegral;
7174 fIntegral = nullptr;
7175 }
7176
7177 if (opt.Contains("M")) {
7178 SetMinimum();
7179 SetMaximum();
7180 }
7181
7182 if (opt.Contains("ICE") && !opt.Contains("S")) return;
7183
7184 // Setting fBuffer[0] = 0 is like resetting the buffer but not deleting it
7185 // But what is the sense of calling BufferEmpty() ? For making the axes ?
7186 // BufferEmpty will update contents that later will be
7187 // reset in calling TH1D::Reset. For this we need to reset the stats afterwards
7188 // It may be needed for computing the axis limits....
7189 if (fBuffer) {BufferEmpty(); fBuffer[0] = 0;}
7190
7191 // need to reset also the statistics
7192 // (needs to be done after calling BufferEmpty() )
7193 fTsumw = 0;
7194 fTsumw2 = 0;
7195 fTsumwx = 0;
7196 fTsumwx2 = 0;
7197 fEntries = 0;
7198
7199 if (opt == "ICES") return;
7200
7201
7202 TObject *stats = fFunctions->FindObject("stats");
7203 fFunctions->Remove(stats);
7204 //special logic to support the case where the same object is
7205 //added multiple times in fFunctions.
7206 //This case happens when the same object is added with different
7207 //drawing modes
7208 TObject *obj;
7209 while ((obj = fFunctions->First())) {
7210 while(fFunctions->Remove(obj)) { }
7211 delete obj;
7212 }
7213 if(stats) fFunctions->Add(stats);
7214 fContour.Set(0);
7215}
7216
7217////////////////////////////////////////////////////////////////////////////////
7218/// Save the histogram as .csv, .tsv or .txt. In case of any other extension, fall
7219/// back to TObject::SaveAs, which saves as a .C macro (but with the file name
7220/// extension specified by the user)
7221///
7222/// The Under/Overflow bins are also exported (as first and last lines)
7223/// The fist 2 columns are the lower and upper edges of the bins
7224/// Column 3 contains the bin contents
7225/// The last column contains the error in y. If errors are not present, the column
7226/// is left empty
7227///
7228/// The result can be immediately imported into Excel, gnuplot, Python or whatever,
7229/// without the needing to install pyroot, etc.
7230///
7231/// \param filename the name of the file where to store the histogram
7232/// \param option some tuning options
7233///
7234/// The file extension defines the delimiter used:
7235/// - `.csv` : comma
7236/// - `.tsv` : tab
7237/// - `.txt` : space
7238///
7239/// If option = "title" a title line is generated. If the y-axis has a title,
7240/// this title is displayed as column 3 name, otherwise, it shows "BinContent"
7241
7242void TH1::SaveAs(const char *filename, Option_t *option) const
7243{
7244 char del = '\0';
7245 TString ext = "";
7247 TString opt = option;
7248
7249 if (filename) {
7250 if (fname.EndsWith(".csv")) {
7251 del = ',';
7252 ext = "csv";
7253 } else if (fname.EndsWith(".tsv")) {
7254 del = '\t';
7255 ext = "tsv";
7256 } else if (fname.EndsWith(".txt")) {
7257 del = ' ';
7258 ext = "txt";
7259 }
7260 }
7261 if (!del) {
7263 return;
7264 }
7265 std::ofstream out;
7266 out.open(filename, std::ios::out);
7267 if (!out.good()) {
7268 Error("SaveAs", "cannot open file: %s", filename);
7269 return;
7270 }
7271 if (opt.Contains("title")) {
7272 if (std::strcmp(GetYaxis()->GetTitle(), "") == 0) {
7273 out << "# " << "BinLowEdge" << del << "BinUpEdge" << del
7274 << "BinContent"
7275 << del << "ey" << std::endl;
7276 } else {
7277 out << "# " << "BinLowEdge" << del << "BinUpEdge" << del << GetYaxis()->GetTitle() << del << "ey" << std::endl;
7278 }
7279 }
7280 if (fSumw2.fN) {
7281 for (Int_t i = 0; i < fNcells; ++i) { // loop on cells (bins including underflow / overflow)
7282 out << GetXaxis()->GetBinLowEdge(i) << del << GetXaxis()->GetBinUpEdge(i) << del << GetBinContent(i) << del
7283 << GetBinError(i) << std::endl;
7284 }
7285 } else {
7286 for (Int_t i = 0; i < fNcells; ++i) { // loop on cells (bins including underflow / overflow)
7287 out << GetXaxis()->GetBinLowEdge(i) << del << GetXaxis()->GetBinUpEdge(i) << del << GetBinContent(i) << del
7288 << std::endl;
7289 }
7290 }
7291 out.close();
7292 Info("SaveAs", "%s file: %s has been generated", ext.Data(), filename);
7293}
7294
7295////////////////////////////////////////////////////////////////////////////////
7296/// Provide variable name for histogram for saving as primitive
7297/// Histogram pointer has by default the histogram name with an incremental suffix.
7298/// If the histogram belongs to a graph or a stack the suffix is not added because
7299/// the graph and stack objects are not aware of this new name. Same thing if
7300/// the histogram is drawn with the option COLZ because the TPaletteAxis drawn
7301/// when this option is selected, does not know this new name either.
7302
7304{
7305 thread_local Int_t storeNumber = 0;
7306
7307 TString opt = option;
7308 opt.ToLower();
7309 TString histName = GetName();
7310 // for TProfile and TH2Poly also fDirectory should be tested
7311 if (!histName.Contains("Graph") && !histName.Contains("_stack_") && !opt.Contains("colz") &&
7312 (!testfdir || !fDirectory)) {
7313 storeNumber++;
7314 histName += "__";
7315 histName += storeNumber;
7316 }
7317 if (histName.IsNull())
7318 histName = "unnamed";
7319 return gInterpreter->MapCppName(histName);
7320}
7321
7322////////////////////////////////////////////////////////////////////////////////
7323/// Save primitive as a C++ statement(s) on output stream out
7324
7325void TH1::SavePrimitive(std::ostream &out, Option_t *option /*= ""*/)
7326{
7327 // empty the buffer before if it exists
7328 if (fBuffer)
7329 BufferEmpty();
7330
7332
7335 SetName(hname);
7336
7337 out <<" \n";
7338
7339 // Check if the histogram has equidistant X bins or not. If not, we
7340 // create an array holding the bins.
7341 if (GetXaxis()->GetXbins()->fN && GetXaxis()->GetXbins()->fArray)
7342 sxaxis = SavePrimitiveVector(out, hname + "_x", GetXaxis()->GetXbins()->fN, GetXaxis()->GetXbins()->fArray);
7343 // If the histogram is 2 or 3 dimensional, check if the histogram
7344 // has equidistant Y bins or not. If not, we create an array
7345 // holding the bins.
7346 if (fDimension > 1 && GetYaxis()->GetXbins()->fN && GetYaxis()->GetXbins()->fArray)
7347 syaxis = SavePrimitiveVector(out, hname + "_y", GetYaxis()->GetXbins()->fN, GetYaxis()->GetXbins()->fArray);
7348 // IF the histogram is 3 dimensional, check if the histogram
7349 // has equidistant Z bins or not. If not, we create an array
7350 // holding the bins.
7351 if (fDimension > 2 && GetZaxis()->GetXbins()->fN && GetZaxis()->GetXbins()->fArray)
7352 szaxis = SavePrimitiveVector(out, hname + "_z", GetZaxis()->GetXbins()->fN, GetZaxis()->GetXbins()->fArray);
7353
7354 const auto old_precision{out.precision()};
7355 constexpr auto max_precision{std::numeric_limits<double>::digits10 + 1};
7356 out << std::setprecision(max_precision);
7357
7358 out << " " << ClassName() << " *" << hname << " = new " << ClassName() << "(\"" << TString(savedName).ReplaceSpecialCppChars() << "\", \""
7359 << TString(GetTitle()).ReplaceSpecialCppChars() << "\", " << GetXaxis()->GetNbins();
7360 if (!sxaxis.IsNull())
7361 out << ", " << sxaxis << ".data()";
7362 else
7363 out << ", " << GetXaxis()->GetXmin() << ", " << GetXaxis()->GetXmax();
7364 if (fDimension > 1) {
7365 out << ", " << GetYaxis()->GetNbins();
7366 if (!syaxis.IsNull())
7367 out << ", " << syaxis << ".data()";
7368 else
7369 out << ", " << GetYaxis()->GetXmin() << ", " << GetYaxis()->GetXmax();
7370 }
7371 if (fDimension > 2) {
7372 out << ", " << GetZaxis()->GetNbins();
7373 if (!szaxis.IsNull())
7374 out << ", " << szaxis << ".data()";
7375 else
7376 out << ", " << GetZaxis()->GetXmin() << ", " << GetZaxis()->GetXmax();
7377 }
7378 out << ");\n";
7379
7381 Int_t numbins = 0, numerrors = 0;
7382
7383 std::vector<Double_t> content(fNcells), errors(save_errors ? fNcells : 0);
7384 for (Int_t bin = 0; bin < fNcells; bin++) {
7385 content[bin] = RetrieveBinContent(bin);
7386 if (content[bin])
7387 numbins++;
7388 if (save_errors) {
7389 errors[bin] = GetBinError(bin);
7390 if (errors[bin])
7391 numerrors++;
7392 }
7393 }
7394
7395 if ((numbins < 100) && (numerrors < 100)) {
7396 // in case of few non-empty bins store them as before
7397 for (Int_t bin = 0; bin < fNcells; bin++) {
7398 if (content[bin])
7399 out << " " << hname << "->SetBinContent(" << bin << "," << content[bin] << ");\n";
7400 }
7401 if (save_errors)
7402 for (Int_t bin = 0; bin < fNcells; bin++) {
7403 if (errors[bin])
7404 out << " " << hname << "->SetBinError(" << bin << "," << errors[bin] << ");\n";
7405 }
7406 } else {
7407 if (numbins > 0) {
7409 out << " for (Int_t bin = 0; bin < " << fNcells << "; bin++)\n";
7410 out << " if (" << vectname << "[bin])\n";
7411 out << " " << hname << "->SetBinContent(bin, " << vectname << "[bin]);\n";
7412 }
7413 if (numerrors > 0) {
7415 out << " for (Int_t bin = 0; bin < " << fNcells << "; bin++)\n";
7416 out << " if (" << vectname << "[bin])\n";
7417 out << " " << hname << "->SetBinError(bin, " << vectname << "[bin]);\n";
7418 }
7419 }
7420
7422 out << std::setprecision(old_precision);
7423 SetName(savedName.Data());
7424}
7425
7426////////////////////////////////////////////////////////////////////////////////
7427/// Helper function for the SavePrimitive functions from TH1
7428/// or classes derived from TH1, eg TProfile, TProfile2D.
7429
7430void TH1::SavePrimitiveHelp(std::ostream &out, const char *hname, Option_t *option /*= ""*/)
7431{
7432 if (TMath::Abs(GetBarOffset()) > 1e-5)
7433 out << " " << hname << "->SetBarOffset(" << GetBarOffset() << ");\n";
7434 if (TMath::Abs(GetBarWidth() - 1) > 1e-5)
7435 out << " " << hname << "->SetBarWidth(" << GetBarWidth() << ");\n";
7436 if (fMinimum != -1111)
7437 out << " " << hname << "->SetMinimum(" << fMinimum << ");\n";
7438 if (fMaximum != -1111)
7439 out << " " << hname << "->SetMaximum(" << fMaximum << ");\n";
7440 if (fNormFactor != 0)
7441 out << " " << hname << "->SetNormFactor(" << fNormFactor << ");\n";
7442 if (fEntries != 0)
7443 out << " " << hname << "->SetEntries(" << fEntries << ");\n";
7444 if (!fDirectory)
7445 out << " " << hname << "->SetDirectory(nullptr);\n";
7446 if (TestBit(kNoStats))
7447 out << " " << hname << "->SetStats(0);\n";
7448 if (fOption.Length() != 0)
7449 out << " " << hname << "->SetOption(\n" << TString(fOption).ReplaceSpecialCppChars() << "\");\n";
7450
7451 // save contour levels
7453 if (ncontours > 0) {
7455 if (TestBit(kUserContour)) {
7456 std::vector<Double_t> levels(ncontours);
7457 for (Int_t bin = 0; bin < ncontours; bin++)
7458 levels[bin] = GetContourLevel(bin);
7460 }
7461 out << " " << hname << "->SetContour(" << ncontours;
7462 if (!vectname.IsNull())
7463 out << ", " << vectname << ".data()";
7464 out << ");\n";
7465 }
7466
7468
7469 // save attributes
7470 SaveFillAttributes(out, hname, -1, -1);
7471 SaveLineAttributes(out, hname, 1, 1, 1);
7472 SaveMarkerAttributes(out, hname, 1, 1, 1);
7473 fXaxis.SaveAttributes(out, hname, "->GetXaxis()");
7474 fYaxis.SaveAttributes(out, hname, "->GetYaxis()");
7475 fZaxis.SaveAttributes(out, hname, "->GetZaxis()");
7476
7478}
7479
7480////////////////////////////////////////////////////////////////////////////////
7481/// Save list of functions
7482/// Also can be used by TGraph classes
7483
7484void TH1::SavePrimitiveFunctions(std::ostream &out, const char *varname, TList *lst)
7485{
7486 thread_local Int_t funcNumber = 0;
7487
7488 TObjLink *lnk = lst ? lst->FirstLink() : nullptr;
7489 while (lnk) {
7490 auto obj = lnk->GetObject();
7491 obj->SavePrimitive(out, TString::Format("nodraw #%d\n", ++funcNumber).Data());
7492 TString objvarname = obj->GetName();
7494 if (obj->InheritsFrom(TF1::Class())) {
7496 objvarname = gInterpreter->MapCppName(objvarname);
7497 out << " " << objvarname << "->SetParent(" << varname << ");\n";
7498 } else if (obj->InheritsFrom("TPaveStats")) {
7499 objvarname = "ptstats";
7500 withopt = kFALSE; // pave stats preserve own draw options
7501 out << " " << objvarname << "->SetParent(" << varname << ");\n";
7502 } else if (obj->InheritsFrom("TPolyMarker")) {
7503 objvarname = "pmarker";
7504 }
7505
7506 out << " " << varname << "->GetListOfFunctions()->Add(" << objvarname;
7507 if (withopt)
7508 out << ",\"" << TString(lnk->GetOption()).ReplaceSpecialCppChars() << "\"";
7509 out << ");\n";
7510
7511 lnk = lnk->Next();
7512 }
7513}
7514
7515////////////////////////////////////////////////////////////////////////////////
7556 }
7557}
7558
7559////////////////////////////////////////////////////////////////////////////////
7560/// For axis = 1,2 or 3 returns the mean value of the histogram along
7561/// X,Y or Z axis.
7562///
7563/// For axis = 11, 12, 13 returns the standard error of the mean value
7564/// of the histogram along X, Y or Z axis
7565///
7566/// Note that the mean value/StdDev is computed using the bins in the currently
7567/// defined range (see TAxis::SetRange). By default the range includes
7568/// all bins from 1 to nbins included, excluding underflows and overflows.
7569/// To force the underflows and overflows in the computation, one must
7570/// call the static function TH1::StatOverflows(kTRUE) before filling
7571/// the histogram.
7572///
7573/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7574/// are calculated. By default, if no range has been set, the returned mean is
7575/// the (unbinned) one calculated at fill time. If a range has been set, however,
7576/// the mean is calculated using the bins in range, as described above; THIS
7577/// IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset
7578/// the range. To ensure that the returned mean (and all other statistics) is
7579/// always that of the binned data stored in the histogram, call TH1::ResetStats.
7580/// See TH1::GetStats.
7581///
7582/// Return mean value of this histogram along the X axis.
7583
7584Double_t TH1::GetMean(Int_t axis) const
7585{
7586 if (axis<1 || (axis>3 && axis<11) || axis>13) return 0;
7587 Double_t stats[kNstat];
7588 for (Int_t i=4;i<kNstat;i++) stats[i] = 0;
7589 GetStats(stats);
7590 if (stats[0] == 0) return 0;
7591 if (axis<4){
7592 Int_t ax[3] = {2,4,7};
7593 return stats[ax[axis-1]]/stats[0];
7594 } else {
7595 // mean error = StdDev / sqrt( Neff )
7596 Double_t stddev = GetStdDev(axis-10);
7598 return ( neff > 0 ? stddev/TMath::Sqrt(neff) : 0. );
7599 }
7600}
7601
7602////////////////////////////////////////////////////////////////////////////////
7603/// Return standard error of mean of this histogram along the X axis.
7604///
7605/// Note that the mean value/StdDev is computed using the bins in the currently
7606/// defined range (see TAxis::SetRange). By default the range includes
7607/// all bins from 1 to nbins included, excluding underflows and overflows.
7608/// To force the underflows and overflows in the computation, one must
7609/// call the static function TH1::StatOverflows(kTRUE) before filling
7610/// the histogram.
7611///
7612/// Also note, that although the definition of standard error doesn't include the
7613/// assumption of normality, many uses of this feature implicitly assume it.
7614///
7615/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7616/// are calculated. By default, if no range has been set, the returned value is
7617/// the (unbinned) one calculated at fill time. If a range has been set, however,
7618/// the value is calculated using the bins in range, as described above; THIS
7619/// IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset
7620/// the range. To ensure that the returned value (and all other statistics) is
7621/// always that of the binned data stored in the histogram, call TH1::ResetStats.
7622/// See TH1::GetStats.
7623
7625{
7626 return GetMean(axis+10);
7627}
7628
7629////////////////////////////////////////////////////////////////////////////////
7630/// Returns the Standard Deviation (Sigma).
7631/// The Sigma estimate is computed as
7632/// \f[
7633/// \sqrt{\frac{1}{N}(\sum(x_i-x_{mean})^2)}
7634/// \f]
7635/// For axis = 1,2 or 3 returns the Sigma value of the histogram along
7636/// X, Y or Z axis
7637/// For axis = 11, 12 or 13 returns the error of StdDev estimation along
7638/// X, Y or Z axis for Normal distribution
7639///
7640/// Note that the mean value/sigma is computed using the bins in the currently
7641/// defined range (see TAxis::SetRange). By default the range includes
7642/// all bins from 1 to nbins included, excluding underflows and overflows.
7643/// To force the underflows and overflows in the computation, one must
7644/// call the static function TH1::StatOverflows(kTRUE) before filling
7645/// the histogram.
7646///
7647/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7648/// are calculated. By default, if no range has been set, the returned standard
7649/// deviation is the (unbinned) one calculated at fill time. If a range has been
7650/// set, however, the standard deviation is calculated using the bins in range,
7651/// as described above; THIS IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use
7652/// TAxis::SetRange(0, 0) to unset the range. To ensure that the returned standard
7653/// deviation (and all other statistics) is always that of the binned data stored
7654/// in the histogram, call TH1::ResetStats. See TH1::GetStats.
7655
7656Double_t TH1::GetStdDev(Int_t axis) const
7657{
7658 if (axis<1 || (axis>3 && axis<11) || axis>13) return 0;
7659
7660 Double_t x, stddev2, stats[kNstat];
7661 for (Int_t i=4;i<kNstat;i++) stats[i] = 0;
7662 GetStats(stats);
7663 if (stats[0] == 0) return 0;
7664 Int_t ax[3] = {2,4,7};
7665 Int_t axm = ax[axis%10 - 1];
7666 x = stats[axm]/stats[0];
7667 // for negative stddev (e.g. when having negative weights) - return stdev=0
7668 stddev2 = TMath::Max( stats[axm+1]/stats[0] -x*x, 0.0 );
7669 if (axis<10)
7670 return TMath::Sqrt(stddev2);
7671 else {
7672 // The right formula for StdDev error depends on 4th momentum (see Kendall-Stuart Vol 1 pag 243)
7673 // formula valid for only gaussian distribution ( 4-th momentum = 3 * sigma^4 )
7675 return ( neff > 0 ? TMath::Sqrt(stddev2/(2*neff) ) : 0. );
7676 }
7677}
7678
7679////////////////////////////////////////////////////////////////////////////////
7680/// Return error of standard deviation estimation for Normal distribution
7681///
7682/// Note that the mean value/StdDev is computed using the bins in the currently
7683/// defined range (see TAxis::SetRange). By default the range includes
7684/// all bins from 1 to nbins included, excluding underflows and overflows.
7685/// To force the underflows and overflows in the computation, one must
7686/// call the static function TH1::StatOverflows(kTRUE) before filling
7687/// the histogram.
7688///
7689/// Value returned is standard deviation of sample standard deviation.
7690/// Note that it is an approximated value which is valid only in the case that the
7691/// original data distribution is Normal. The correct one would require
7692/// the 4-th momentum value, which cannot be accurately estimated from a histogram since
7693/// the x-information for all entries is not kept.
7694///
7695/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7696/// are calculated. By default, if no range has been set, the returned value is
7697/// the (unbinned) one calculated at fill time. If a range has been set, however,
7698/// the value is calculated using the bins in range, as described above; THIS
7699/// IS TRUE EVEN IF THE RANGE INCLUDES ALL BINS--use TAxis::SetRange(0, 0) to unset
7700/// the range. To ensure that the returned value (and all other statistics) is
7701/// always that of the binned data stored in the histogram, call TH1::ResetStats.
7702/// See TH1::GetStats.
7703
7705{
7706 return GetStdDev(axis+10);
7707}
7708
7709////////////////////////////////////////////////////////////////////////////////
7710/// - For axis = 1, 2 or 3 returns skewness of the histogram along x, y or z axis.
7711/// - For axis = 11, 12 or 13 returns the approximate standard error of skewness
7712/// of the histogram along x, y or z axis
7713///
7714///Note, that since third and fourth moment are not calculated
7715///at the fill time, skewness and its standard error are computed bin by bin
7716///
7717/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7718/// are calculated. See TH1::GetMean and TH1::GetStdDev.
7719
7721{
7722
7723 if (axis > 0 && axis <= 3){
7724
7725 Double_t mean = GetMean(axis);
7726 Double_t stddev = GetStdDev(axis);
7728
7735 // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
7738 if (firstBinX == 1) firstBinX = 0;
7739 if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
7740 }
7742 if (firstBinY == 1) firstBinY = 0;
7743 if (lastBinY == fYaxis.GetNbins() ) lastBinY += 1;
7744 }
7746 if (firstBinZ == 1) firstBinZ = 0;
7747 if (lastBinZ == fZaxis.GetNbins() ) lastBinZ += 1;
7748 }
7749 }
7750
7751 Double_t x = 0;
7752 Double_t sum=0;
7753 Double_t np=0;
7754 for (Int_t binx = firstBinX; binx <= lastBinX; binx++) {
7755 for (Int_t biny = firstBinY; biny <= lastBinY; biny++) {
7756 for (Int_t binz = firstBinZ; binz <= lastBinZ; binz++) {
7757 if (axis==1 ) x = fXaxis.GetBinCenter(binx);
7758 else if (axis==2 ) x = fYaxis.GetBinCenter(biny);
7759 else if (axis==3 ) x = fZaxis.GetBinCenter(binz);
7761 np+=w;
7762 sum+=w*(x-mean)*(x-mean)*(x-mean);
7763 }
7764 }
7765 }
7766 sum/=np*stddev3;
7767 return sum;
7768 }
7769 else if (axis > 10 && axis <= 13) {
7770 //compute standard error of skewness
7771 // assume parent normal distribution use formula from Kendall-Stuart, Vol 1 pag 243, second edition
7773 return ( neff > 0 ? TMath::Sqrt(6./neff ) : 0. );
7774 }
7775 else {
7776 Error("GetSkewness", "illegal value of parameter");
7777 return 0;
7778 }
7779}
7780
7781////////////////////////////////////////////////////////////////////////////////
7782/// - For axis =1, 2 or 3 returns kurtosis of the histogram along x, y or z axis.
7783/// Kurtosis(gaussian(0, 1)) = 0.
7784/// - For axis =11, 12 or 13 returns the approximate standard error of kurtosis
7785/// of the histogram along x, y or z axis
7786////
7787/// Note, that since third and fourth moment are not calculated
7788/// at the fill time, kurtosis and its standard error are computed bin by bin
7789///
7790/// IMPORTANT NOTE: The returned value depends on how the histogram statistics
7791/// are calculated. See TH1::GetMean and TH1::GetStdDev.
7792
7794{
7795 if (axis > 0 && axis <= 3){
7796
7797 Double_t mean = GetMean(axis);
7798 Double_t stddev = GetStdDev(axis);
7800
7807 // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
7810 if (firstBinX == 1) firstBinX = 0;
7811 if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
7812 }
7814 if (firstBinY == 1) firstBinY = 0;
7815 if (lastBinY == fYaxis.GetNbins() ) lastBinY += 1;
7816 }
7818 if (firstBinZ == 1) firstBinZ = 0;
7819 if (lastBinZ == fZaxis.GetNbins() ) lastBinZ += 1;
7820 }
7821 }
7822
7823 Double_t x = 0;
7824 Double_t sum=0;
7825 Double_t np=0;
7826 for (Int_t binx = firstBinX; binx <= lastBinX; binx++) {
7827 for (Int_t biny = firstBinY; biny <= lastBinY; biny++) {
7828 for (Int_t binz = firstBinZ; binz <= lastBinZ; binz++) {
7829 if (axis==1 ) x = fXaxis.GetBinCenter(binx);
7830 else if (axis==2 ) x = fYaxis.GetBinCenter(biny);
7831 else if (axis==3 ) x = fZaxis.GetBinCenter(binz);
7833 np+=w;
7834 sum+=w*(x-mean)*(x-mean)*(x-mean)*(x-mean);
7835 }
7836 }
7837 }
7838 sum/=(np*stddev4);
7839 return sum-3;
7840
7841 } else if (axis > 10 && axis <= 13) {
7842 //compute standard error of skewness
7843 // assume parent normal distribution use formula from Kendall-Stuart, Vol 1 pag 243, second edition
7845 return ( neff > 0 ? TMath::Sqrt(24./neff ) : 0. );
7846 }
7847 else {
7848 Error("GetKurtosis", "illegal value of parameter");
7849 return 0;
7850 }
7851}
7852
7853////////////////////////////////////////////////////////////////////////////////
7854/// fill the array stats from the contents of this histogram
7855/// The array stats must be correctly dimensioned in the calling program.
7856///
7857/// ~~~ {.cpp}
7858/// stats[0] = sumw
7859/// stats[1] = sumw2
7860/// stats[2] = sumwx
7861/// stats[3] = sumwx2
7862/// ~~~
7863///
7864/// If no axis-subrange is specified (via TAxis::SetRange), the array stats
7865/// is simply a copy of the statistics quantities computed at filling time.
7866/// If a sub-range is specified, the function recomputes these quantities
7867/// from the bin contents in the current axis range.
7868///
7869/// IMPORTANT NOTE: This means that the returned statistics are context-dependent.
7870/// If TAxis::kAxisRange, the returned statistics are dependent on the binning;
7871/// otherwise, they are a copy of the histogram statistics computed at fill time,
7872/// which are unbinned by default (calling TH1::ResetStats forces them to use
7873/// binned statistics). You can reset TAxis::kAxisRange using TAxis::SetRange(0, 0).
7874///
7875/// Note that the mean value/StdDev is computed using the bins in the currently
7876/// defined range (see TAxis::SetRange). By default the range includes
7877/// all bins from 1 to nbins included, excluding underflows and overflows.
7878/// To force the underflows and overflows in the computation, one must
7879/// call the static function TH1::StatOverflows(kTRUE) before filling
7880/// the histogram.
7881
7882void TH1::GetStats(Double_t *stats) const
7883{
7884 if (fBuffer) ((TH1*)this)->BufferEmpty();
7885
7886 // Loop on bins (possibly including underflows/overflows)
7887 Int_t bin, binx;
7888 Double_t w,err;
7889 Double_t x;
7890 // identify the case of labels with extension of axis range
7891 // in this case the statistics in x does not make any sense
7892 Bool_t labelHist = ((const_cast<TAxis&>(fXaxis)).GetLabels() && fXaxis.CanExtend() );
7893 // fTsumw == 0 && fEntries > 0 is a special case when uses SetBinContent or calls ResetStats before
7894 if ( (fTsumw == 0 && fEntries > 0) || fXaxis.TestBit(TAxis::kAxisRange) ) {
7895 for (bin=0;bin<4;bin++) stats[bin] = 0;
7896
7899 // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis
7901 if (firstBinX == 1) firstBinX = 0;
7902 if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1;
7903 }
7904 for (binx = firstBinX; binx <= lastBinX; binx++) {
7906 //w = TMath::Abs(RetrieveBinContent(binx));
7907 // not sure what to do here if w < 0
7909 err = TMath::Abs(GetBinError(binx));
7910 stats[0] += w;
7911 stats[1] += err*err;
7912 // statistics in x makes sense only for not labels histograms
7913 if (!labelHist) {
7914 stats[2] += w*x;
7915 stats[3] += w*x*x;
7916 }
7917 }
7918 // if (stats[0] < 0) {
7919 // // in case total is negative do something ??
7920 // stats[0] = 0;
7921 // }
7922 } else {
7923 stats[0] = fTsumw;
7924 stats[1] = fTsumw2;
7925 stats[2] = fTsumwx;
7926 stats[3] = fTsumwx2;
7927 }
7928}
7929
7930////////////////////////////////////////////////////////////////////////////////
7931/// Replace current statistics with the values in array stats
7932
7933void TH1::PutStats(Double_t *stats)
7934{
7935 fTsumw = stats[0];
7936 fTsumw2 = stats[1];
7937 fTsumwx = stats[2];
7938 fTsumwx2 = stats[3];
7939}
7940
7941////////////////////////////////////////////////////////////////////////////////
7942/// Reset the statistics including the number of entries
7943/// and replace with values calculated from bin content
7944///
7945/// The number of entries is set to the total bin content or (in case of weighted histogram)
7946/// to number of effective entries
7947///
7948/// \note By default, before calling this function, statistics are those
7949/// computed at fill time, which are unbinned. See TH1::GetStats.
7950
7951void TH1::ResetStats()
7952{
7953 Double_t stats[kNstat] = {0};
7954 fTsumw = 0;
7955 fEntries = 1; // to force re-calculation of the statistics in TH1::GetStats
7956 GetStats(stats);
7957 PutStats(stats);
7959 // use effective entries for weighted histograms: (sum_w) ^2 / sum_w2
7960 if (fSumw2.fN > 0 && fTsumw > 0 && stats[1] > 0 ) fEntries = stats[0]*stats[0]/ stats[1];
7961}
7962
7963////////////////////////////////////////////////////////////////////////////////
7964/// Return the sum of all weights
7965/// \param includeOverflow true to include under/overflows bins, false to exclude those.
7966/// \note Different from TH1::GetSumOfWeights, that always excludes those
7967
7969{
7970 if (fBuffer) const_cast<TH1*>(this)->BufferEmpty();
7971
7972 const Int_t start = (includeOverflow ? 0 : 1);
7973 const Int_t lastX = fXaxis.GetNbins() + (includeOverflow ? 1 : 0);
7974 const Int_t lastY = fYaxis.GetNbins() + (includeOverflow ? 1 : 0);
7975 const Int_t lastZ = fZaxis.GetNbins() + (includeOverflow ? 1 : 0);
7976 Double_t sum =0;
7977 for(auto binz = start; binz <= lastZ; binz++) {
7978 for(auto biny = start; biny <= lastY; biny++) {
7979 for(auto binx = start; binx <= lastX; binx++) {
7980 const auto bin = GetBin(binx, biny, binz);
7981 sum += RetrieveBinContent(bin);
7982 }
7983 }
7984 }
7985 return sum;
7986}
7987
7988////////////////////////////////////////////////////////////////////////////////
7989///Return integral of bin contents. Only bins in the bins range are considered.
7990///
7991/// By default the integral is computed as the sum of bin contents in the range.
7992/// if option "width" is specified, the integral is the sum of
7993/// the bin contents multiplied by the bin width in x.
7994
7996{
7998}
7999
8000////////////////////////////////////////////////////////////////////////////////
8001/// Return integral of bin contents in range [binx1,binx2].
8002///
8003/// By default the integral is computed as the sum of bin contents in the range.
8004/// if option "width" is specified, the integral is the sum of
8005/// the bin contents multiplied by the bin width in x.
8006
8008{
8009 double err = 0;
8010 return DoIntegral(binx1,binx2,0,-1,0,-1,err,option);
8011}
8012
8013////////////////////////////////////////////////////////////////////////////////
8014/// Return integral of bin contents in range [binx1,binx2] and its error.
8015///
8016/// By default the integral is computed as the sum of bin contents in the range.
8017/// if option "width" is specified, the integral is the sum of
8018/// the bin contents multiplied by the bin width in x.
8019/// the error is computed using error propagation from the bin errors assuming that
8020/// all the bins are uncorrelated
8021
8023{
8024 return DoIntegral(binx1,binx2,0,-1,0,-1,error,option,kTRUE);
8025}
8026
8027////////////////////////////////////////////////////////////////////////////////
8028/// Internal function compute integral and optionally the error between the limits
8029/// specified by the bin number values working for all histograms (1D, 2D and 3D)
8030
8032 Option_t *option, Bool_t doError) const
8033{
8034 if (fBuffer) ((TH1*)this)->BufferEmpty();
8035
8036 Int_t nx = GetNbinsX() + 2;
8037 if (binx1 < 0) binx1 = 0;
8038 if (binx2 >= nx || binx2 < binx1) binx2 = nx - 1;
8039
8040 if (GetDimension() > 1) {
8041 Int_t ny = GetNbinsY() + 2;
8042 if (biny1 < 0) biny1 = 0;
8043 if (biny2 >= ny || biny2 < biny1) biny2 = ny - 1;
8044 } else {
8045 biny1 = 0; biny2 = 0;
8046 }
8047
8048 if (GetDimension() > 2) {
8049 Int_t nz = GetNbinsZ() + 2;
8050 if (binz1 < 0) binz1 = 0;
8051 if (binz2 >= nz || binz2 < binz1) binz2 = nz - 1;
8052 } else {
8053 binz1 = 0; binz2 = 0;
8054 }
8055
8056 // - Loop on bins in specified range
8057 TString opt = option;
8058 opt.ToLower();
8060 if (opt.Contains("width")) width = kTRUE;
8061
8062
8063 Double_t dx = 1., dy = .1, dz =.1;
8064 Double_t integral = 0;
8065 Double_t igerr2 = 0;
8066 for (Int_t binx = binx1; binx <= binx2; ++binx) {
8067 if (width) dx = fXaxis.GetBinWidth(binx);
8068 for (Int_t biny = biny1; biny <= biny2; ++biny) {
8069 if (width) dy = fYaxis.GetBinWidth(biny);
8070 for (Int_t binz = binz1; binz <= binz2; ++binz) {
8071 Int_t bin = GetBin(binx, biny, binz);
8072 Double_t dv = 0.0;
8073 if (width) {
8075 dv = dx * dy * dz;
8076 integral += RetrieveBinContent(bin) * dv;
8077 } else {
8078 integral += RetrieveBinContent(bin);
8079 }
8080 if (doError) {
8081 if (width) igerr2 += GetBinErrorSqUnchecked(bin) * dv * dv;
8082 else igerr2 += GetBinErrorSqUnchecked(bin);
8083 }
8084 }
8085 }
8086 }
8087
8088 if (doError) error = TMath::Sqrt(igerr2);
8089 return integral;
8090}
8091
8092////////////////////////////////////////////////////////////////////////////////
8093/// Statistical test of compatibility in shape between
8094/// this histogram and h2, using the Anderson-Darling 2 sample test.
8095///
8096/// The AD 2 sample test formula are derived from the paper
8097/// F.W Scholz, M.A. Stephens "k-Sample Anderson-Darling Test".
8098///
8099/// The test is implemented in root in the ROOT::Math::GoFTest class
8100/// It is the same formula ( (6) in the paper), and also shown in
8101/// [this preprint](http://arxiv.org/pdf/0804.0380v1.pdf)
8102///
8103/// Binned data are considered as un-binned data
8104/// with identical observation happening in the bin center.
8105///
8106/// \param[in] h2 Pointer to 1D histogram
8107/// \param[in] option is a character string to specify options
8108/// - "D" Put out a line of "Debug" printout
8109/// - "T" Return the normalized A-D test statistic
8110///
8111/// - Note1: Underflow and overflow are not considered in the test
8112/// - Note2: The test works only for un-weighted histogram (i.e. representing counts)
8113/// - Note3: The histograms are not required to have the same X axis
8114/// - Note4: The test works only for 1-dimensional histograms
8115
8117{
8118 Double_t advalue = 0;
8120
8121 TString opt = option;
8122 opt.ToUpper();
8123 if (opt.Contains("D") ) {
8124 printf(" AndersonDarlingTest Prob = %g, AD TestStatistic = %g\n",pvalue,advalue);
8125 }
8126 if (opt.Contains("T") ) return advalue;
8127
8128 return pvalue;
8129}
8130
8131////////////////////////////////////////////////////////////////////////////////
8132/// Same function as above but returning also the test statistic value
8133
8135{
8136 if (GetDimension() != 1 || h2->GetDimension() != 1) {
8137 Error("AndersonDarlingTest","Histograms must be 1-D");
8138 return -1;
8139 }
8140
8141 // empty the buffer. Probably we could add as an unbinned test
8142 if (fBuffer) ((TH1*)this)->BufferEmpty();
8143
8144 // use the BinData class
8147
8148 ROOT::Fit::FillData(data1, this, nullptr);
8149 ROOT::Fit::FillData(data2, h2, nullptr);
8150
8151 double pvalue;
8153
8154 return pvalue;
8155}
8156
8157////////////////////////////////////////////////////////////////////////////////
8158/// Statistical test of compatibility in shape between
8159/// this histogram and h2, using Kolmogorov test.
8160/// Note that the KolmogorovTest (KS) test should in theory be used only for unbinned data
8161/// and not for binned data as in the case of the histogram (see NOTE 3 below).
8162/// So, before using this method blindly, read the NOTE 3.
8163///
8164/// Default: Ignore under- and overflow bins in comparison
8165///
8166/// \param[in] h2 histogram
8167/// \param[in] option is a character string to specify options
8168/// - "U" include Underflows in test (also for 2-dim)
8169/// - "O" include Overflows (also valid for 2-dim)
8170/// - "N" include comparison of normalizations
8171/// - "D" Put out a line of "Debug" printout
8172/// - "M" Return the Maximum Kolmogorov distance instead of prob
8173/// - "X" Run the pseudo experiments post-processor with the following procedure:
8174/// make pseudoexperiments based on random values from the parent distribution,
8175/// compare the KS distance of the pseudoexperiment to the parent
8176/// distribution, and count all the KS values above the value
8177/// obtained from the original data to Monte Carlo distribution.
8178/// The number of pseudo-experiments nEXPT is by default 1000, and
8179/// it can be changed by specifying the option as "X=number",
8180/// for example "X=10000" for 10000 toys.
8181/// The function returns the probability.
8182/// (thanks to Ben Kilminster to submit this procedure). Note that
8183/// this option "X" is much slower.
8184///
8185/// The returned function value is the probability of test
8186/// (much less than one means NOT compatible)
8187///
8188/// Code adapted by Rene Brun from original HBOOK routine HDIFF
8189///
8190/// NOTE1
8191/// A good description of the Kolmogorov test can be seen at:
8192/// http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
8193///
8194/// NOTE2
8195/// see also alternative function TH1::Chi2Test
8196/// The Kolmogorov test is assumed to give better results than Chi2Test
8197/// in case of histograms with low statistics.
8198///
8199/// NOTE3 (Jan Conrad, Fred James)
8200/// "The returned value PROB is calculated such that it will be
8201/// uniformly distributed between zero and one for compatible histograms,
8202/// provided the data are not binned (or the number of bins is very large
8203/// compared with the number of events). Users who have access to unbinned
8204/// data and wish exact confidence levels should therefore not put their data
8205/// into histograms, but should call directly TMath::KolmogorovTest. On
8206/// the other hand, since TH1 is a convenient way of collecting data and
8207/// saving space, this function has been provided. However, the values of
8208/// PROB for binned data will be shifted slightly higher than expected,
8209/// depending on the effects of the binning. For example, when comparing two
8210/// uniform distributions of 500 events in 100 bins, the values of PROB,
8211/// instead of being exactly uniformly distributed between zero and one, have
8212/// a mean value of about 0.56. We can apply a useful
8213/// rule: As long as the bin width is small compared with any significant
8214/// physical effect (for example the experimental resolution) then the binning
8215/// cannot have an important effect. Therefore, we believe that for all
8216/// practical purposes, the probability value PROB is calculated correctly
8217/// provided the user is aware that:
8218///
8219/// 1. The value of PROB should not be expected to have exactly the correct
8220/// distribution for binned data.
8221/// 2. The user is responsible for seeing to it that the bin widths are
8222/// small compared with any physical phenomena of interest.
8223/// 3. The effect of binning (if any) is always to make the value of PROB
8224/// slightly too big. That is, setting an acceptance criterion of (PROB>0.05
8225/// will assure that at most 5% of truly compatible histograms are rejected,
8226/// and usually somewhat less."
8227///
8228/// Note also that for GoF test of unbinned data ROOT provides also the class
8229/// ROOT::Math::GoFTest. The class has also method for doing one sample tests
8230/// (i.e. comparing the data with a given distribution).
8231
8233{
8234 TString opt = option;
8235 opt.ToUpper();
8236
8237 Double_t prob = 0;
8238 TH1 *h1 = (TH1*)this;
8239 if (h2 == nullptr) return 0;
8240 const TAxis *axis1 = h1->GetXaxis();
8241 const TAxis *axis2 = h2->GetXaxis();
8242 Int_t ncx1 = axis1->GetNbins();
8243 Int_t ncx2 = axis2->GetNbins();
8244
8245 // Check consistency of dimensions
8246 if (h1->GetDimension() != 1 || h2->GetDimension() != 1) {
8247 Error("KolmogorovTest","Histograms must be 1-D\n");
8248 return 0;
8249 }
8250
8251 // Check consistency in number of channels
8252 if (ncx1 != ncx2) {
8253 Error("KolmogorovTest","Histograms have different number of bins, %d and %d\n",ncx1,ncx2);
8254 return 0;
8255 }
8256
8257 // empty the buffer. Probably we could add as an unbinned test
8258 if (fBuffer) ((TH1*)this)->BufferEmpty();
8259
8260 // Check consistency in bin edges
8261 for(Int_t i = 1; i <= axis1->GetNbins() + 1; ++i) {
8262 if(!TMath::AreEqualRel(axis1->GetBinLowEdge(i), axis2->GetBinLowEdge(i), 1.E-15)) {
8263 Error("KolmogorovTest","Histograms are not consistent: they have different bin edges");
8264 return 0;
8265 }
8266 }
8267
8270 Double_t sum1 = 0, sum2 = 0;
8271 Double_t ew1, ew2, w1 = 0, w2 = 0;
8272 Int_t bin;
8273 Int_t ifirst = 1;
8274 Int_t ilast = ncx1;
8275 // integral of all bins (use underflow/overflow if option)
8276 if (opt.Contains("U")) ifirst = 0;
8277 if (opt.Contains("O")) ilast = ncx1 +1;
8278 for (bin = ifirst; bin <= ilast; bin++) {
8279 sum1 += h1->RetrieveBinContent(bin);
8280 sum2 += h2->RetrieveBinContent(bin);
8281 ew1 = h1->GetBinError(bin);
8282 ew2 = h2->GetBinError(bin);
8283 w1 += ew1*ew1;
8284 w2 += ew2*ew2;
8285 }
8286 if (sum1 == 0) {
8287 Error("KolmogorovTest","Histogram1 %s integral is zero\n",h1->GetName());
8288 return 0;
8289 }
8290 if (sum2 == 0) {
8291 Error("KolmogorovTest","Histogram2 %s integral is zero\n",h2->GetName());
8292 return 0;
8293 }
8294
8295 // calculate the effective entries.
8296 // the case when errors are zero (w1 == 0 or w2 ==0) are equivalent to
8297 // compare to a function. In that case the rescaling is done only on sqrt(esum2) or sqrt(esum1)
8298 Double_t esum1 = 0, esum2 = 0;
8299 if (w1 > 0)
8300 esum1 = sum1 * sum1 / w1;
8301 else
8302 afunc1 = kTRUE; // use later for calculating z
8303
8304 if (w2 > 0)
8305 esum2 = sum2 * sum2 / w2;
8306 else
8307 afunc2 = kTRUE; // use later for calculating z
8308
8309 if (afunc2 && afunc1) {
8310 Error("KolmogorovTest","Errors are zero for both histograms\n");
8311 return 0;
8312 }
8313
8314
8315 Double_t s1 = 1/sum1;
8316 Double_t s2 = 1/sum2;
8317
8318 // Find largest difference for Kolmogorov Test
8319 Double_t dfmax =0, rsum1 = 0, rsum2 = 0;
8320
8321 for (bin=ifirst;bin<=ilast;bin++) {
8322 rsum1 += s1*h1->RetrieveBinContent(bin);
8323 rsum2 += s2*h2->RetrieveBinContent(bin);
8325 }
8326
8327 // Get Kolmogorov probability
8328 Double_t z, prb1=0, prb2=0, prb3=0;
8329
8330 // case h1 is exact (has zero errors)
8331 if (afunc1)
8332 z = dfmax*TMath::Sqrt(esum2);
8333 // case h2 has zero errors
8334 else if (afunc2)
8335 z = dfmax*TMath::Sqrt(esum1);
8336 else
8337 // for comparison between two data sets
8339
8341
8342 // option N to combine normalization makes sense if both afunc1 and afunc2 are false
8343 if (opt.Contains("N") && !(afunc1 || afunc2 ) ) {
8344 // Combine probabilities for shape and normalization,
8345 prb1 = prob;
8348 prb2 = TMath::Prob(chi2,1);
8349 // see Eadie et al., section 11.6.2
8350 if (prob > 0 && prb2 > 0) prob *= prb2*(1-TMath::Log(prob*prb2));
8351 else prob = 0;
8352 }
8353 // X option. Run Pseudo-experiments to determine NULL distribution of the
8354 // KS distance. We can find the probability from the number of pseudo-experiment that have a
8355 // KS distance larger than the one opbserved in the data.
8356 // We use the histogram with the largest statistics as a parent distribution for the NULL.
8357 // Note if one histogram has zero errors is considered as a function. In that case we use it
8358 // as parent distribution for the toys.
8359 //
8360 Int_t nEXPT = 1000;
8361 if (opt.Contains("X")) {
8362 // get number of pseudo-experiment of specified
8363 if (opt.Contains("X=")) {
8364 int numpos = opt.Index("X=") + 2; // 2 is length of X=
8365 int numlen = 0;
8366 int len = opt.Length();
8367 while( (numpos+numlen<len) && isdigit(opt[numpos+numlen]) )
8368 numlen++;
8369 TString snum = opt(numpos,numlen);
8370 int num = atoi(snum.Data());
8371 if (num <= 0)
8372 Warning("KolmogorovTest","invalid number of toys given: %d - use 1000",num);
8373 else
8374 nEXPT = num;
8375 }
8376
8378 TH1D hparent;
8379 // we cannot have afunc1 and func2 both True
8380 if (afunc1 || esum1 > esum2 ) h1->Copy(hparent);
8381 else h2->Copy(hparent);
8382
8383 // copy h1Expt from h1 and h2. It is just needed to get the correct binning
8384
8385
8386 if (hparent.GetMinimum() < 0.0) {
8387 // we need to create a new histogram
8388 // With negative bins we can't draw random samples in a meaningful way.
8389 Warning("KolmogorovTest", "Detected bins with negative weights, these have been ignored and output might be "
8390 "skewed. Reduce number of bins for histogram?");
8391 while (hparent.GetMinimum() < 0.0) {
8392 Int_t idx = hparent.GetMinimumBin();
8393 hparent.SetBinContent(idx, 0.0);
8394 }
8395 }
8396
8397 // make nEXPT experiments (this should be a parameter)
8398 prb3 = 0;
8399 TH1D h1Expt;
8400 h1->Copy(h1Expt);
8401 TH1D h2Expt;
8402 h1->Copy(h2Expt);
8403 // loop on pseudoexperients and generate the two histograms h1Expt and h2Expt according to the
8404 // parent distribution. In case the parent distribution is not an histogram but a function randomize only one
8405 // histogram
8406 for (Int_t i=0; i < nEXPT; i++) {
8407 if (!afunc1) {
8408 h1Expt.Reset();
8409 h1Expt.FillRandom(&hparent, (Int_t)esum1);
8410 }
8411 if (!afunc2) {
8412 h2Expt.Reset();
8413 h2Expt.FillRandom(&hparent, (Int_t)esum2);
8414 }
8415 // note we cannot have both afunc1 and afunc2 to be true
8416 if (afunc1)
8417 dSEXPT = hparent.KolmogorovTest(&h2Expt,"M");
8418 else if (afunc2)
8419 dSEXPT = hparent.KolmogorovTest(&h1Expt,"M");
8420 else
8421 dSEXPT = h1Expt.KolmogorovTest(&h2Expt,"M");
8422 // count number of cases toy KS distance (TS) is larger than oberved one
8423 if (dSEXPT>dfmax) prb3 += 1.0;
8424 }
8425 // compute p-value
8426 prb3 /= (Double_t)nEXPT;
8427 }
8428
8429
8430 // debug printout
8431 if (opt.Contains("D")) {
8432 printf(" Kolmo Prob h1 = %s, sum bin content =%g effective entries =%g\n",h1->GetName(),sum1,esum1);
8433 printf(" Kolmo Prob h2 = %s, sum bin content =%g effective entries =%g\n",h2->GetName(),sum2,esum2);
8434 printf(" Kolmo Prob = %g, Max Dist = %g\n",prob,dfmax);
8435 if (opt.Contains("N"))
8436 printf(" Kolmo Prob = %f for shape alone, =%f for normalisation alone\n",prb1,prb2);
8437 if (opt.Contains("X"))
8438 printf(" Kolmo Prob = %f with %d pseudo-experiments\n",prb3,nEXPT);
8439 }
8440 // This numerical error condition should never occur:
8441 if (TMath::Abs(rsum1-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h1=%s\n",h1->GetName());
8442 if (TMath::Abs(rsum2-1) > 0.002) Warning("KolmogorovTest","Numerical problems with h2=%s\n",h2->GetName());
8443
8444 if(opt.Contains("M")) return dfmax;
8445 else if(opt.Contains("X")) return prb3;
8446 else return prob;
8447}
8448
8449////////////////////////////////////////////////////////////////////////////////
8450/// Replace bin contents by the contents of array content
8451
8452void TH1::SetContent(const Double_t *content)
8453{
8454 fEntries = fNcells;
8455 fTsumw = 0;
8456 for (Int_t i = 0; i < fNcells; ++i) UpdateBinContent(i, content[i]);
8457}
8458
8459////////////////////////////////////////////////////////////////////////////////
8460/// Return contour values into array levels if pointer levels is non zero.
8461///
8462/// The function returns the number of contour levels.
8463/// see GetContourLevel to return one contour only
8464
8466{
8468 if (levels) {
8469 if (nlevels == 0) {
8470 nlevels = 20;
8472 } else {
8474 }
8475 for (Int_t level=0; level<nlevels; level++) levels[level] = fContour.fArray[level];
8476 }
8477 return nlevels;
8478}
8479
8480////////////////////////////////////////////////////////////////////////////////
8481/// Return value of contour number level.
8482/// Use GetContour to return the array of all contour levels
8483
8485{
8486 return (level >= 0 && level < fContour.fN) ? fContour.fArray[level] : 0.0;
8487}
8488
8489////////////////////////////////////////////////////////////////////////////////
8490/// Return the value of contour number "level" in Pad coordinates.
8491/// ie: if the Pad is in log scale along Z it returns le log of the contour level
8492/// value. See GetContour to return the array of all contour levels
8493
8495{
8496 if (level <0 || level >= fContour.fN) return 0;
8497 Double_t zlevel = fContour.fArray[level];
8498
8499 // In case of user defined contours and Pad in log scale along Z,
8500 // fContour.fArray doesn't contain the log of the contour whereas it does
8501 // in case of equidistant contours.
8502 if (gPad && gPad->GetLogz() && TestBit(kUserContour)) {
8503 if (zlevel <= 0) return 0;
8505 }
8506 return zlevel;
8507}
8508
8509////////////////////////////////////////////////////////////////////////////////
8510/// Set the maximum number of entries to be kept in the buffer.
8511
8512void TH1::SetBuffer(Int_t bufsize, Option_t * /*option*/)
8513{
8514 if (fBuffer) {
8515 BufferEmpty();
8516 delete [] fBuffer;
8517 fBuffer = nullptr;
8518 }
8519 if (bufsize <= 0) {
8520 fBufferSize = 0;
8521 return;
8522 }
8523 if (bufsize < 100) bufsize = 100;
8524 fBufferSize = 1 + bufsize*(fDimension+1);
8526 memset(fBuffer, 0, sizeof(Double_t)*fBufferSize);
8527}
8528
8529////////////////////////////////////////////////////////////////////////////////
8530/// Set the number and values of contour levels.
8531///
8532/// By default the number of contour levels is set to 20. The contours values
8533/// in the array "levels" should be specified in increasing order.
8534///
8535/// if argument levels = 0 or missing, equidistant contours are computed
8536
8538{
8539 Int_t level;
8541 if (nlevels <=0 ) {
8542 fContour.Set(0);
8543 return;
8544 }
8546
8547 // - Contour levels are specified
8548 if (levels) {
8550 for (level=0; level<nlevels; level++) fContour.fArray[level] = levels[level];
8551 } else {
8552 // - contour levels are computed automatically as equidistant contours
8553 Double_t zmin = GetMinimum();
8554 Double_t zmax = GetMaximum();
8555 if ((zmin == zmax) && (zmin != 0)) {
8556 zmax += 0.01*TMath::Abs(zmax);
8557 zmin -= 0.01*TMath::Abs(zmin);
8558 }
8559 Double_t dz = (zmax-zmin)/Double_t(nlevels);
8560 if (gPad && gPad->GetLogz()) {
8561 if (zmax <= 0) return;
8562 if (zmin <= 0) zmin = 0.001*zmax;
8563 zmin = TMath::Log10(zmin);
8564 zmax = TMath::Log10(zmax);
8565 dz = (zmax-zmin)/Double_t(nlevels);
8566 }
8567 for (level=0; level<nlevels; level++) {
8568 fContour.fArray[level] = zmin + dz*Double_t(level);
8569 }
8570 }
8571}
8572
8573////////////////////////////////////////////////////////////////////////////////
8574/// Set value for one contour level.
8575
8577{
8578 if (level < 0 || level >= fContour.fN) return;
8580 fContour.fArray[level] = value;
8581}
8582
8583////////////////////////////////////////////////////////////////////////////////
8584/// Return maximum value smaller than maxval of bins in the range,
8585/// unless the value has been overridden by TH1::SetMaximum,
8586/// in which case it returns that value. This happens, for example,
8587/// when the histogram is drawn and the y or z axis limits are changed
8588///
8589/// To get the maximum value of bins in the histogram regardless of
8590/// whether the value has been overridden (using TH1::SetMaximum), use
8591///
8592/// ~~~ {.cpp}
8593/// h->GetBinContent(h->GetMaximumBin())
8594/// ~~~
8595///
8596/// TH1::GetMaximumBin can be used to get the location of the maximum
8597/// value.
8598
8600{
8601 if (fMaximum != -1111) return fMaximum;
8602
8603 // empty the buffer
8604 if (fBuffer) ((TH1*)this)->BufferEmpty();
8605
8606 Int_t bin, binx, biny, binz;
8607 Int_t xfirst = fXaxis.GetFirst();
8608 Int_t xlast = fXaxis.GetLast();
8609 Int_t yfirst = fYaxis.GetFirst();
8610 Int_t ylast = fYaxis.GetLast();
8611 Int_t zfirst = fZaxis.GetFirst();
8612 Int_t zlast = fZaxis.GetLast();
8614 for (binz=zfirst;binz<=zlast;binz++) {
8615 for (biny=yfirst;biny<=ylast;biny++) {
8616 for (binx=xfirst;binx<=xlast;binx++) {
8617 bin = GetBin(binx,biny,binz);
8619 if (value > maximum && value < maxval) maximum = value;
8620 }
8621 }
8622 }
8623 return maximum;
8624}
8625
8626////////////////////////////////////////////////////////////////////////////////
8627/// Return location of bin with maximum value in the range.
8628///
8629/// TH1::GetMaximum can be used to get the maximum value.
8630
8632{
8635}
8636
8637////////////////////////////////////////////////////////////////////////////////
8638/// Return location of bin with maximum value in the range.
8639
8641{
8642 // empty the buffer
8643 if (fBuffer) ((TH1*)this)->BufferEmpty();
8644
8645 Int_t bin, binx, biny, binz;
8646 Int_t locm;
8647 Int_t xfirst = fXaxis.GetFirst();
8648 Int_t xlast = fXaxis.GetLast();
8649 Int_t yfirst = fYaxis.GetFirst();
8650 Int_t ylast = fYaxis.GetLast();
8651 Int_t zfirst = fZaxis.GetFirst();
8652 Int_t zlast = fZaxis.GetLast();
8654 locm = locmax = locmay = locmaz = 0;
8655 for (binz=zfirst;binz<=zlast;binz++) {
8656 for (biny=yfirst;biny<=ylast;biny++) {
8657 for (binx=xfirst;binx<=xlast;binx++) {
8658 bin = GetBin(binx,biny,binz);
8660 if (value > maximum) {
8661 maximum = value;
8662 locm = bin;
8663 locmax = binx;
8664 locmay = biny;
8665 locmaz = binz;
8666 }
8667 }
8668 }
8669 }
8670 return locm;
8671}
8672
8673////////////////////////////////////////////////////////////////////////////////
8674/// Return minimum value larger than minval of bins in the range,
8675/// unless the value has been overridden by TH1::SetMinimum,
8676/// in which case it returns that value. This happens, for example,
8677/// when the histogram is drawn and the y or z axis limits are changed
8678///
8679/// To get the minimum value of bins in the histogram regardless of
8680/// whether the value has been overridden (using TH1::SetMinimum), use
8681///
8682/// ~~~ {.cpp}
8683/// h->GetBinContent(h->GetMinimumBin())
8684/// ~~~
8685///
8686/// TH1::GetMinimumBin can be used to get the location of the
8687/// minimum value.
8688
8690{
8691 if (fMinimum != -1111) return fMinimum;
8692
8693 // empty the buffer
8694 if (fBuffer) ((TH1*)this)->BufferEmpty();
8695
8696 Int_t bin, binx, biny, binz;
8697 Int_t xfirst = fXaxis.GetFirst();
8698 Int_t xlast = fXaxis.GetLast();
8699 Int_t yfirst = fYaxis.GetFirst();
8700 Int_t ylast = fYaxis.GetLast();
8701 Int_t zfirst = fZaxis.GetFirst();
8702 Int_t zlast = fZaxis.GetLast();
8704 for (binz=zfirst;binz<=zlast;binz++) {
8705 for (biny=yfirst;biny<=ylast;biny++) {
8706 for (binx=xfirst;binx<=xlast;binx++) {
8707 bin = GetBin(binx,biny,binz);
8710 }
8711 }
8712 }
8713 return minimum;
8714}
8715
8716////////////////////////////////////////////////////////////////////////////////
8717/// Return location of bin with minimum value in the range.
8718
8720{
8723}
8724
8725////////////////////////////////////////////////////////////////////////////////
8726/// Return location of bin with minimum value in the range.
8727
8729{
8730 // empty the buffer
8731 if (fBuffer) ((TH1*)this)->BufferEmpty();
8732
8733 Int_t bin, binx, biny, binz;
8734 Int_t locm;
8735 Int_t xfirst = fXaxis.GetFirst();
8736 Int_t xlast = fXaxis.GetLast();
8737 Int_t yfirst = fYaxis.GetFirst();
8738 Int_t ylast = fYaxis.GetLast();
8739 Int_t zfirst = fZaxis.GetFirst();
8740 Int_t zlast = fZaxis.GetLast();
8742 locm = locmix = locmiy = locmiz = 0;
8743 for (binz=zfirst;binz<=zlast;binz++) {
8744 for (biny=yfirst;biny<=ylast;biny++) {
8745 for (binx=xfirst;binx<=xlast;binx++) {
8746 bin = GetBin(binx,biny,binz);
8748 if (value < minimum) {
8749 minimum = value;
8750 locm = bin;
8751 locmix = binx;
8752 locmiy = biny;
8753 locmiz = binz;
8754 }
8755 }
8756 }
8757 }
8758 return locm;
8759}
8760
8761///////////////////////////////////////////////////////////////////////////////
8762/// Retrieve the minimum and maximum values in the histogram
8763///
8764/// This will not return a cached value and will always search the
8765/// histogram for the min and max values. The user can condition whether
8766/// or not to call this with the GetMinimumStored() and GetMaximumStored()
8767/// methods. If the cache is empty, then the value will be -1111. Users
8768/// can then use the SetMinimum() or SetMaximum() methods to cache the results.
8769/// For example, the following recipe will make efficient use of this method
8770/// and the cached minimum and maximum values.
8771//
8772/// \code{.cpp}
8773/// Double_t currentMin = pHist->GetMinimumStored();
8774/// Double_t currentMax = pHist->GetMaximumStored();
8775/// if ((currentMin == -1111) || (currentMax == -1111)) {
8776/// pHist->GetMinimumAndMaximum(currentMin, currentMax);
8777/// pHist->SetMinimum(currentMin);
8778/// pHist->SetMaximum(currentMax);
8779/// }
8780/// \endcode
8781///
8782/// \param min reference to variable that will hold found minimum value
8783/// \param max reference to variable that will hold found maximum value
8784
8785void TH1::GetMinimumAndMaximum(Double_t& min, Double_t& max) const
8786{
8787 // empty the buffer
8788 if (fBuffer) ((TH1*)this)->BufferEmpty();
8789
8790 Int_t bin, binx, biny, binz;
8791 Int_t xfirst = fXaxis.GetFirst();
8792 Int_t xlast = fXaxis.GetLast();
8793 Int_t yfirst = fYaxis.GetFirst();
8794 Int_t ylast = fYaxis.GetLast();
8795 Int_t zfirst = fZaxis.GetFirst();
8796 Int_t zlast = fZaxis.GetLast();
8797 min=TMath::Infinity();
8798 max=-TMath::Infinity();
8800 for (binz=zfirst;binz<=zlast;binz++) {
8801 for (biny=yfirst;biny<=ylast;biny++) {
8802 for (binx=xfirst;binx<=xlast;binx++) {
8803 bin = GetBin(binx,biny,binz);
8805 if (value < min) min = value;
8806 if (value > max) max = value;
8807 }
8808 }
8809 }
8810}
8811
8812////////////////////////////////////////////////////////////////////////////////
8813/// Redefine x axis parameters.
8814///
8815/// The X axis parameters are modified.
8816/// The bins content array is resized
8817/// if errors (Sumw2) the errors array is resized
8818/// The previous bin contents are lost
8819/// To change only the axis limits, see TAxis::SetRange
8820
8822{
8823 if (GetDimension() != 1) {
8824 Error("SetBins","Operation only valid for 1-d histograms");
8825 return;
8826 }
8827 fXaxis.SetRange(0,0);
8829 fYaxis.Set(1,0,1);
8830 fZaxis.Set(1,0,1);
8831 fNcells = nx+2;
8833 if (fSumw2.fN) {
8835 }
8836}
8837
8838////////////////////////////////////////////////////////////////////////////////
8839/// Redefine x axis parameters with variable bin sizes.
8840///
8841/// The X axis parameters are modified.
8842/// The bins content array is resized
8843/// if errors (Sumw2) the errors array is resized
8844/// The previous bin contents are lost
8845/// To change only the axis limits, see TAxis::SetRange
8846/// xBins is supposed to be of length nx+1
8847
8848void TH1::SetBins(Int_t nx, const Double_t *xBins)
8849{
8850 if (GetDimension() != 1) {
8851 Error("SetBins","Operation only valid for 1-d histograms");
8852 return;
8853 }
8854 fXaxis.SetRange(0,0);
8855 fXaxis.Set(nx,xBins);
8856 fYaxis.Set(1,0,1);
8857 fZaxis.Set(1,0,1);
8858 fNcells = nx+2;
8860 if (fSumw2.fN) {
8862 }
8863}
8864
8865////////////////////////////////////////////////////////////////////////////////
8866/// Redefine x and y axis parameters.
8867///
8868/// The X and Y axis parameters are modified.
8869/// The bins content array is resized
8870/// if errors (Sumw2) the errors array is resized
8871/// The previous bin contents are lost
8872/// To change only the axis limits, see TAxis::SetRange
8873
8875{
8876 if (GetDimension() != 2) {
8877 Error("SetBins","Operation only valid for 2-D histograms");
8878 return;
8879 }
8880 fXaxis.SetRange(0,0);
8881 fYaxis.SetRange(0,0);
8884 fZaxis.Set(1,0,1);
8885 fNcells = (nx+2)*(ny+2);
8887 if (fSumw2.fN) {
8889 }
8890}
8891
8892////////////////////////////////////////////////////////////////////////////////
8893/// Redefine x and y axis parameters with variable bin sizes.
8894///
8895/// The X and Y axis parameters are modified.
8896/// The bins content array is resized
8897/// if errors (Sumw2) the errors array is resized
8898/// The previous bin contents are lost
8899/// To change only the axis limits, see TAxis::SetRange
8900/// xBins is supposed to be of length nx+1, yBins is supposed to be of length ny+1
8901
8902void TH1::SetBins(Int_t nx, const Double_t *xBins, Int_t ny, const Double_t *yBins)
8903{
8904 if (GetDimension() != 2) {
8905 Error("SetBins","Operation only valid for 2-D histograms");
8906 return;
8907 }
8908 fXaxis.SetRange(0,0);
8909 fYaxis.SetRange(0,0);
8910 fXaxis.Set(nx,xBins);
8911 fYaxis.Set(ny,yBins);
8912 fZaxis.Set(1,0,1);
8913 fNcells = (nx+2)*(ny+2);
8915 if (fSumw2.fN) {
8917 }
8918}
8919
8920////////////////////////////////////////////////////////////////////////////////
8921/// Redefine x, y and z axis parameters.
8922///
8923/// The X, Y and Z axis parameters are modified.
8924/// The bins content array is resized
8925/// if errors (Sumw2) the errors array is resized
8926/// The previous bin contents are lost
8927/// To change only the axis limits, see TAxis::SetRange
8928
8930{
8931 if (GetDimension() != 3) {
8932 Error("SetBins","Operation only valid for 3-D histograms");
8933 return;
8934 }
8935 fXaxis.SetRange(0,0);
8936 fYaxis.SetRange(0,0);
8937 fZaxis.SetRange(0,0);
8940 fZaxis.Set(nz,zmin,zmax);
8941 fNcells = (nx+2)*(ny+2)*(nz+2);
8943 if (fSumw2.fN) {
8945 }
8946}
8947
8948////////////////////////////////////////////////////////////////////////////////
8949/// Redefine x, y and z axis parameters with variable bin sizes.
8950///
8951/// The X, Y and Z axis parameters are modified.
8952/// The bins content array is resized
8953/// if errors (Sumw2) the errors array is resized
8954/// The previous bin contents are lost
8955/// To change only the axis limits, see TAxis::SetRange
8956/// xBins is supposed to be of length nx+1, yBins is supposed to be of length ny+1,
8957/// zBins is supposed to be of length nz+1
8958
8959void TH1::SetBins(Int_t nx, const Double_t *xBins, Int_t ny, const Double_t *yBins, Int_t nz, const Double_t *zBins)
8960{
8961 if (GetDimension() != 3) {
8962 Error("SetBins","Operation only valid for 3-D histograms");
8963 return;
8964 }
8965 fXaxis.SetRange(0,0);
8966 fYaxis.SetRange(0,0);
8967 fZaxis.SetRange(0,0);
8968 fXaxis.Set(nx,xBins);
8969 fYaxis.Set(ny,yBins);
8970 fZaxis.Set(nz,zBins);
8971 fNcells = (nx+2)*(ny+2)*(nz+2);
8973 if (fSumw2.fN) {
8975 }
8976}
8977
8978////////////////////////////////////////////////////////////////////////////////
8979/// By default, when a histogram is created, it is added to the list
8980/// of histogram objects in the current directory in memory.
8981/// Remove reference to this histogram from current directory and add
8982/// reference to new directory dir. dir can be 0 in which case the
8983/// histogram does not belong to any directory.
8984///
8985/// Note that the directory is not a real property of the histogram and
8986/// it will not be copied when the histogram is copied or cloned.
8987/// If the user wants to have the copied (cloned) histogram in the same
8988/// directory, he needs to set again the directory using SetDirectory to the
8989/// copied histograms
8990
8992{
8993 if (fDirectory == dir) return;
8994 if (fDirectory) fDirectory->Remove(this);
8995 fDirectory = dir;
8996 if (fDirectory) {
8998 fDirectory->Append(this);
8999 }
9000}
9001
9002////////////////////////////////////////////////////////////////////////////////
9003/// Replace bin errors by values in array error.
9004
9005void TH1::SetError(const Double_t *error)
9006{
9007 for (Int_t i = 0; i < fNcells; ++i) SetBinError(i, error[i]);
9008}
9009
9010////////////////////////////////////////////////////////////////////////////////
9011/// Change the name of this histogram
9013
9014void TH1::SetName(const char *name)
9015{
9016 // Histograms are named objects in a THashList.
9017 // We must update the hashlist if we change the name
9018 // We protect this operation
9020 if (fDirectory) fDirectory->Remove(this);
9021 fName = name;
9022 if (fDirectory) fDirectory->Append(this);
9023}
9024
9025////////////////////////////////////////////////////////////////////////////////
9026/// Change the name and title of this histogram
9027
9028void TH1::SetNameTitle(const char *name, const char *title)
9029{
9030 // Histograms are named objects in a THashList.
9031 // We must update the hashlist if we change the name
9032 SetName(name);
9033 SetTitle(title);
9034}
9035
9036////////////////////////////////////////////////////////////////////////////////
9037/// Set statistics option on/off.
9038///
9039/// By default, the statistics box is drawn.
9040/// The paint options can be selected via gStyle->SetOptStat.
9041/// This function sets/resets the kNoStats bit in the histogram object.
9042/// It has priority over the Style option.
9043
9044void TH1::SetStats(Bool_t stats)
9045{
9047 if (!stats) {
9049 //remove the "stats" object from the list of functions
9050 if (fFunctions) {
9051 TObject *obj = fFunctions->FindObject("stats");
9052 if (obj) {
9053 fFunctions->Remove(obj);
9054 delete obj;
9055 }
9056 }
9057 }
9058}
9059
9060////////////////////////////////////////////////////////////////////////////////
9061/// Create structure to store sum of squares of weights.
9062///
9063/// if histogram is already filled, the sum of squares of weights
9064/// is filled with the existing bin contents
9065///
9066/// The error per bin will be computed as sqrt(sum of squares of weight)
9067/// for each bin.
9068///
9069/// This function is automatically called when the histogram is created
9070/// if the static function TH1::SetDefaultSumw2 has been called before.
9071/// If flag = false the structure containing the sum of the square of weights
9072/// is rest and it will be empty, but it is not deleted (i.e. GetSumw2()->fN = 0)
9073
9075{
9076 if (!flag) {
9077 // clear the array if existing - do nothing otherwise
9078 if (fSumw2.fN > 0 ) fSumw2.Set(0);
9079 return;
9080 }
9081
9082 if (fSumw2.fN == fNcells) {
9083 if (!fgDefaultSumw2 )
9084 Warning("Sumw2","Sum of squares of weights structure already created");
9085 return;
9086 }
9087
9089
9090 if (fEntries > 0)
9091 for (Int_t i = 0; i < fNcells; ++i)
9093}
9094
9095////////////////////////////////////////////////////////////////////////////////
9096/// Return pointer to function with name.
9097///
9098///
9099/// Functions such as TH1::Fit store the fitted function in the list of
9100/// functions of this histogram.
9101
9102TF1 *TH1::GetFunction(const char *name) const
9103{
9104 return (TF1*)fFunctions->FindObject(name);
9105}
9106
9107////////////////////////////////////////////////////////////////////////////////
9108/// Return value of error associated to bin number bin.
9109///
9110/// if the sum of squares of weights has been defined (via Sumw2),
9111/// this function returns the sqrt(sum of w2).
9112/// otherwise it returns the sqrt(contents) for this bin.
9113
9115{
9116 if (bin < 0) bin = 0;
9117 if (bin >= fNcells) bin = fNcells-1;
9118 if (fBuffer) ((TH1*)this)->BufferEmpty();
9119 if (fSumw2.fN) return TMath::Sqrt(fSumw2.fArray[bin]);
9120
9122}
9123
9124////////////////////////////////////////////////////////////////////////////////
9125/// Return lower error associated to bin number bin.
9126///
9127/// The error will depend on the statistic option used will return
9128/// the binContent - lower interval value
9129
9131{
9132 if (fBinStatErrOpt == kNormal) return GetBinError(bin);
9133 // in case of weighted histogram check if it is really weighted
9134 if (fSumw2.fN && fTsumw != fTsumw2) return GetBinError(bin);
9135
9136 if (bin < 0) bin = 0;
9137 if (bin >= fNcells) bin = fNcells-1;
9138 if (fBuffer) ((TH1*)this)->BufferEmpty();
9139
9140 Double_t alpha = 1.- 0.682689492;
9141 if (fBinStatErrOpt == kPoisson2) alpha = 0.05;
9142
9144 Int_t n = int(c);
9145 if (n < 0) {
9146 Warning("GetBinErrorLow","Histogram has negative bin content-force usage to normal errors");
9147 ((TH1*)this)->fBinStatErrOpt = kNormal;
9148 return GetBinError(bin);
9149 }
9150
9151 if (n == 0) return 0;
9152 return c - ROOT::Math::gamma_quantile( alpha/2, n, 1.);
9153}
9154
9155////////////////////////////////////////////////////////////////////////////////
9156/// Return upper error associated to bin number bin.
9157///
9158/// The error will depend on the statistic option used will return
9159/// the binContent - upper interval value
9160
9162{
9163 if (fBinStatErrOpt == kNormal) return GetBinError(bin);
9164 // in case of weighted histogram check if it is really weighted
9165 if (fSumw2.fN && fTsumw != fTsumw2) return GetBinError(bin);
9166 if (bin < 0) bin = 0;
9167 if (bin >= fNcells) bin = fNcells-1;
9168 if (fBuffer) ((TH1*)this)->BufferEmpty();
9169
9170 Double_t alpha = 1.- 0.682689492;
9171 if (fBinStatErrOpt == kPoisson2) alpha = 0.05;
9172
9174 Int_t n = int(c);
9175 if (n < 0) {
9176 Warning("GetBinErrorUp","Histogram has negative bin content-force usage to normal errors");
9177 ((TH1*)this)->fBinStatErrOpt = kNormal;
9178 return GetBinError(bin);
9179 }
9180
9181 // for N==0 return an upper limit at 0.68 or (1-alpha)/2 ?
9182 // decide to return always (1-alpha)/2 upper interval
9183 //if (n == 0) return ROOT::Math::gamma_quantile_c(alpha,n+1,1);
9184 return ROOT::Math::gamma_quantile_c( alpha/2, n+1, 1) - c;
9185}
9186
9187//L.M. These following getters are useless and should be probably deprecated
9188////////////////////////////////////////////////////////////////////////////////
9189/// Return bin center for 1D histogram.
9190/// Better to use h1.GetXaxis()->GetBinCenter(bin)
9191
9193{
9194 if (fDimension == 1) return fXaxis.GetBinCenter(bin);
9195 Error("GetBinCenter","Invalid method for a %d-d histogram - return a NaN",fDimension);
9196 return TMath::QuietNaN();
9197}
9198
9199////////////////////////////////////////////////////////////////////////////////
9200/// Return bin lower edge for 1D histogram.
9201/// Better to use h1.GetXaxis()->GetBinLowEdge(bin)
9202
9204{
9205 if (fDimension == 1) return fXaxis.GetBinLowEdge(bin);
9206 Error("GetBinLowEdge","Invalid method for a %d-d histogram - return a NaN",fDimension);
9207 return TMath::QuietNaN();
9208}
9209
9210////////////////////////////////////////////////////////////////////////////////
9211/// Return bin width for 1D histogram.
9212/// Better to use h1.GetXaxis()->GetBinWidth(bin)
9213
9215{
9216 if (fDimension == 1) return fXaxis.GetBinWidth(bin);
9217 Error("GetBinWidth","Invalid method for a %d-d histogram - return a NaN",fDimension);
9218 return TMath::QuietNaN();
9219}
9220
9221////////////////////////////////////////////////////////////////////////////////
9222/// Fill array with center of bins for 1D histogram
9223/// Better to use h1.GetXaxis()->GetCenter(center)
9224
9225void TH1::GetCenter(Double_t *center) const
9226{
9227 if (fDimension == 1) {
9228 fXaxis.GetCenter(center);
9229 return;
9230 }
9231 Error("GetCenter","Invalid method for a %d-d histogram ",fDimension);
9232}
9233
9234////////////////////////////////////////////////////////////////////////////////
9235/// Fill array with low edge of bins for 1D histogram
9236/// Better to use h1.GetXaxis()->GetLowEdge(edge)
9237
9238void TH1::GetLowEdge(Double_t *edge) const
9239{
9240 if (fDimension == 1) {
9242 return;
9243 }
9244 Error("GetLowEdge","Invalid method for a %d-d histogram ",fDimension);
9245}
9246
9247////////////////////////////////////////////////////////////////////////////////
9248/// Set the bin Error
9249/// Note that this resets the bin eror option to be of Normal Type and for the
9250/// non-empty bin the bin error is set by default to the square root of their content.
9251/// Note that in case the user sets after calling SetBinError explicitly a new bin content (e.g. using SetBinContent)
9252/// he needs then to provide also the corresponding bin error (using SetBinError) since the bin error
9253/// will not be recalculated after setting the content and a default error = 0 will be used for those bins.
9254///
9255/// See convention for numbering bins in TH1::GetBin
9256
9257void TH1::SetBinError(Int_t bin, Double_t error)
9258{
9259 if (bin < 0 || bin>= fNcells) return;
9260 if (!fSumw2.fN) Sumw2();
9261 fSumw2.fArray[bin] = error * error;
9262 // reset the bin error option
9264}
9265
9266////////////////////////////////////////////////////////////////////////////////
9267/// Set bin content
9268/// see convention for numbering bins in TH1::GetBin
9269/// In case the bin number is greater than the number of bins and
9270/// the timedisplay option is set or CanExtendAllAxes(),
9271/// the number of bins is automatically doubled to accommodate the new bin
9272
9274{
9275 fEntries++;
9276 fTsumw = 0;
9277 if (bin < 0) return;
9278 if (bin >= fNcells-1) {
9280 while (bin >= fNcells-1) LabelsInflate();
9281 } else {
9282 if (bin == fNcells-1) UpdateBinContent(bin, content);
9283 return;
9284 }
9285 }
9287}
9288
9289////////////////////////////////////////////////////////////////////////////////
9290/// See convention for numbering bins in TH1::GetBin
9291
9293{
9294 if (binx < 0 || binx > fXaxis.GetNbins() + 1) return;
9295 if (biny < 0 || biny > fYaxis.GetNbins() + 1) return;
9296 SetBinError(GetBin(binx, biny), error);
9297}
9298
9299////////////////////////////////////////////////////////////////////////////////
9300/// See convention for numbering bins in TH1::GetBin
9301
9303{
9304 if (binx < 0 || binx > fXaxis.GetNbins() + 1) return;
9305 if (biny < 0 || biny > fYaxis.GetNbins() + 1) return;
9306 if (binz < 0 || binz > fZaxis.GetNbins() + 1) return;
9307 SetBinError(GetBin(binx, biny, binz), error);
9308}
9309
9310////////////////////////////////////////////////////////////////////////////////
9311/// This function calculates the background spectrum in this histogram.
9312/// The background is returned as a histogram.
9313///
9314/// \param[in] niter number of iterations (default value = 2)
9315/// Increasing niter make the result smoother and lower.
9316/// \param[in] option may contain one of the following options
9317/// - to set the direction parameter
9318/// "BackDecreasingWindow". By default the direction is BackIncreasingWindow
9319/// - filterOrder-order of clipping filter (default "BackOrder2")
9320/// possible values= "BackOrder4" "BackOrder6" "BackOrder8"
9321/// - "nosmoothing" - if selected, the background is not smoothed
9322/// By default the background is smoothed.
9323/// - smoothWindow - width of smoothing window, (default is "BackSmoothing3")
9324/// possible values= "BackSmoothing5" "BackSmoothing7" "BackSmoothing9"
9325/// "BackSmoothing11" "BackSmoothing13" "BackSmoothing15"
9326/// - "nocompton" - if selected the estimation of Compton edge
9327/// will be not be included (by default the compton estimation is set)
9328/// - "same" if this option is specified, the resulting background
9329/// histogram is superimposed on the picture in the current pad.
9330/// This option is given by default.
9331///
9332/// NOTE that the background is only evaluated in the current range of this histogram.
9333/// i.e., if this has a bin range (set via h->GetXaxis()->SetRange(binmin, binmax),
9334/// the returned histogram will be created with the same number of bins
9335/// as this input histogram, but only bins from binmin to binmax will be filled
9336/// with the estimated background.
9337
9339{
9340 return (TH1*)gROOT->ProcessLineFast(TString::Format("TSpectrum::StaticBackground((TH1*)0x%zx,%d,\"%s\")",
9341 (size_t)this, niter, option).Data());
9342}
9343
9344////////////////////////////////////////////////////////////////////////////////
9345/// Interface to TSpectrum::Search.
9346/// The function finds peaks in this histogram where the width is > sigma
9347/// and the peak maximum greater than threshold*maximum bin content of this.
9348/// For more details see TSpectrum::Search.
9349/// Note the difference in the default value for option compared to TSpectrum::Search
9350/// option="" by default (instead of "goff").
9351
9353{
9354 return (Int_t)gROOT->ProcessLineFast(TString::Format("TSpectrum::StaticSearch((TH1*)0x%zx,%g,\"%s\",%g)",
9355 (size_t)this, sigma, option, threshold).Data());
9356}
9357
9358////////////////////////////////////////////////////////////////////////////////
9359/// For a given transform (first parameter), fills the histogram (second parameter)
9360/// with the transform output data, specified in the third parameter
9361/// If the 2nd parameter h_output is empty, a new histogram (TH1D or TH2D) is created
9362/// and the user is responsible for deleting it.
9363///
9364/// Available options:
9365/// - "RE" - real part of the output
9366/// - "IM" - imaginary part of the output
9367/// - "MAG" - magnitude of the output
9368/// - "PH" - phase of the output
9369
9371{
9372 if (!fft || !fft->GetN() ) {
9373 ::Error("TransformHisto","Invalid FFT transform class");
9374 return nullptr;
9375 }
9376
9377 if (fft->GetNdim()>2){
9378 ::Error("TransformHisto","Only 1d and 2D transform are supported");
9379 return nullptr;
9380 }
9381 Int_t binx,biny;
9382 TString opt = option;
9383 opt.ToUpper();
9384 Int_t *n = fft->GetN();
9385 TH1 *hout=nullptr;
9386 if (h_output) {
9387 hout = h_output;
9388 }
9389 else {
9390 TString name = TString::Format("out_%s", opt.Data());
9391 if (fft->GetNdim()==1)
9392 hout = new TH1D(name, name,n[0], 0, n[0]);
9393 else if (fft->GetNdim()==2)
9394 hout = new TH2D(name, name, n[0], 0, n[0], n[1], 0, n[1]);
9395 }
9396 R__ASSERT(hout != nullptr);
9397 TString type=fft->GetType();
9398 Int_t ind[2];
9399 if (opt.Contains("RE")){
9400 if (type.Contains("2C") || type.Contains("2HC")) {
9401 Double_t re, im;
9402 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9403 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9404 ind[0] = binx-1; ind[1] = biny-1;
9405 fft->GetPointComplex(ind, re, im);
9406 hout->SetBinContent(binx, biny, re);
9407 }
9408 }
9409 } else {
9410 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9411 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9412 ind[0] = binx-1; ind[1] = biny-1;
9413 hout->SetBinContent(binx, biny, fft->GetPointReal(ind));
9414 }
9415 }
9416 }
9417 }
9418 if (opt.Contains("IM")) {
9419 if (type.Contains("2C") || type.Contains("2HC")) {
9420 Double_t re, im;
9421 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9422 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9423 ind[0] = binx-1; ind[1] = biny-1;
9424 fft->GetPointComplex(ind, re, im);
9425 hout->SetBinContent(binx, biny, im);
9426 }
9427 }
9428 } else {
9429 ::Error("TransformHisto","No complex numbers in the output");
9430 return nullptr;
9431 }
9432 }
9433 if (opt.Contains("MA")) {
9434 if (type.Contains("2C") || type.Contains("2HC")) {
9435 Double_t re, im;
9436 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9437 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9438 ind[0] = binx-1; ind[1] = biny-1;
9439 fft->GetPointComplex(ind, re, im);
9440 hout->SetBinContent(binx, biny, TMath::Sqrt(re*re + im*im));
9441 }
9442 }
9443 } else {
9444 for (binx = 1; binx<=hout->GetNbinsX(); binx++) {
9445 for (biny=1; biny<=hout->GetNbinsY(); biny++) {
9446 ind[0] = binx-1; ind[1] = biny-1;
9447 hout->SetBinContent(binx, biny, TMath::Abs(fft->GetPointReal(ind)));
9448 }
9449 }
9450 }
9451 }
9452 if (opt.Contains("PH")) {
9453 if (type.Contains("2C") || type.Contains("2HC")){
9454 Double_t re, im, ph;
9455 for (binx = 1; binx<=hout->GetNbinsX(); binx++){
9456 for (biny=1; biny<=hout->GetNbinsY(); biny++){
9457 ind[0] = binx-1; ind[1] = biny-1;
9458 fft->GetPointComplex(ind, re, im);
9459 if (TMath::Abs(re) > 1e-13){
9460 ph = TMath::ATan(im/re);
9461 //find the correct quadrant
9462 if (re<0 && im<0)
9463 ph -= TMath::Pi();
9464 if (re<0 && im>=0)
9465 ph += TMath::Pi();
9466 } else {
9467 if (TMath::Abs(im) < 1e-13)
9468 ph = 0;
9469 else if (im>0)
9470 ph = TMath::Pi()*0.5;
9471 else
9472 ph = -TMath::Pi()*0.5;
9473 }
9474 hout->SetBinContent(binx, biny, ph);
9475 }
9476 }
9477 } else {
9478 printf("Pure real output, no phase");
9479 return nullptr;
9480 }
9481 }
9482
9483 return hout;
9484}
9485
9486////////////////////////////////////////////////////////////////////////////////
9487/// Print value overload
9488
9489std::string cling::printValue(TH1 *val) {
9490 std::ostringstream strm;
9491 strm << cling::printValue((TObject*)val) << " NbinsX: " << val->GetNbinsX();
9492 return strm.str();
9493}
9494
9495//______________________________________________________________________________
9496// TH1C methods
9497// TH1C : histograms with one byte per channel. Maximum bin content = 127
9498//______________________________________________________________________________
9499
9500
9501////////////////////////////////////////////////////////////////////////////////
9502/// Constructor.
9503
9504TH1C::TH1C()
9505{
9506 fDimension = 1;
9507 SetBinsLength(3);
9508 if (fgDefaultSumw2) Sumw2();
9509}
9510
9511////////////////////////////////////////////////////////////////////////////////
9512/// Create a 1-Dim histogram with fix bins of type char (one byte per channel)
9513/// (see TH1::TH1 for explanation of parameters)
9514
9515TH1C::TH1C(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
9516: TH1(name,title,nbins,xlow,xup)
9517{
9518 fDimension = 1;
9520
9521 if (xlow >= xup) SetBuffer(fgBufferSize);
9522 if (fgDefaultSumw2) Sumw2();
9523}
9524
9525////////////////////////////////////////////////////////////////////////////////
9526/// Create a 1-Dim histogram with variable bins of type char (one byte per channel)
9527/// (see TH1::TH1 for explanation of parameters)
9528
9529TH1C::TH1C(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
9530: TH1(name,title,nbins,xbins)
9531{
9532 fDimension = 1;
9534 if (fgDefaultSumw2) Sumw2();
9535}
9536
9537////////////////////////////////////////////////////////////////////////////////
9538/// Create a 1-Dim histogram with variable bins of type char (one byte per channel)
9539/// (see TH1::TH1 for explanation of parameters)
9540
9541TH1C::TH1C(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
9542: TH1(name,title,nbins,xbins)
9543{
9544 fDimension = 1;
9546 if (fgDefaultSumw2) Sumw2();
9547}
9548
9549////////////////////////////////////////////////////////////////////////////////
9550/// Destructor.
9551
9553{
9554}
9555
9556////////////////////////////////////////////////////////////////////////////////
9557/// Copy constructor.
9558/// The list of functions is not copied. (Use Clone() if needed)
9559
9560TH1C::TH1C(const TH1C &h1c) : TH1(), TArrayC()
9561{
9562 h1c.TH1C::Copy(*this);
9563}
9564
9565////////////////////////////////////////////////////////////////////////////////
9566/// Increment bin content by 1.
9567/// Passing an out-of-range bin leads to undefined behavior
9568
9569void TH1C::AddBinContent(Int_t bin)
9570{
9571 if (fArray[bin] < 127) fArray[bin]++;
9572}
9573
9574////////////////////////////////////////////////////////////////////////////////
9575/// Increment bin content by w.
9576/// \warning The value of w is cast to `Int_t` before being added.
9577/// Passing an out-of-range bin leads to undefined behavior
9578
9580{
9581 Int_t newval = fArray[bin] + Int_t(w);
9582 if (newval > -128 && newval < 128) {fArray[bin] = Char_t(newval); return;}
9583 if (newval < -127) fArray[bin] = -127;
9584 if (newval > 127) fArray[bin] = 127;
9585}
9586
9587////////////////////////////////////////////////////////////////////////////////
9588/// Copy this to newth1
9589
9590void TH1C::Copy(TObject &newth1) const
9591{
9593}
9594
9595////////////////////////////////////////////////////////////////////////////////
9596/// Reset.
9597
9599{
9602}
9603
9604////////////////////////////////////////////////////////////////////////////////
9605/// Set total number of bins including under/overflow
9606/// Reallocate bin contents array
9607
9609{
9610 if (n < 0) n = fXaxis.GetNbins() + 2;
9611 fNcells = n;
9612 TArrayC::Set(n);
9613}
9614
9615////////////////////////////////////////////////////////////////////////////////
9616/// Operator =
9617
9618TH1C& TH1C::operator=(const TH1C &h1)
9619{
9620 if (this != &h1)
9621 h1.TH1C::Copy(*this);
9622 return *this;
9623}
9624
9625////////////////////////////////////////////////////////////////////////////////
9626/// Operator *
9627
9629{
9630 TH1C hnew = h1;
9631 hnew.Scale(c1);
9632 hnew.SetDirectory(nullptr);
9633 return hnew;
9634}
9635
9636////////////////////////////////////////////////////////////////////////////////
9637/// Operator +
9638
9639TH1C operator+(const TH1C &h1, const TH1C &h2)
9640{
9641 TH1C hnew = h1;
9642 hnew.Add(&h2,1);
9643 hnew.SetDirectory(nullptr);
9644 return hnew;
9645}
9646
9647////////////////////////////////////////////////////////////////////////////////
9648/// Operator -
9649
9650TH1C operator-(const TH1C &h1, const TH1C &h2)
9651{
9652 TH1C hnew = h1;
9653 hnew.Add(&h2,-1);
9654 hnew.SetDirectory(nullptr);
9655 return hnew;
9656}
9657
9658////////////////////////////////////////////////////////////////////////////////
9659/// Operator *
9660
9661TH1C operator*(const TH1C &h1, const TH1C &h2)
9662{
9663 TH1C hnew = h1;
9664 hnew.Multiply(&h2);
9665 hnew.SetDirectory(nullptr);
9666 return hnew;
9667}
9668
9669////////////////////////////////////////////////////////////////////////////////
9670/// Operator /
9671
9672TH1C operator/(const TH1C &h1, const TH1C &h2)
9673{
9674 TH1C hnew = h1;
9675 hnew.Divide(&h2);
9676 hnew.SetDirectory(nullptr);
9677 return hnew;
9678}
9679
9680//______________________________________________________________________________
9681// TH1S methods
9682// TH1S : histograms with one short per channel. Maximum bin content = 32767
9683//______________________________________________________________________________
9684
9685
9686////////////////////////////////////////////////////////////////////////////////
9687/// Constructor.
9688
9689TH1S::TH1S()
9690{
9691 fDimension = 1;
9692 SetBinsLength(3);
9693 if (fgDefaultSumw2) Sumw2();
9694}
9695
9696////////////////////////////////////////////////////////////////////////////////
9697/// Create a 1-Dim histogram with fix bins of type short
9698/// (see TH1::TH1 for explanation of parameters)
9699
9700TH1S::TH1S(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
9701: TH1(name,title,nbins,xlow,xup)
9702{
9703 fDimension = 1;
9705
9706 if (xlow >= xup) SetBuffer(fgBufferSize);
9707 if (fgDefaultSumw2) Sumw2();
9708}
9709
9710////////////////////////////////////////////////////////////////////////////////
9711/// Create a 1-Dim histogram with variable bins of type short
9712/// (see TH1::TH1 for explanation of parameters)
9713
9714TH1S::TH1S(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
9715: TH1(name,title,nbins,xbins)
9716{
9717 fDimension = 1;
9719 if (fgDefaultSumw2) Sumw2();
9720}
9721
9722////////////////////////////////////////////////////////////////////////////////
9723/// Create a 1-Dim histogram with variable bins of type short
9724/// (see TH1::TH1 for explanation of parameters)
9725
9726TH1S::TH1S(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
9727: TH1(name,title,nbins,xbins)
9728{
9729 fDimension = 1;
9731 if (fgDefaultSumw2) Sumw2();
9732}
9733
9734////////////////////////////////////////////////////////////////////////////////
9735/// Destructor.
9736
9738{
9739}
9740
9741////////////////////////////////////////////////////////////////////////////////
9742/// Copy constructor.
9743/// The list of functions is not copied. (Use Clone() if needed)
9744
9745TH1S::TH1S(const TH1S &h1s) : TH1(), TArrayS()
9746{
9747 h1s.TH1S::Copy(*this);
9748}
9749
9750////////////////////////////////////////////////////////////////////////////////
9751/// Increment bin content by 1.
9752/// Passing an out-of-range bin leads to undefined behavior
9753
9754void TH1S::AddBinContent(Int_t bin)
9755{
9756 if (fArray[bin] < 32767) fArray[bin]++;
9757}
9758
9759////////////////////////////////////////////////////////////////////////////////
9760/// Increment bin content by w.
9761/// \warning The value of w is cast to `Int_t` before being added.
9762/// Passing an out-of-range bin leads to undefined behavior
9763
9765{
9766 Int_t newval = fArray[bin] + Int_t(w);
9767 if (newval > -32768 && newval < 32768) {fArray[bin] = Short_t(newval); return;}
9768 if (newval < -32767) fArray[bin] = -32767;
9769 if (newval > 32767) fArray[bin] = 32767;
9770}
9771
9772////////////////////////////////////////////////////////////////////////////////
9773/// Copy this to newth1
9774
9775void TH1S::Copy(TObject &newth1) const
9776{
9778}
9779
9780////////////////////////////////////////////////////////////////////////////////
9781/// Reset.
9782
9784{
9787}
9788
9789////////////////////////////////////////////////////////////////////////////////
9790/// Set total number of bins including under/overflow
9791/// Reallocate bin contents array
9792
9794{
9795 if (n < 0) n = fXaxis.GetNbins() + 2;
9796 fNcells = n;
9797 TArrayS::Set(n);
9798}
9799
9800////////////////////////////////////////////////////////////////////////////////
9801/// Operator =
9802
9803TH1S& TH1S::operator=(const TH1S &h1)
9804{
9805 if (this != &h1)
9806 h1.TH1S::Copy(*this);
9807 return *this;
9808}
9809
9810////////////////////////////////////////////////////////////////////////////////
9811/// Operator *
9812
9814{
9815 TH1S hnew = h1;
9816 hnew.Scale(c1);
9817 hnew.SetDirectory(nullptr);
9818 return hnew;
9819}
9820
9821////////////////////////////////////////////////////////////////////////////////
9822/// Operator +
9823
9824TH1S operator+(const TH1S &h1, const TH1S &h2)
9825{
9826 TH1S hnew = h1;
9827 hnew.Add(&h2,1);
9828 hnew.SetDirectory(nullptr);
9829 return hnew;
9830}
9831
9832////////////////////////////////////////////////////////////////////////////////
9833/// Operator -
9834
9835TH1S operator-(const TH1S &h1, const TH1S &h2)
9836{
9837 TH1S hnew = h1;
9838 hnew.Add(&h2,-1);
9839 hnew.SetDirectory(nullptr);
9840 return hnew;
9841}
9842
9843////////////////////////////////////////////////////////////////////////////////
9844/// Operator *
9845
9846TH1S operator*(const TH1S &h1, const TH1S &h2)
9847{
9848 TH1S hnew = h1;
9849 hnew.Multiply(&h2);
9850 hnew.SetDirectory(nullptr);
9851 return hnew;
9852}
9853
9854////////////////////////////////////////////////////////////////////////////////
9855/// Operator /
9856
9857TH1S operator/(const TH1S &h1, const TH1S &h2)
9858{
9859 TH1S hnew = h1;
9860 hnew.Divide(&h2);
9861 hnew.SetDirectory(nullptr);
9862 return hnew;
9863}
9864
9865//______________________________________________________________________________
9866// TH1I methods
9867// TH1I : histograms with one int per channel. Maximum bin content = 2147483647
9868// 2147483647 = INT_MAX
9869//______________________________________________________________________________
9870
9871
9872////////////////////////////////////////////////////////////////////////////////
9873/// Constructor.
9874
9875TH1I::TH1I()
9876{
9877 fDimension = 1;
9878 SetBinsLength(3);
9879 if (fgDefaultSumw2) Sumw2();
9880}
9881
9882////////////////////////////////////////////////////////////////////////////////
9883/// Create a 1-Dim histogram with fix bins of type integer
9884/// (see TH1::TH1 for explanation of parameters)
9885
9886TH1I::TH1I(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
9887: TH1(name,title,nbins,xlow,xup)
9888{
9889 fDimension = 1;
9891
9892 if (xlow >= xup) SetBuffer(fgBufferSize);
9893 if (fgDefaultSumw2) Sumw2();
9894}
9895
9896////////////////////////////////////////////////////////////////////////////////
9897/// Create a 1-Dim histogram with variable bins of type integer
9898/// (see TH1::TH1 for explanation of parameters)
9899
9900TH1I::TH1I(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
9901: TH1(name,title,nbins,xbins)
9902{
9903 fDimension = 1;
9905 if (fgDefaultSumw2) Sumw2();
9906}
9907
9908////////////////////////////////////////////////////////////////////////////////
9909/// Create a 1-Dim histogram with variable bins of type integer
9910/// (see TH1::TH1 for explanation of parameters)
9911
9912TH1I::TH1I(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
9913: TH1(name,title,nbins,xbins)
9914{
9915 fDimension = 1;
9917 if (fgDefaultSumw2) Sumw2();
9918}
9919
9920////////////////////////////////////////////////////////////////////////////////
9921/// Destructor.
9922
9924{
9925}
9926
9927////////////////////////////////////////////////////////////////////////////////
9928/// Copy constructor.
9929/// The list of functions is not copied. (Use Clone() if needed)
9930
9931TH1I::TH1I(const TH1I &h1i) : TH1(), TArrayI()
9932{
9933 h1i.TH1I::Copy(*this);
9934}
9935
9936////////////////////////////////////////////////////////////////////////////////
9937/// Increment bin content by 1.
9938/// Passing an out-of-range bin leads to undefined behavior
9939
9940void TH1I::AddBinContent(Int_t bin)
9941{
9942 if (fArray[bin] < INT_MAX) fArray[bin]++;
9943}
9944
9945////////////////////////////////////////////////////////////////////////////////
9946/// Increment bin content by w
9947/// \warning The value of w is cast to `Long64_t` before being added.
9948/// Passing an out-of-range bin leads to undefined behavior
9949
9951{
9952 Long64_t newval = fArray[bin] + Long64_t(w);
9953 if (newval > -INT_MAX && newval < INT_MAX) {fArray[bin] = Int_t(newval); return;}
9954 if (newval < -INT_MAX) fArray[bin] = -INT_MAX;
9955 if (newval > INT_MAX) fArray[bin] = INT_MAX;
9956}
9957
9958////////////////////////////////////////////////////////////////////////////////
9959/// Copy this to newth1
9960
9961void TH1I::Copy(TObject &newth1) const
9962{
9964}
9965
9966////////////////////////////////////////////////////////////////////////////////
9967/// Reset.
9968
9970{
9973}
9974
9975////////////////////////////////////////////////////////////////////////////////
9976/// Set total number of bins including under/overflow
9977/// Reallocate bin contents array
9978
9980{
9981 if (n < 0) n = fXaxis.GetNbins() + 2;
9982 fNcells = n;
9983 TArrayI::Set(n);
9984}
9985
9986////////////////////////////////////////////////////////////////////////////////
9987/// Operator =
9988
9989TH1I& TH1I::operator=(const TH1I &h1)
9990{
9991 if (this != &h1)
9992 h1.TH1I::Copy(*this);
9993 return *this;
9994}
9995
9996
9997////////////////////////////////////////////////////////////////////////////////
9998/// Operator *
9999
10001{
10002 TH1I hnew = h1;
10003 hnew.Scale(c1);
10004 hnew.SetDirectory(nullptr);
10005 return hnew;
10006}
10007
10008////////////////////////////////////////////////////////////////////////////////
10009/// Operator +
10010
10011TH1I operator+(const TH1I &h1, const TH1I &h2)
10012{
10013 TH1I hnew = h1;
10014 hnew.Add(&h2,1);
10015 hnew.SetDirectory(nullptr);
10016 return hnew;
10017}
10018
10019////////////////////////////////////////////////////////////////////////////////
10020/// Operator -
10021
10022TH1I operator-(const TH1I &h1, const TH1I &h2)
10023{
10024 TH1I hnew = h1;
10025 hnew.Add(&h2,-1);
10026 hnew.SetDirectory(nullptr);
10027 return hnew;
10028}
10029
10030////////////////////////////////////////////////////////////////////////////////
10031/// Operator *
10032
10033TH1I operator*(const TH1I &h1, const TH1I &h2)
10034{
10035 TH1I hnew = h1;
10036 hnew.Multiply(&h2);
10037 hnew.SetDirectory(nullptr);
10038 return hnew;
10039}
10040
10041////////////////////////////////////////////////////////////////////////////////
10042/// Operator /
10043
10044TH1I operator/(const TH1I &h1, const TH1I &h2)
10045{
10046 TH1I hnew = h1;
10047 hnew.Divide(&h2);
10048 hnew.SetDirectory(nullptr);
10049 return hnew;
10050}
10051
10052//______________________________________________________________________________
10053// TH1L methods
10054// TH1L : histograms with one long64 per channel. Maximum bin content = 9223372036854775807
10055// 9223372036854775807 = LLONG_MAX
10056//______________________________________________________________________________
10057
10058
10059////////////////////////////////////////////////////////////////////////////////
10060/// Constructor.
10061
10062TH1L::TH1L()
10063{
10064 fDimension = 1;
10065 SetBinsLength(3);
10066 if (fgDefaultSumw2) Sumw2();
10067}
10068
10069////////////////////////////////////////////////////////////////////////////////
10070/// Create a 1-Dim histogram with fix bins of type long64
10071/// (see TH1::TH1 for explanation of parameters)
10072
10073TH1L::TH1L(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
10074: TH1(name,title,nbins,xlow,xup)
10075{
10076 fDimension = 1;
10078
10079 if (xlow >= xup) SetBuffer(fgBufferSize);
10080 if (fgDefaultSumw2) Sumw2();
10081}
10082
10083////////////////////////////////////////////////////////////////////////////////
10084/// Create a 1-Dim histogram with variable bins of type long64
10085/// (see TH1::TH1 for explanation of parameters)
10086
10087TH1L::TH1L(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
10088: TH1(name,title,nbins,xbins)
10089{
10090 fDimension = 1;
10092 if (fgDefaultSumw2) Sumw2();
10093}
10094
10095////////////////////////////////////////////////////////////////////////////////
10096/// Create a 1-Dim histogram with variable bins of type long64
10097/// (see TH1::TH1 for explanation of parameters)
10098
10099TH1L::TH1L(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
10100: TH1(name,title,nbins,xbins)
10101{
10102 fDimension = 1;
10104 if (fgDefaultSumw2) Sumw2();
10105}
10106
10107////////////////////////////////////////////////////////////////////////////////
10108/// Destructor.
10109
10111{
10112}
10113
10114////////////////////////////////////////////////////////////////////////////////
10115/// Copy constructor.
10116/// The list of functions is not copied. (Use Clone() if needed)
10117
10118TH1L::TH1L(const TH1L &h1l) : TH1(), TArrayL64()
10119{
10120 h1l.TH1L::Copy(*this);
10121}
10122
10123////////////////////////////////////////////////////////////////////////////////
10124/// Increment bin content by 1.
10125/// Passing an out-of-range bin leads to undefined behavior
10126
10127void TH1L::AddBinContent(Int_t bin)
10128{
10129 if (fArray[bin] < LLONG_MAX) fArray[bin]++;
10130}
10131
10132////////////////////////////////////////////////////////////////////////////////
10133/// Increment bin content by w.
10134/// \warning The value of w is cast to `Long64_t` before being added.
10135/// Passing an out-of-range bin leads to undefined behavior
10136
10138{
10139 Long64_t newval = fArray[bin] + Long64_t(w);
10140 if (newval > -LLONG_MAX && newval < LLONG_MAX) {fArray[bin] = newval; return;}
10141 if (newval < -LLONG_MAX) fArray[bin] = -LLONG_MAX;
10142 if (newval > LLONG_MAX) fArray[bin] = LLONG_MAX;
10143}
10144
10145////////////////////////////////////////////////////////////////////////////////
10146/// Copy this to newth1
10147
10148void TH1L::Copy(TObject &newth1) const
10149{
10151}
10152
10153////////////////////////////////////////////////////////////////////////////////
10154/// Reset.
10155
10157{
10160}
10161
10162////////////////////////////////////////////////////////////////////////////////
10163/// Set total number of bins including under/overflow
10164/// Reallocate bin contents array
10165
10167{
10168 if (n < 0) n = fXaxis.GetNbins() + 2;
10169 fNcells = n;
10171}
10172
10173////////////////////////////////////////////////////////////////////////////////
10174/// Operator =
10175
10176TH1L& TH1L::operator=(const TH1L &h1)
10177{
10178 if (this != &h1)
10179 h1.TH1L::Copy(*this);
10180 return *this;
10181}
10182
10183
10184////////////////////////////////////////////////////////////////////////////////
10185/// Operator *
10186
10188{
10189 TH1L hnew = h1;
10190 hnew.Scale(c1);
10191 hnew.SetDirectory(nullptr);
10192 return hnew;
10193}
10194
10195////////////////////////////////////////////////////////////////////////////////
10196/// Operator +
10197
10198TH1L operator+(const TH1L &h1, const TH1L &h2)
10199{
10200 TH1L hnew = h1;
10201 hnew.Add(&h2,1);
10202 hnew.SetDirectory(nullptr);
10203 return hnew;
10204}
10205
10206////////////////////////////////////////////////////////////////////////////////
10207/// Operator -
10208
10209TH1L operator-(const TH1L &h1, const TH1L &h2)
10210{
10211 TH1L hnew = h1;
10212 hnew.Add(&h2,-1);
10213 hnew.SetDirectory(nullptr);
10214 return hnew;
10215}
10216
10217////////////////////////////////////////////////////////////////////////////////
10218/// Operator *
10219
10220TH1L operator*(const TH1L &h1, const TH1L &h2)
10221{
10222 TH1L hnew = h1;
10223 hnew.Multiply(&h2);
10224 hnew.SetDirectory(nullptr);
10225 return hnew;
10226}
10227
10228////////////////////////////////////////////////////////////////////////////////
10229/// Operator /
10230
10231TH1L operator/(const TH1L &h1, const TH1L &h2)
10232{
10233 TH1L hnew = h1;
10234 hnew.Divide(&h2);
10235 hnew.SetDirectory(nullptr);
10236 return hnew;
10237}
10238
10239//______________________________________________________________________________
10240// TH1F methods
10241// TH1F : histograms with one float per channel. Maximum precision 7 digits, maximum integer bin content = +/-16777216
10242//______________________________________________________________________________
10243
10244
10245////////////////////////////////////////////////////////////////////////////////
10246/// Constructor.
10247
10248TH1F::TH1F()
10249{
10250 fDimension = 1;
10251 SetBinsLength(3);
10252 if (fgDefaultSumw2) Sumw2();
10253}
10254
10255////////////////////////////////////////////////////////////////////////////////
10256/// Create a 1-Dim histogram with fix bins of type float
10257/// (see TH1::TH1 for explanation of parameters)
10258
10259TH1F::TH1F(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
10260: TH1(name,title,nbins,xlow,xup)
10261{
10262 fDimension = 1;
10264
10265 if (xlow >= xup) SetBuffer(fgBufferSize);
10266 if (fgDefaultSumw2) Sumw2();
10267}
10268
10269////////////////////////////////////////////////////////////////////////////////
10270/// Create a 1-Dim histogram with variable bins of type float
10271/// (see TH1::TH1 for explanation of parameters)
10272
10273TH1F::TH1F(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
10274: TH1(name,title,nbins,xbins)
10275{
10276 fDimension = 1;
10278 if (fgDefaultSumw2) Sumw2();
10279}
10280
10281////////////////////////////////////////////////////////////////////////////////
10282/// Create a 1-Dim histogram with variable bins of type float
10283/// (see TH1::TH1 for explanation of parameters)
10284
10285TH1F::TH1F(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
10286: TH1(name,title,nbins,xbins)
10287{
10288 fDimension = 1;
10290 if (fgDefaultSumw2) Sumw2();
10291}
10292
10293////////////////////////////////////////////////////////////////////////////////
10294/// Create a histogram from a TVectorF
10295/// by default the histogram name is "TVectorF" and title = ""
10296
10297TH1F::TH1F(const TVectorF &v)
10298: TH1("TVectorF","",v.GetNrows(),0,v.GetNrows())
10299{
10301 fDimension = 1;
10302 Int_t ivlow = v.GetLwb();
10303 for (Int_t i=0;i<fNcells-2;i++) {
10304 SetBinContent(i+1,v(i+ivlow));
10305 }
10307 if (fgDefaultSumw2) Sumw2();
10308}
10309
10310////////////////////////////////////////////////////////////////////////////////
10311/// Copy Constructor.
10312/// The list of functions is not copied. (Use Clone() if needed)
10313
10314TH1F::TH1F(const TH1F &h1f) : TH1(), TArrayF()
10315{
10316 h1f.TH1F::Copy(*this);
10317}
10318
10319////////////////////////////////////////////////////////////////////////////////
10320/// Destructor.
10321
10323{
10324}
10325
10326////////////////////////////////////////////////////////////////////////////////
10327/// Copy this to newth1.
10328
10329void TH1F::Copy(TObject &newth1) const
10330{
10332}
10333
10334////////////////////////////////////////////////////////////////////////////////
10335/// Reset.
10336
10338{
10341}
10342
10343////////////////////////////////////////////////////////////////////////////////
10344/// Set total number of bins including under/overflow
10345/// Reallocate bin contents array
10346
10348{
10349 if (n < 0) n = fXaxis.GetNbins() + 2;
10350 fNcells = n;
10351 TArrayF::Set(n);
10352}
10353
10354////////////////////////////////////////////////////////////////////////////////
10355/// Operator =
10356
10358{
10359 if (this != &h1f)
10360 h1f.TH1F::Copy(*this);
10361 return *this;
10362}
10363
10364////////////////////////////////////////////////////////////////////////////////
10365/// Operator *
10366
10368{
10369 TH1F hnew = h1;
10370 hnew.Scale(c1);
10371 hnew.SetDirectory(nullptr);
10372 return hnew;
10373}
10374
10375////////////////////////////////////////////////////////////////////////////////
10376/// Operator +
10377
10378TH1F operator+(const TH1F &h1, const TH1F &h2)
10379{
10380 TH1F hnew = h1;
10381 hnew.Add(&h2,1);
10382 hnew.SetDirectory(nullptr);
10383 return hnew;
10384}
10385
10386////////////////////////////////////////////////////////////////////////////////
10387/// Operator -
10388
10389TH1F operator-(const TH1F &h1, const TH1F &h2)
10390{
10391 TH1F hnew = h1;
10392 hnew.Add(&h2,-1);
10393 hnew.SetDirectory(nullptr);
10394 return hnew;
10395}
10396
10397////////////////////////////////////////////////////////////////////////////////
10398/// Operator *
10399
10400TH1F operator*(const TH1F &h1, const TH1F &h2)
10401{
10402 TH1F hnew = h1;
10403 hnew.Multiply(&h2);
10404 hnew.SetDirectory(nullptr);
10405 return hnew;
10406}
10407
10408////////////////////////////////////////////////////////////////////////////////
10409/// Operator /
10410
10411TH1F operator/(const TH1F &h1, const TH1F &h2)
10412{
10413 TH1F hnew = h1;
10414 hnew.Divide(&h2);
10415 hnew.SetDirectory(nullptr);
10416 return hnew;
10417}
10418
10419//______________________________________________________________________________
10420// TH1D methods
10421// TH1D : histograms with one double per channel. Maximum precision 14 digits, maximum integer bin content = +/-9007199254740992
10422//______________________________________________________________________________
10423
10424
10425////////////////////////////////////////////////////////////////////////////////
10426/// Constructor.
10427
10428TH1D::TH1D()
10429{
10430 fDimension = 1;
10431 SetBinsLength(3);
10432 if (fgDefaultSumw2) Sumw2();
10433}
10434
10435////////////////////////////////////////////////////////////////////////////////
10436/// Create a 1-Dim histogram with fix bins of type double
10437/// (see TH1::TH1 for explanation of parameters)
10438
10439TH1D::TH1D(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup)
10440: TH1(name,title,nbins,xlow,xup)
10441{
10442 fDimension = 1;
10444
10445 if (xlow >= xup) SetBuffer(fgBufferSize);
10446 if (fgDefaultSumw2) Sumw2();
10447}
10448
10449////////////////////////////////////////////////////////////////////////////////
10450/// Create a 1-Dim histogram with variable bins of type double
10451/// (see TH1::TH1 for explanation of parameters)
10452
10453TH1D::TH1D(const char *name,const char *title,Int_t nbins,const Float_t *xbins)
10454: TH1(name,title,nbins,xbins)
10455{
10456 fDimension = 1;
10458 if (fgDefaultSumw2) Sumw2();
10459}
10460
10461////////////////////////////////////////////////////////////////////////////////
10462/// Create a 1-Dim histogram with variable bins of type double
10463/// (see TH1::TH1 for explanation of parameters)
10464
10465TH1D::TH1D(const char *name,const char *title,Int_t nbins,const Double_t *xbins)
10466: TH1(name,title,nbins,xbins)
10467{
10468 fDimension = 1;
10470 if (fgDefaultSumw2) Sumw2();
10471}
10472
10473////////////////////////////////////////////////////////////////////////////////
10474/// Create a histogram from a TVectorD
10475/// by default the histogram name is "TVectorD" and title = ""
10476
10477TH1D::TH1D(const TVectorD &v)
10478: TH1("TVectorD","",v.GetNrows(),0,v.GetNrows())
10479{
10481 fDimension = 1;
10482 Int_t ivlow = v.GetLwb();
10483 for (Int_t i=0;i<fNcells-2;i++) {
10484 SetBinContent(i+1,v(i+ivlow));
10485 }
10487 if (fgDefaultSumw2) Sumw2();
10488}
10489
10490////////////////////////////////////////////////////////////////////////////////
10491/// Destructor.
10492
10494{
10495}
10496
10497////////////////////////////////////////////////////////////////////////////////
10498/// Constructor.
10499
10500TH1D::TH1D(const TH1D &h1d) : TH1(), TArrayD()
10501{
10502 // intentially call virtual method to warn if TProfile is copying
10503 h1d.Copy(*this);
10504}
10505
10506////////////////////////////////////////////////////////////////////////////////
10507/// Copy this to newth1
10508
10509void TH1D::Copy(TObject &newth1) const
10510{
10512}
10513
10514////////////////////////////////////////////////////////////////////////////////
10515/// Reset.
10516
10518{
10521}
10522
10523////////////////////////////////////////////////////////////////////////////////
10524/// Set total number of bins including under/overflow
10525/// Reallocate bin contents array
10526
10528{
10529 if (n < 0) n = fXaxis.GetNbins() + 2;
10530 fNcells = n;
10531 TArrayD::Set(n);
10532}
10533
10534////////////////////////////////////////////////////////////////////////////////
10535/// Operator =
10536
10538{
10539 // intentially call virtual method to warn if TProfile is copying
10540 if (this != &h1d)
10541 h1d.Copy(*this);
10542 return *this;
10543}
10544
10545////////////////////////////////////////////////////////////////////////////////
10546/// Operator *
10547
10549{
10550 TH1D hnew = h1;
10551 hnew.Scale(c1);
10552 hnew.SetDirectory(nullptr);
10553 return hnew;
10554}
10555
10556////////////////////////////////////////////////////////////////////////////////
10557/// Operator +
10558
10559TH1D operator+(const TH1D &h1, const TH1D &h2)
10560{
10561 TH1D hnew = h1;
10562 hnew.Add(&h2,1);
10563 hnew.SetDirectory(nullptr);
10564 return hnew;
10565}
10566
10567////////////////////////////////////////////////////////////////////////////////
10568/// Operator -
10569
10570TH1D operator-(const TH1D &h1, const TH1D &h2)
10571{
10572 TH1D hnew = h1;
10573 hnew.Add(&h2,-1);
10574 hnew.SetDirectory(nullptr);
10575 return hnew;
10576}
10577
10578////////////////////////////////////////////////////////////////////////////////
10579/// Operator *
10580
10581TH1D operator*(const TH1D &h1, const TH1D &h2)
10582{
10583 TH1D hnew = h1;
10584 hnew.Multiply(&h2);
10585 hnew.SetDirectory(nullptr);
10586 return hnew;
10587}
10588
10589////////////////////////////////////////////////////////////////////////////////
10590/// Operator /
10591
10592TH1D operator/(const TH1D &h1, const TH1D &h2)
10593{
10594 TH1D hnew = h1;
10595 hnew.Divide(&h2);
10596 hnew.SetDirectory(nullptr);
10597 return hnew;
10598}
10599
10600////////////////////////////////////////////////////////////////////////////////
10601///return pointer to histogram with name
10602///hid if id >=0
10603///h_id if id <0
10604
10605TH1 *R__H(Int_t hid)
10606{
10607 TString hname;
10608 if(hid >= 0) hname.Form("h%d",hid);
10609 else hname.Form("h_%d",hid);
10610 return (TH1*)gDirectory->Get(hname);
10611}
10612
10613////////////////////////////////////////////////////////////////////////////////
10614///return pointer to histogram with name hname
10615
10616TH1 *R__H(const char * hname)
10617{
10618 return (TH1*)gDirectory->Get(hname);
10619}
10620
10621
10622/// \fn void TH1::SetBarOffset(Float_t offset)
10623/// Set the bar offset as fraction of the bin width for drawing mode "B".
10624/// This shifts bars to the right on the x axis, and helps to draw bars next to each other.
10625/// \see THistPainter, SetBarWidth()
10626
10627/// \fn void TH1::SetBarWidth(Float_t width)
10628/// Set the width of bars as fraction of the bin width for drawing mode "B".
10629/// This allows for making bars narrower than the bin width. With SetBarOffset(), this helps to draw multiple bars next to each other.
10630/// \see THistPainter, SetBarOffset()
#define b(i)
Definition RSha256.hxx:100
#define c(i)
Definition RSha256.hxx:101
#define a(i)
Definition RSha256.hxx:99
#define s1(x)
Definition RSha256.hxx:91
#define h(i)
Definition RSha256.hxx:106
#define e(i)
Definition RSha256.hxx:103
short Style_t
Style number (short)
Definition RtypesCore.h:96
bool Bool_t
Boolean (0=false, 1=true) (bool)
Definition RtypesCore.h:77
int Int_t
Signed integer 4 bytes (int)
Definition RtypesCore.h:59
short Color_t
Color number (short)
Definition RtypesCore.h:99
short Version_t
Class version identifier (short)
Definition RtypesCore.h:79
char Char_t
Character 1 byte (char)
Definition RtypesCore.h:51
float Float_t
Float 4 bytes (float)
Definition RtypesCore.h:71
short Short_t
Signed Short integer 2 bytes (short)
Definition RtypesCore.h:53
constexpr Bool_t kFALSE
Definition RtypesCore.h:108
double Double_t
Double 8 bytes.
Definition RtypesCore.h:73
long long Long64_t
Portable signed long integer 8 bytes.
Definition RtypesCore.h:83
constexpr Bool_t kTRUE
Definition RtypesCore.h:107
const char Option_t
Option string (const char)
Definition RtypesCore.h:80
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
#define gDirectory
Definition TDirectory.h:385
R__EXTERN TEnv * gEnv
Definition TEnv.h:170
#define R__ASSERT(e)
Checks condition e and reports a fatal error if it's false.
Definition TError.h:125
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t option
Option_t Option_t SetLineWidth
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
Option_t Option_t SetFillStyle
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t del
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t SetLineColor
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
Option_t Option_t TPoint TPoint const char x1
Option_t Option_t TPoint TPoint const char y2
Option_t Option_t SetFillColor
Option_t Option_t SetMarkerStyle
Option_t Option_t width
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Option_t Option_t TPoint TPoint const char y1
char name[80]
Definition TGX11.cxx:110
static bool IsEquidistantBinning(const TAxis &axis)
Test if the binning is equidistant.
Definition TH1.cxx:5894
void H1LeastSquareLinearFit(Int_t ndata, Double_t &a0, Double_t &a1, Int_t &ifail)
Least square linear fit without weights.
Definition TH1.cxx:4840
void H1InitGaus()
Compute Initial values of parameters for a gaussian.
Definition TH1.cxx:4675
void H1InitExpo()
Compute Initial values of parameters for an exponential.
Definition TH1.cxx:4731
TH1C operator+(const TH1C &h1, const TH1C &h2)
Operator +.
Definition TH1.cxx:9637
TH1C operator-(const TH1C &h1, const TH1C &h2)
Operator -.
Definition TH1.cxx:9648
TH1C operator/(const TH1C &h1, const TH1C &h2)
Operator /.
Definition TH1.cxx:9670
void H1LeastSquareSeqnd(Int_t n, Double_t *a, Int_t idim, Int_t &ifail, Int_t k, Double_t *b)
Extracted from CERN Program library routine DSEQN.
Definition TH1.cxx:4886
static Bool_t AlmostEqual(Double_t a, Double_t b, Double_t epsilon=0.00000001)
Test if two double are almost equal.
Definition TH1.cxx:5877
static Bool_t AlmostInteger(Double_t a, Double_t epsilon=0.00000001)
Test if a double is almost an integer.
Definition TH1.cxx:5885
TF1 * gF1
Definition TH1.cxx:584
TH1 * R__H(Int_t hid)
return pointer to histogram with name hid if id >=0 h_id if id <0
Definition TH1.cxx:10603
TH1C operator*(Double_t c1, const TH1C &h1)
Operator *.
Definition TH1.cxx:9626
void H1LeastSquareFit(Int_t n, Int_t m, Double_t *a)
Least squares lpolynomial fitting without weights.
Definition TH1.cxx:4781
void H1InitPolynom()
Compute Initial values of parameters for a polynom.
Definition TH1.cxx:4751
float xmin
int nentries
float ymin
float xmax
float ymax
#define gInterpreter
Int_t gDebug
Global variable setting the debug level. Set to 0 to disable, increase it in steps of 1 to increase t...
Definition TROOT.cxx:627
R__EXTERN TVirtualMutex * gROOTMutex
Definition TROOT.h:63
#define gROOT
Definition TROOT.h:411
R__EXTERN TRandom * gRandom
Definition TRandom.h:62
void Printf(const char *fmt,...)
Formats a string in a circular formatting buffer and prints the string.
Definition TString.cxx:2509
R__EXTERN TStyle * gStyle
Definition TStyle.h:442
#define R__LOCKGUARD(mutex)
#define gPad
#define R__WRITE_LOCKGUARD(mutex)
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Definition BinData.h:52
class describing the range in the coordinates it supports multiple range in a coordinate.
Definition DataRange.h:35
void AndersonDarling2SamplesTest(Double_t &pvalue, Double_t &testStat) const
Performs the Anderson-Darling 2-Sample Test.
Definition GoFTest.cxx:646
const_iterator begin() const
const_iterator end() const
Array of chars or bytes (8 bits per element).
Definition TArrayC.h:27
Char_t * fArray
Definition TArrayC.h:30
void Reset(Char_t val=0)
Definition TArrayC.h:47
void Set(Int_t n) override
Set size of this array to n chars.
Definition TArrayC.cxx:104
Array of doubles (64 bits per element).
Definition TArrayD.h:27
Double_t * fArray
Definition TArrayD.h:30
void Streamer(TBuffer &) override
Stream a TArrayD object.
Definition TArrayD.cxx:148
void Copy(TArrayD &array) const
Definition TArrayD.h:42
void Set(Int_t n) override
Set size of this array to n doubles.
Definition TArrayD.cxx:105
const Double_t * GetArray() const
Definition TArrayD.h:43
void Reset()
Definition TArrayD.h:47
Array of floats (32 bits per element).
Definition TArrayF.h:27
void Reset()
Definition TArrayF.h:47
void Set(Int_t n) override
Set size of this array to n floats.
Definition TArrayF.cxx:104
Array of integers (32 bits per element).
Definition TArrayI.h:27
Int_t * fArray
Definition TArrayI.h:30
void Set(Int_t n) override
Set size of this array to n ints.
Definition TArrayI.cxx:104
void Reset()
Definition TArrayI.h:47
Array of long64s (64 bits per element).
Definition TArrayL64.h:27
Long64_t * fArray
Definition TArrayL64.h:30
void Set(Int_t n) override
Set size of this array to n long64s.
void Reset()
Definition TArrayL64.h:47
Array of shorts (16 bits per element).
Definition TArrayS.h:27
void Set(Int_t n) override
Set size of this array to n shorts.
Definition TArrayS.cxx:104
void Reset()
Definition TArrayS.h:47
Short_t * fArray
Definition TArrayS.h:30
Abstract array base class.
Definition TArray.h:31
Int_t fN
Definition TArray.h:38
virtual void Set(Int_t n)=0
virtual Color_t GetTitleColor() const
Definition TAttAxis.h:47
virtual Color_t GetLabelColor() const
Definition TAttAxis.h:39
virtual Int_t GetNdivisions() const
Definition TAttAxis.h:37
virtual Color_t GetAxisColor() const
Definition TAttAxis.h:38
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title.
Definition TAttAxis.cxx:279
virtual Style_t GetTitleFont() const
Definition TAttAxis.h:48
virtual Float_t GetLabelOffset() const
Definition TAttAxis.h:41
virtual void SetAxisColor(Color_t color=1, Float_t alpha=1.)
Set color of the line axis and tick marks.
Definition TAttAxis.cxx:141
virtual void SetLabelSize(Float_t size=0.04)
Set size of axis labels.
Definition TAttAxis.cxx:184
virtual Style_t GetLabelFont() const
Definition TAttAxis.h:40
virtual void SetTitleFont(Style_t font=62)
Set the title font.
Definition TAttAxis.cxx:308
virtual void SetLabelOffset(Float_t offset=0.005)
Set distance between the axis and the labels.
Definition TAttAxis.cxx:172
virtual void SetLabelFont(Style_t font=62)
Set labels' font.
Definition TAttAxis.cxx:161
virtual void SetTitleSize(Float_t size=0.04)
Set size of axis title.
Definition TAttAxis.cxx:290
virtual void SetTitleColor(Color_t color=1)
Set color of axis title.
Definition TAttAxis.cxx:299
virtual Float_t GetTitleSize() const
Definition TAttAxis.h:45
virtual Float_t GetLabelSize() const
Definition TAttAxis.h:42
virtual Float_t GetTickLength() const
Definition TAttAxis.h:46
virtual void ResetAttAxis(Option_t *option="")
Reset axis attributes.
Definition TAttAxis.cxx:78
virtual Float_t GetTitleOffset() const
Definition TAttAxis.h:44
virtual void SetTickLength(Float_t length=0.03)
Set tick mark length.
Definition TAttAxis.cxx:265
virtual void SetNdivisions(Int_t n=510, Bool_t optim=kTRUE)
Set the number of divisions for this axis.
Definition TAttAxis.cxx:214
virtual void SetLabelColor(Color_t color=1, Float_t alpha=1.)
Set color of labels.
Definition TAttAxis.cxx:151
virtual void Streamer(TBuffer &)
virtual Color_t GetFillColor() const
Return the fill area color.
Definition TAttFill.h:31
void Copy(TAttFill &attfill) const
Copy this fill attributes to a new TAttFill.
Definition TAttFill.cxx:206
virtual Style_t GetFillStyle() const
Return the fill area style.
Definition TAttFill.h:32
virtual void SaveFillAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1001)
Save fill attributes as C++ statement(s) on output stream out.
Definition TAttFill.cxx:238
virtual void Streamer(TBuffer &)
virtual Color_t GetLineColor() const
Return the line color.
Definition TAttLine.h:35
virtual void SetLineStyle(Style_t lstyle)
Set the line style.
Definition TAttLine.h:44
virtual Width_t GetLineWidth() const
Return the line width.
Definition TAttLine.h:37
virtual Style_t GetLineStyle() const
Return the line style.
Definition TAttLine.h:36
void Copy(TAttLine &attline) const
Copy this line attributes to a new TAttLine.
Definition TAttLine.cxx:176
virtual void SaveLineAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t widdef=1)
Save line attributes as C++ statement(s) on output stream out.
Definition TAttLine.cxx:274
virtual void SaveMarkerAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t sizdef=1)
Save line attributes as C++ statement(s) on output stream out.
virtual Style_t GetMarkerStyle() const
Return the marker style.
Definition TAttMarker.h:33
virtual void SetMarkerColor(Color_t mcolor=1)
Set the marker color.
Definition TAttMarker.h:39
virtual Color_t GetMarkerColor() const
Return the marker color.
Definition TAttMarker.h:32
virtual Size_t GetMarkerSize() const
Return the marker size.
Definition TAttMarker.h:34
virtual void SetMarkerStyle(Style_t mstyle=1)
Set the marker style.
Definition TAttMarker.h:41
void Copy(TAttMarker &attmarker) const
Copy this marker attributes to a new TAttMarker.
virtual void Streamer(TBuffer &)
virtual void SetMarkerSize(Size_t msize=1)
Set the marker size.
Definition TAttMarker.h:46
Class to manage histogram axis.
Definition TAxis.h:32
virtual void GetCenter(Double_t *center) const
Return an array with the center of all bins.
Definition TAxis.cxx:558
virtual Bool_t GetTimeDisplay() const
Definition TAxis.h:133
Bool_t IsAlphanumeric() const
Definition TAxis.h:90
const char * GetTitle() const override
Returns title of object.
Definition TAxis.h:137
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
Definition TAxis.cxx:482
Bool_t CanExtend() const
Definition TAxis.h:88
virtual void SetParent(TObject *obj)
Definition TAxis.h:169
const TArrayD * GetXbins() const
Definition TAxis.h:138
void SetCanExtend(Bool_t canExtend)
Definition TAxis.h:92
void Copy(TObject &axis) const override
Copy axis structure to another axis.
Definition TAxis.cxx:211
Double_t GetXmax() const
Definition TAxis.h:142
@ kLabelsUp
Definition TAxis.h:75
@ kLabelsDown
Definition TAxis.h:74
@ kLabelsHori
Definition TAxis.h:72
@ kAxisRange
Definition TAxis.h:66
@ kLabelsVert
Definition TAxis.h:73
virtual Int_t FindBin(Double_t x)
Find bin number corresponding to abscissa x.
Definition TAxis.cxx:293
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Definition TAxis.cxx:522
virtual void SetTimeDisplay(Int_t value)
Definition TAxis.h:173
virtual void Set(Int_t nbins, Double_t xmin, Double_t xmax)
Initialize axis with fix bins.
Definition TAxis.cxx:790
virtual Int_t FindFixBin(Double_t x) const
Find bin number corresponding to abscissa x
Definition TAxis.cxx:422
void SaveAttributes(std::ostream &out, const char *name, const char *subname) override
Save axis attributes as C++ statement(s) on output stream out.
Definition TAxis.cxx:715
Int_t GetLast() const
Return last bin on the axis i.e.
Definition TAxis.cxx:473
virtual void SetLimits(Double_t xmin, Double_t xmax)
Definition TAxis.h:166
Double_t GetXmin() const
Definition TAxis.h:141
void Streamer(TBuffer &) override
Stream an object of class TAxis.
Definition TAxis.cxx:1224
Int_t GetNbins() const
Definition TAxis.h:127
virtual void GetLowEdge(Double_t *edge) const
Return an array with the low edge of all bins.
Definition TAxis.cxx:567
virtual void SetRange(Int_t first=0, Int_t last=0)
Set the viewing range for the axis using bin numbers.
Definition TAxis.cxx:1061
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
Definition TAxis.cxx:546
virtual Double_t GetBinUpEdge(Int_t bin) const
Return up edge of bin.
Definition TAxis.cxx:532
Int_t GetFirst() const
Return first bin on the axis i.e.
Definition TAxis.cxx:462
THashList * GetLabels() const
Definition TAxis.h:123
Using a TBrowser one can browse all ROOT objects.
Definition TBrowser.h:37
Buffer base class used for serializing objects.
Definition TBuffer.h:43
void * New(ENewType defConstructor=kClassNew, Bool_t quiet=kFALSE) const
Return a pointer to a newly allocated object of this class.
Definition TClass.cxx:5017
ROOT::NewFunc_t GetNew() const
Return the wrapper around new ThisClass().
Definition TClass.cxx:7552
Collection abstract base class.
Definition TCollection.h:65
virtual bool UseRWLock(Bool_t enable=true)
Set this collection to use a RW lock upon access, making it thread safe.
TObject * Clone(const char *newname="") const override
Make a clone of an collection using the Streamer facility.
virtual Int_t GetSize() const
Return the capacity of the collection, i.e.
Describe directory structure in memory.
Definition TDirectory.h:45
virtual void Append(TObject *obj, Bool_t replace=kFALSE)
Append object to this directory.
virtual TObject * Remove(TObject *)
Remove an object from the in-memory list.
virtual Int_t GetValue(const char *name, Int_t dflt) const
Returns the integer value for a resource.
Definition TEnv.cxx:503
1-Dim function class
Definition TF1.h:182
static void RejectPoint(Bool_t reject=kTRUE)
Static function to set the global flag to reject points the fgRejectPoint global flag is tested by al...
Definition TF1.cxx:3700
virtual TH1 * GetHistogram() const
Return a pointer to the histogram used to visualise the function Note that this histogram is managed ...
Definition TF1.cxx:1611
static TClass * Class()
virtual Int_t GetNpar() const
Definition TF1.h:461
virtual Double_t Integral(Double_t a, Double_t b, Double_t epsrel=1.e-12)
IntegralOneDim or analytical integral.
Definition TF1.cxx:2557
virtual void InitArgs(const Double_t *x, const Double_t *params)
Initialize parameters addresses.
Definition TF1.cxx:2507
virtual void GetRange(Double_t *xmin, Double_t *xmax) const
Return range of a generic N-D function.
Definition TF1.cxx:2306
virtual Double_t EvalPar(const Double_t *x, const Double_t *params=nullptr)
Evaluate function with given coordinates and parameters.
Definition TF1.cxx:1475
virtual void SetParLimits(Int_t ipar, Double_t parmin, Double_t parmax)
Set lower and upper limits for parameter ipar.
Definition TF1.cxx:3539
static Bool_t RejectedPoint()
See TF1::RejectPoint above.
Definition TF1.cxx:3709
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const
Evaluate this function.
Definition TF1.cxx:1446
virtual void SetParameter(Int_t param, Double_t value)
Definition TF1.h:623
virtual Bool_t IsInside(const Double_t *x) const
return kTRUE if the point is inside the function range
Definition TF1.h:582
A 2-Dim function with parameters.
Definition TF2.h:29
TF3 defines a 3D Function with Parameters.
Definition TF3.h:28
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
1-D histogram with a byte per channel (see TH1 documentation)
Definition TH1.h:714
~TH1C() override
Destructor.
Definition TH1.cxx:9550
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:9606
TH1C & operator=(const TH1C &h1)
Operator =.
Definition TH1.cxx:9616
TH1C()
Constructor.
Definition TH1.cxx:9502
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:9588
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:9567
void Reset(Option_t *option="") override
Reset.
Definition TH1.cxx:9596
1-D histogram with a double per channel (see TH1 documentation)
Definition TH1.h:926
~TH1D() override
Destructor.
Definition TH1.cxx:10491
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:10525
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:10507
TH1D()
Constructor.
Definition TH1.cxx:10426
TH1D & operator=(const TH1D &h1)
Operator =.
Definition TH1.cxx:10535
1-D histogram with a float per channel (see TH1 documentation)
Definition TH1.h:878
Double_t RetrieveBinContent(Int_t bin) const override
Raw retrieval of bin content on internal data structure see convention for numbering bins in TH1::Get...
Definition TH1.h:912
TH1F & operator=(const TH1F &h1)
Operator =.
Definition TH1.cxx:10355
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:10327
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:10345
~TH1F() override
Destructor.
Definition TH1.cxx:10320
TH1F()
Constructor.
Definition TH1.cxx:10246
1-D histogram with an int per channel (see TH1 documentation)
Definition TH1.h:796
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:9977
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:9938
~TH1I() override
Destructor.
Definition TH1.cxx:9921
TH1I()
Constructor.
Definition TH1.cxx:9873
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:9959
TH1I & operator=(const TH1I &h1)
Operator =.
Definition TH1.cxx:9987
1-D histogram with a long64 per channel (see TH1 documentation)
Definition TH1.h:837
TH1L & operator=(const TH1L &h1)
Operator =.
Definition TH1.cxx:10174
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:10125
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:10164
~TH1L() override
Destructor.
Definition TH1.cxx:10108
TH1L()
Constructor.
Definition TH1.cxx:10060
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:10146
1-D histogram with a short per channel (see TH1 documentation)
Definition TH1.h:755
TH1S & operator=(const TH1S &h1)
Operator =.
Definition TH1.cxx:9801
void Copy(TObject &hnew) const override
Copy this to newth1.
Definition TH1.cxx:9773
TH1S()
Constructor.
Definition TH1.cxx:9687
void SetBinsLength(Int_t n=-1) override
Set total number of bins including under/overflow Reallocate bin contents array.
Definition TH1.cxx:9791
~TH1S() override
Destructor.
Definition TH1.cxx:9735
void AddBinContent(Int_t bin) override
Increment bin content by 1.
Definition TH1.cxx:9752
TH1 is the base class of all histogram classes in ROOT.
Definition TH1.h:109
~TH1() override
Histogram default destructor.
Definition TH1.cxx:630
virtual void SetError(const Double_t *error)
Replace bin errors by values in array error.
Definition TH1.cxx:9003
virtual void SetDirectory(TDirectory *dir)
By default, when a histogram is created, it is added to the list of histogram objects in the current ...
Definition TH1.cxx:8989
virtual void FitPanel()
Display a panel with all histogram fit options.
Definition TH1.cxx:4273
Double_t * fBuffer
[fBufferSize] entry buffer
Definition TH1.h:169
virtual Int_t AutoP2FindLimits(Double_t min, Double_t max)
Buffer-based estimate of the histogram range using the power of 2 algorithm.
Definition TH1.cxx:1312
virtual Double_t GetEffectiveEntries() const
Number of effective entries of the histogram.
Definition TH1.cxx:4437
char * GetObjectInfo(Int_t px, Int_t py) const override
Redefines TObject::GetObjectInfo.
Definition TH1.cxx:4491
virtual void Smooth(Int_t ntimes=1, Option_t *option="")
Smooth bin contents of this histogram.
Definition TH1.cxx:6938
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
Definition TH1.cxx:9190
virtual void Rebuild(Option_t *option="")
Using the current bin info, recompute the arrays for contents and errors.
Definition TH1.cxx:7146
virtual void SetBarOffset(Float_t offset=0.25)
Set the bar offset as fraction of the bin width for drawing mode "B".
Definition TH1.h:612
static Bool_t fgStatOverflows
! Flag to use under/overflows in statistics
Definition TH1.h:178
virtual Int_t FindLastBinAbove(Double_t threshold=0, Int_t axis=1, Int_t firstBin=1, Int_t lastBin=-1) const
Find last bin with content > threshold for axis (1=x, 2=y, 3=z) if no bins with content > threshold i...
Definition TH1.cxx:3785
TAxis * GetZaxis()
Definition TH1.h:573
Int_t DistancetoPrimitive(Int_t px, Int_t py) override
Compute distance from point px,py to a line.
Definition TH1.cxx:2805
virtual Bool_t Multiply(TF1 *f1, Double_t c1=1)
Performs the operation:
Definition TH1.cxx:6065
@ kXaxis
Definition TH1.h:123
@ kNoAxis
NOTE: Must always be 0 !!!
Definition TH1.h:122
@ kZaxis
Definition TH1.h:125
@ kYaxis
Definition TH1.h:124
Int_t fNcells
Number of bins(1D), cells (2D) +U/Overflows.
Definition TH1.h:150
virtual void GetStats(Double_t *stats) const
fill the array stats from the contents of this histogram The array stats must be correctly dimensione...
Definition TH1.cxx:7880
virtual void Normalize(Option_t *option="")
Normalize a histogram to its integral or to its maximum.
Definition TH1.cxx:6227
void Copy(TObject &hnew) const override
Copy this histogram structure to newth1.
Definition TH1.cxx:2653
void SetTitle(const char *title) override
Change/set the title.
Definition TH1.cxx:6770
Double_t fTsumw
Total Sum of weights.
Definition TH1.h:157
virtual Float_t GetBarWidth() const
Definition TH1.h:501
Double_t fTsumw2
Total Sum of squares of weights.
Definition TH1.h:158
static void StatOverflows(Bool_t flag=kTRUE)
if flag=kTRUE, underflows and overflows are used by the Fill functions in the computation of statisti...
Definition TH1.cxx:6984
virtual Float_t GetBarOffset() const
Definition TH1.h:500
TList * fFunctions
->Pointer to list of functions (fits and user)
Definition TH1.h:167
static Bool_t fgAddDirectory
! Flag to add histograms to the directory
Definition TH1.h:177
static TClass * Class()
static Int_t GetDefaultBufferSize()
Static function return the default buffer size for automatic histograms the parameter fgBufferSize ma...
Definition TH1.cxx:4395
virtual Double_t DoIntegral(Int_t ix1, Int_t ix2, Int_t iy1, Int_t iy2, Int_t iz1, Int_t iz2, Double_t &err, Option_t *opt, Bool_t doerr=kFALSE) const
Internal function compute integral and optionally the error between the limits specified by the bin n...
Definition TH1.cxx:8029
Double_t fTsumwx2
Total Sum of weight*X*X.
Definition TH1.h:160
virtual Double_t GetStdDev(Int_t axis=1) const
Returns the Standard Deviation (Sigma).
Definition TH1.cxx:7654
TH1()
Histogram default constructor.
Definition TH1.cxx:602
static TH1 * TransformHisto(TVirtualFFT *fft, TH1 *h_output, Option_t *option)
For a given transform (first parameter), fills the histogram (second parameter) with the transform ou...
Definition TH1.cxx:9368
void UseCurrentStyle() override
Copy current attributes from/to current style.
Definition TH1.cxx:7516
virtual void LabelsOption(Option_t *option="h", Option_t *axis="X")
Sort bins with labels or set option(s) to draw axis with labels.
Definition TH1.cxx:5398
virtual Int_t GetNbinsY() const
Definition TH1.h:542
Short_t fBarOffset
(1000*offset) for bar charts or legos
Definition TH1.h:154
virtual Double_t Chi2TestX(const TH1 *h2, Double_t &chi2, Int_t &ndf, Int_t &igood, Option_t *option="UU", Double_t *res=nullptr) const
The computation routine of the Chisquare test.
Definition TH1.cxx:2038
static bool CheckBinLimits(const TAxis *a1, const TAxis *a2)
Check bin limits.
Definition TH1.cxx:1510
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
Definition TH1.cxx:9112
static Int_t FitOptionsMake(Option_t *option, Foption_t &Foption)
Decode string choptin and fill fitOption structure.
Definition TH1.cxx:4666
virtual Int_t GetNbinsZ() const
Definition TH1.h:543
virtual Double_t GetNormFactor() const
Definition TH1.h:545
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
Definition TH1.cxx:7582
virtual Double_t GetSkewness(Int_t axis=1) const
Definition TH1.cxx:7718
virtual void ClearUnderflowAndOverflow()
Remove all the content from the underflow and overflow bins, without changing the number of entries A...
Definition TH1.cxx:2488
virtual void FillRandom(TF1 *f1, Int_t ntimes=5000, TRandom *rng=nullptr)
Definition TH1.cxx:3510
virtual Double_t GetContourLevelPad(Int_t level) const
Return the value of contour number "level" in Pad coordinates.
Definition TH1.cxx:8492
virtual TH1 * DrawNormalized(Option_t *option="", Double_t norm=1) const
Draw a normalized copy of this histogram.
Definition TH1.cxx:3126
@ kNeutral
Adapt to the global flag.
Definition TH1.h:133
virtual Int_t GetDimension() const
Definition TH1.h:527
void Streamer(TBuffer &) override
Stream a class object.
Definition TH1.cxx:6992
static void AddDirectory(Bool_t add=kTRUE)
Sets the flag controlling the automatic add of histograms in memory.
Definition TH1.cxx:1263
Double_t GetSumOfAllWeights(const bool includeOverflow) const
Return the sum of all weights.
Definition TH1.cxx:7966
@ kIsAverage
Bin contents are average (used by Add)
Definition TH1.h:409
@ kUserContour
User specified contour levels.
Definition TH1.h:404
@ kNoStats
Don't draw stats box.
Definition TH1.h:403
@ kAutoBinPTwo
different than 1.
Definition TH1.h:412
@ kIsNotW
Histogram is forced to be not weighted even when the histogram is filled with weighted.
Definition TH1.h:410
@ kIsHighlight
bit set if histo is highlight
Definition TH1.h:413
virtual void SetContourLevel(Int_t level, Double_t value)
Set value for one contour level.
Definition TH1.cxx:8574
virtual Bool_t CanExtendAllAxes() const
Returns true if all axes are extendable.
Definition TH1.cxx:6685
TDirectory * fDirectory
! Pointer to directory holding this histogram
Definition TH1.h:170
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Definition TH1.cxx:7162
void SetNameTitle(const char *name, const char *title) override
Change the name and title of this histogram.
Definition TH1.cxx:9026
TAxis * GetXaxis()
Definition TH1.h:571
virtual void GetBinXYZ(Int_t binglobal, Int_t &binx, Int_t &biny, Int_t &binz) const
Return binx, biny, binz corresponding to the global bin number globalbin see TH1::GetBin function abo...
Definition TH1.cxx:4988
TH1 * GetCumulative(Bool_t forward=kTRUE, const char *suffix="_cumulative") const
Return a pointer to a histogram containing the cumulative content.
Definition TH1.cxx:2598
static Double_t AutoP2GetPower2(Double_t x, Bool_t next=kTRUE)
Auxiliary function to get the power of 2 next (larger) or previous (smaller) a given x.
Definition TH1.cxx:1277
virtual Int_t GetNcells() const
Definition TH1.h:544
virtual Int_t ShowPeaks(Double_t sigma=2, Option_t *option="", Double_t threshold=0.05)
Interface to TSpectrum::Search.
Definition TH1.cxx:9350
static Bool_t RecomputeAxisLimits(TAxis &destAxis, const TAxis &anAxis)
Finds new limits for the axis for the Merge function.
Definition TH1.cxx:5924
virtual Double_t GetSumOfWeights() const
Return the sum of weights across all bins excluding under/overflows.
Definition TH1.h:559
virtual void PutStats(Double_t *stats)
Replace current statistics with the values in array stats.
Definition TH1.cxx:7931
TVirtualHistPainter * GetPainter(Option_t *option="")
Return pointer to painter.
Definition TH1.cxx:4500
TObject * FindObject(const char *name) const override
Search object named name in the list of functions.
Definition TH1.cxx:3845
void Print(Option_t *option="") const override
Print some global quantities for this histogram.
Definition TH1.cxx:7068
static Bool_t GetDefaultSumw2()
Return kTRUE if TH1::Sumw2 must be called when creating new histograms.
Definition TH1.cxx:4404
virtual Int_t FindFirstBinAbove(Double_t threshold=0, Int_t axis=1, Int_t firstBin=1, Int_t lastBin=-1) const
Find first bin with content > threshold for axis (1=x, 2=y, 3=z) if no bins with content > threshold ...
Definition TH1.cxx:3722
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Double_t xmin=0, Double_t xmax=0)
Fit histogram with function fname.
Definition TH1.cxx:3887
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
Definition TH1.cxx:4975
virtual Double_t GetMaximum(Double_t maxval=FLT_MAX) const
Return maximum value smaller than maxval of bins in the range, unless the value has been overridden b...
Definition TH1.cxx:8597
virtual Int_t GetNbinsX() const
Definition TH1.h:541
virtual void SetMaximum(Double_t maximum=-1111)
Definition TH1.h:652
virtual TH1 * FFT(TH1 *h_output, Option_t *option)
This function allows to do discrete Fourier transforms of TH1 and TH2.
Definition TH1.cxx:3266
virtual void LabelsInflate(Option_t *axis="X")
Double the number of bins for axis.
Definition TH1.cxx:5331
virtual TH1 * ShowBackground(Int_t niter=20, Option_t *option="same")
This function calculates the background spectrum in this histogram.
Definition TH1.cxx:9336
static Bool_t SameLimitsAndNBins(const TAxis &axis1, const TAxis &axis2)
Same limits and bins.
Definition TH1.cxx:5914
virtual Bool_t Add(TF1 *h1, Double_t c1=1, Option_t *option="")
Performs the operation: this = this + c1*f1 if errors are defined (see TH1::Sumw2),...
Definition TH1.cxx:813
Double_t fMaximum
Maximum value for plotting.
Definition TH1.h:161
Int_t fBufferSize
fBuffer size
Definition TH1.h:168
TString ProvideSaveName(Option_t *option, Bool_t testfdir=kFALSE)
Provide variable name for histogram for saving as primitive Histogram pointer has by default the hist...
Definition TH1.cxx:7301
virtual Double_t IntegralAndError(Int_t binx1, Int_t binx2, Double_t &err, Option_t *option="") const
Return integral of bin contents in range [binx1,binx2] and its error.
Definition TH1.cxx:8020
Int_t fDimension
! Histogram dimension (1, 2 or 3 dim)
Definition TH1.h:171
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
Definition TH1.cxx:9255
EBinErrorOpt fBinStatErrOpt
Option for bin statistical errors.
Definition TH1.h:174
static Int_t fgBufferSize
! Default buffer size for automatic histograms
Definition TH1.h:176
virtual void SetBinsLength(Int_t=-1)
Definition TH1.h:628
Double_t fNormFactor
Normalization factor.
Definition TH1.h:163
@ kFullyConsistent
Definition TH1.h:139
@ kDifferentNumberOfBins
Definition TH1.h:143
@ kDifferentDimensions
Definition TH1.h:144
@ kDifferentBinLimits
Definition TH1.h:141
@ kDifferentAxisLimits
Definition TH1.h:142
@ kDifferentLabels
Definition TH1.h:140
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition TH1.cxx:3326
TAxis * GetYaxis()
Definition TH1.h:572
TArrayD fContour
Array to display contour levels.
Definition TH1.h:164
virtual Double_t GetBinErrorLow(Int_t bin) const
Return lower error associated to bin number bin.
Definition TH1.cxx:9128
void Browse(TBrowser *b) override
Browse the Histogram object.
Definition TH1.cxx:749
virtual void SetContent(const Double_t *content)
Replace bin contents by the contents of array content.
Definition TH1.cxx:8450
void Draw(Option_t *option="") override
Draw this histogram with options.
Definition TH1.cxx:3048
virtual void SavePrimitiveHelp(std::ostream &out, const char *hname, Option_t *option="")
Helper function for the SavePrimitive functions from TH1 or classes derived from TH1,...
Definition TH1.cxx:7428
Short_t fBarWidth
(1000*width) for bar charts or legos
Definition TH1.h:155
virtual Double_t GetBinErrorSqUnchecked(Int_t bin) const
Definition TH1.h:705
Int_t AxisChoice(Option_t *axis) const
Choose an axis according to "axis".
Definition Haxis.cxx:14
virtual void SetMinimum(Double_t minimum=-1111)
Definition TH1.h:653
Bool_t IsBinUnderflow(Int_t bin, Int_t axis=0) const
Return true if the bin is underflow.
Definition TH1.cxx:5230
void SavePrimitive(std::ostream &out, Option_t *option="") override
Save primitive as a C++ statement(s) on output stream out.
Definition TH1.cxx:7323
static bool CheckBinLabels(const TAxis *a1, const TAxis *a2)
Check that axis have same labels.
Definition TH1.cxx:1537
virtual Double_t Interpolate(Double_t x) const
Given a point x, approximates the value via linear interpolation based on the two nearest bin centers...
Definition TH1.cxx:5131
static void SetDefaultSumw2(Bool_t sumw2=kTRUE)
When this static function is called with sumw2=kTRUE, all new histograms will automatically activate ...
Definition TH1.cxx:6752
virtual void SetBuffer(Int_t bufsize, Option_t *option="")
Set the maximum number of entries to be kept in the buffer.
Definition TH1.cxx:8510
Bool_t IsBinOverflow(Int_t bin, Int_t axis=0) const
Return true if the bin is overflow.
Definition TH1.cxx:5198
UInt_t GetAxisLabelStatus() const
Internal function used in TH1::Fill to see which axis is full alphanumeric, i.e.
Definition TH1.cxx:6724
Double_t * fIntegral
! Integral of bins used by GetRandom
Definition TH1.h:172
Double_t fMinimum
Minimum value for plotting.
Definition TH1.h:162
virtual Double_t Integral(Option_t *option="") const
Return integral of bin contents.
Definition TH1.cxx:7993
static void SetDefaultBufferSize(Int_t bufsize=1000)
Static function to set the default buffer size for automatic histograms.
Definition TH1.cxx:6742
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition TH1.cxx:9271
virtual void DirectoryAutoAdd(TDirectory *)
Perform the automatic addition of the histogram to the given directory.
Definition TH1.cxx:2783
virtual void GetLowEdge(Double_t *edge) const
Fill array with low edge of bins for 1D histogram Better to use h1.GetXaxis()->GetLowEdge(edge)
Definition TH1.cxx:9236
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
Definition TH1.cxx:9201
void Build()
Creates histogram basic data structure.
Definition TH1.cxx:758
virtual Double_t GetEntries() const
Return the current number of entries.
Definition TH1.cxx:4412
virtual Double_t RetrieveBinContent(Int_t bin) const =0
Raw retrieval of bin content on internal data structure see convention for numbering bins in TH1::Get...
virtual TF1 * GetFunction(const char *name) const
Return pointer to function with name.
Definition TH1.cxx:9100
virtual TH1 * Rebin(Int_t ngroup=2, const char *newname="", const Double_t *xbins=nullptr)
Rebin this histogram.
Definition TH1.cxx:6324
virtual Int_t BufferFill(Double_t x, Double_t w)
accumulate arguments in buffer.
Definition TH1.cxx:1475
virtual Double_t GetBinWithContent(Double_t c, Int_t &binx, Int_t firstx=0, Int_t lastx=0, Double_t maxdiff=0) const
Compute first binx in the range [firstx,lastx] for which diff = abs(bin_content-c) <= maxdiff.
Definition TH1.cxx:5102
virtual UInt_t SetCanExtend(UInt_t extendBitMask)
Make the histogram axes extendable / not extendable according to the bit mask returns the previous bi...
Definition TH1.cxx:6698
TList * GetListOfFunctions() const
Definition TH1.h:488
void SetName(const char *name) override
Change the name of this histogram.
Definition TH1.cxx:9012
virtual TH1 * DrawCopy(Option_t *option="", const char *name_postfix="_copy") const
Copy this histogram and Draw in the current pad.
Definition TH1.cxx:3095
virtual Double_t GetRandom(TRandom *rng=nullptr, Option_t *option="") const
Return a random number distributed according the histogram bin contents.
Definition TH1.cxx:5025
Bool_t IsEmpty() const
Check if a histogram is empty (this is a protected method used mainly by TH1Merger )
Definition TH1.cxx:5180
virtual Double_t GetMeanError(Int_t axis=1) const
Return standard error of mean of this histogram along the X axis.
Definition TH1.cxx:7622
void Paint(Option_t *option="") override
Control routine to paint any kind of histograms.
Definition TH1.cxx:6255
virtual Double_t AndersonDarlingTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between this histogram and h2, using the Anderson-Darling ...
Definition TH1.cxx:8114
virtual void ResetStats()
Reset the statistics including the number of entries and replace with values calculated from bin cont...
Definition TH1.cxx:7949
virtual void SetBinErrorOption(EBinErrorOpt type)
Definition TH1.h:629
virtual void DrawPanel()
Display a panel with all histogram drawing options.
Definition TH1.cxx:3157
virtual Double_t Chisquare(TF1 *f1, Option_t *option="") const
Compute and return the chisquare of this histogram with respect to a function The chisquare is comput...
Definition TH1.cxx:2467
virtual Double_t Chi2Test(const TH1 *h2, Option_t *option="UU", Double_t *res=nullptr) const
test for comparing weighted and unweighted histograms.
Definition TH1.cxx:1979
virtual void DoFillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride=1)
Internal method to fill histogram content from a vector called directly by TH1::BufferEmpty.
Definition TH1.cxx:3455
virtual void GetMinimumAndMaximum(Double_t &min, Double_t &max) const
Retrieve the minimum and maximum values in the histogram.
Definition TH1.cxx:8783
@ kNstat
Size of statistics data (up to TProfile3D)
Definition TH1.h:422
virtual Int_t GetMaximumBin() const
Return location of bin with maximum value in the range.
Definition TH1.cxx:8629
static Int_t AutoP2GetBins(Int_t n)
Auxiliary function to get the next power of 2 integer value larger then n.
Definition TH1.cxx:1290
Double_t fEntries
Number of entries.
Definition TH1.h:156
virtual Long64_t Merge(TCollection *list)
Definition TH1.h:592
virtual void SetColors(Color_t linecolor=-1, Color_t markercolor=-1, Color_t fillcolor=-1)
Shortcut to set the three histogram colors with a single call.
Definition TH1.cxx:4456
void ExecuteEvent(Int_t event, Int_t px, Int_t py) override
Execute action corresponding to one event.
Definition TH1.cxx:3222
virtual Double_t * GetIntegral()
Return a pointer to the array of bins integral.
Definition TH1.cxx:2568
TAxis fZaxis
Z axis descriptor.
Definition TH1.h:153
EStatOverflows fStatOverflows
Per object flag to use under/overflows in statistics.
Definition TH1.h:175
TClass * IsA() const override
Definition TH1.h:693
virtual void FillN(Int_t ntimes, const Double_t *x, const Double_t *w, Int_t stride=1)
Fill this histogram with an array x and weights w.
Definition TH1.cxx:3429
static bool CheckEqualAxes(const TAxis *a1, const TAxis *a2)
Check that the axis are the same.
Definition TH1.cxx:1580
@ kPoisson2
Errors from Poisson interval at 95% CL (~ 2 sigma)
Definition TH1.h:117
@ kNormal
Errors with Normal (Wald) approximation: errorUp=errorLow= sqrt(N)
Definition TH1.h:115
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition TH1.cxx:5077
virtual Int_t GetContour(Double_t *levels=nullptr)
Return contour values into array levels if pointer levels is non zero.
Definition TH1.cxx:8463
TAxis fXaxis
X axis descriptor.
Definition TH1.h:151
virtual Bool_t IsHighlight() const
Definition TH1.h:585
virtual void ExtendAxis(Double_t x, TAxis *axis)
Histogram is resized along axis such that x is in the axis range.
Definition TH1.cxx:6553
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width for 1D histogram.
Definition TH1.cxx:9212
TArrayD fSumw2
Array of sum of squares of weights.
Definition TH1.h:165
TH1 * GetAsymmetry(TH1 *h2, Double_t c2=1, Double_t dc2=0)
Return a histogram containing the asymmetry of this histogram with h2, where the asymmetry is defined...
Definition TH1.cxx:4328
virtual Double_t GetContourLevel(Int_t level) const
Return value of contour number level.
Definition TH1.cxx:8482
virtual void SetContour(Int_t nlevels, const Double_t *levels=nullptr)
Set the number and values of contour levels.
Definition TH1.cxx:8535
virtual void SetHighlight(Bool_t set=kTRUE)
Set highlight (enable/disable) mode for the histogram by default highlight mode is disable.
Definition TH1.cxx:4471
virtual Double_t GetBinErrorUp(Int_t bin) const
Return upper error associated to bin number bin.
Definition TH1.cxx:9159
virtual void Scale(Double_t c1=1, Option_t *option="")
Multiply this histogram by a constant c1.
Definition TH1.cxx:6653
virtual Int_t GetMinimumBin() const
Return location of bin with minimum value in the range.
Definition TH1.cxx:8717
virtual Double_t ComputeIntegral(Bool_t onlyPositive=false, Option_t *option="")
Compute integral (normalized cumulative sum of bins) w/o under/overflows The result is stored in fInt...
Definition TH1.cxx:2513
virtual Int_t GetSumw2N() const
Definition TH1.h:562
virtual Int_t FindBin(Double_t x, Double_t y=0, Double_t z=0)
Return Global bin number corresponding to x,y,z.
Definition TH1.cxx:3660
Bool_t GetStatOverflowsBehaviour() const
Definition TH1.h:391
void SaveAs(const char *filename="hist", Option_t *option="") const override
Save the histogram as .csv, .tsv or .txt.
Definition TH1.cxx:7240
virtual Int_t GetQuantiles(Int_t n, Double_t *xp, const Double_t *p=nullptr)
Compute Quantiles for this histogram.
Definition TH1.cxx:4604
virtual void AddBinContent(Int_t bin)=0
Increment bin content by 1.
TObject * Clone(const char *newname="") const override
Make a complete copy of the underlying object.
Definition TH1.cxx:2734
virtual Double_t GetStdDevError(Int_t axis=1) const
Return error of standard deviation estimation for Normal distribution.
Definition TH1.cxx:7702
virtual Bool_t Divide(TF1 *f1, Double_t c1=1)
Performs the operation: this = this/(c1*f1) if errors are defined (see TH1::Sumw2),...
Definition TH1.cxx:2822
virtual Double_t GetMinimum(Double_t minval=-FLT_MAX) const
Return minimum value larger than minval of bins in the range, unless the value has been overridden by...
Definition TH1.cxx:8687
int LoggedInconsistency(const char *name, const TH1 *h1, const TH1 *h2, bool useMerge=false) const
Definition TH1.cxx:870
static bool CheckConsistentSubAxes(const TAxis *a1, Int_t firstBin1, Int_t lastBin1, const TAxis *a2, Int_t firstBin2=0, Int_t lastBin2=0)
Check that two sub axis are the same.
Definition TH1.cxx:1609
static Int_t CheckConsistency(const TH1 *h1, const TH1 *h2)
Check histogram compatibility.
Definition TH1.cxx:1648
void RecursiveRemove(TObject *obj) override
Recursively remove object from the list of functions.
Definition TH1.cxx:6625
TAxis fYaxis
Y axis descriptor.
Definition TH1.h:152
virtual Double_t KolmogorovTest(const TH1 *h2, Option_t *option="") const
Statistical test of compatibility in shape between this histogram and h2, using Kolmogorov test.
Definition TH1.cxx:8230
static void SmoothArray(Int_t NN, Double_t *XX, Int_t ntimes=1)
Smooth array xx, translation of Hbook routine hsmoof.F.
Definition TH1.cxx:6827
virtual void GetCenter(Double_t *center) const
Fill array with center of bins for 1D histogram Better to use h1.GetXaxis()->GetCenter(center)
Definition TH1.cxx:9223
TVirtualHistPainter * fPainter
! Pointer to histogram painter
Definition TH1.h:173
virtual void SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Redefine x axis parameters.
Definition TH1.cxx:8819
virtual Int_t FindFixBin(Double_t x, Double_t y=0, Double_t z=0) const
Return Global bin number corresponding to x,y,z.
Definition TH1.cxx:3693
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
Definition TH1.cxx:9072
virtual void SetEntries(Double_t n)
Definition TH1.h:639
virtual Bool_t FindNewAxisLimits(const TAxis *axis, const Double_t point, Double_t &newMin, Double_t &newMax)
finds new limits for the axis so that point is within the range and the limits are compatible with th...
Definition TH1.cxx:6509
static bool CheckAxisLimits(const TAxis *a1, const TAxis *a2)
Check that the axis limits of the histograms are the same.
Definition TH1.cxx:1566
static Bool_t AddDirectoryStatus()
Static function: cannot be inlined on Windows/NT.
Definition TH1.cxx:741
static Bool_t fgDefaultSumw2
! Flag to call TH1::Sumw2 automatically at histogram creation time
Definition TH1.h:179
static void SavePrimitiveFunctions(std::ostream &out, const char *varname, TList *lst)
Save list of functions Also can be used by TGraph classes.
Definition TH1.cxx:7482
virtual void UpdateBinContent(Int_t bin, Double_t content)=0
Raw update of bin content on internal data structure see convention for numbering bins in TH1::GetBin...
Double_t fTsumwx
Total Sum of weight*X.
Definition TH1.h:159
virtual void LabelsDeflate(Option_t *axis="X")
Reduce the number of bins for the axis passed in the option to the number of bins having a label.
Definition TH1.cxx:5261
TString fOption
Histogram options.
Definition TH1.h:166
virtual void Eval(TF1 *f1, Option_t *option="")
Evaluate function f1 at the center of bins of this histogram.
Definition TH1.cxx:3174
virtual void SetBarWidth(Float_t width=0.5)
Set the width of bars as fraction of the bin width for drawing mode "B".
Definition TH1.h:613
virtual Int_t BufferEmpty(Int_t action=0)
Fill histogram with all entries in the buffer.
Definition TH1.cxx:1383
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
Definition TH1.cxx:9042
virtual Double_t GetKurtosis(Int_t axis=1) const
Definition TH1.cxx:7791
2-D histogram with a double per channel (see TH1 documentation)
Definition TH2.h:400
static THLimitsFinder * GetLimitsFinder()
Return pointer to the current finder.
THashList implements a hybrid collection class consisting of a hash table and a list to store TObject...
Definition THashList.h:34
void Clear(Option_t *option="") override
Remove all objects from the list.
A doubly linked list.
Definition TList.h:38
void Streamer(TBuffer &) override
Stream all objects in the collection to or from the I/O buffer.
Definition TList.cxx:1323
TObject * FindObject(const char *name) const override
Find an object in this list using its name.
Definition TList.cxx:708
void RecursiveRemove(TObject *obj) override
Remove object from this collection and recursively remove the object from all other objects (and coll...
Definition TList.cxx:894
void Add(TObject *obj) override
Definition TList.h:81
TObject * Remove(TObject *obj) override
Remove object from the list.
Definition TList.cxx:952
TObject * First() const override
Return the first object in the list. Returns 0 when list is empty.
Definition TList.cxx:789
void Delete(Option_t *option="") override
Remove all objects from the list AND delete all heap based objects.
Definition TList.cxx:600
TObject * At(Int_t idx) const override
Returns the object at position idx. Returns 0 if idx is out of range.
Definition TList.cxx:487
The TNamed class is the base class for all named ROOT classes.
Definition TNamed.h:29
void Copy(TObject &named) const override
Copy this to obj.
Definition TNamed.cxx:93
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition TNamed.cxx:173
const char * GetName() const override
Returns name of object.
Definition TNamed.h:49
void Streamer(TBuffer &) override
Stream an object of class TObject.
const char * GetTitle() const override
Returns title of object.
Definition TNamed.h:50
TString fTitle
Definition TNamed.h:33
TString fName
Definition TNamed.h:32
virtual void SetName(const char *name)
Set the name of the TNamed.
Definition TNamed.cxx:149
Mother of all ROOT objects.
Definition TObject.h:41
virtual const char * GetName() const
Returns name of object.
Definition TObject.cxx:457
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Definition TObject.h:202
virtual UInt_t GetUniqueID() const
Return the unique object id.
Definition TObject.cxx:475
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition TObject.cxx:226
virtual void UseCurrentStyle()
Set current style settings in this object This function is called when either TCanvas::UseCurrentStyl...
Definition TObject.cxx:902
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition TObject.cxx:1074
virtual void AppendPad(Option_t *option="")
Append graphics object to current pad.
Definition TObject.cxx:203
virtual void SaveAs(const char *filename="", Option_t *option="") const
Save this object in the file specified by filename.
Definition TObject.cxx:705
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Definition TObject.cxx:881
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
Definition TObject.cxx:543
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition TObject.cxx:1088
virtual void SetUniqueID(UInt_t uid)
Set the unique object id.
Definition TObject.cxx:892
static void SavePrimitiveDraw(std::ostream &out, const char *variable_name, Option_t *option=nullptr)
Save invocation of primitive Draw() method Skipped if option contains "nodraw" string.
Definition TObject.cxx:839
static TString SavePrimitiveVector(std::ostream &out, const char *prefix, Int_t len, Double_t *arr, Int_t flag=0)
Save array in the output stream "out" as vector.
Definition TObject.cxx:790
void ResetBit(UInt_t f)
Definition TObject.h:201
@ kCanDelete
if object in a list can be deleted
Definition TObject.h:68
@ kInvalidObject
if object ctor succeeded but object should not be used
Definition TObject.h:78
@ kMustCleanup
if object destructor must call RecursiveRemove()
Definition TObject.h:70
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Definition TObject.cxx:1062
Longptr_t ExecPlugin(int nargs)
Int_t LoadPlugin()
Load the plugin library for this handler.
static TClass * Class()
This is the base class for the ROOT Random number generators.
Definition TRandom.h:27
Double_t Rndm() override
Machine independent random number generator.
Definition TRandom.cxx:558
virtual Double_t PoissonD(Double_t mean)
Generates a random number according to a Poisson law.
Definition TRandom.cxx:460
virtual ULong64_t Poisson(Double_t mean)
Generates a random integer N according to a Poisson law.
Definition TRandom.cxx:403
Basic string class.
Definition TString.h:138
Ssiz_t Length() const
Definition TString.h:425
void ToLower()
Change string to lower-case.
Definition TString.cxx:1189
TString & ReplaceSpecialCppChars()
Find special characters which are typically used in printf() calls and replace them by appropriate es...
Definition TString.cxx:1121
const char * Data() const
Definition TString.h:384
TString & ReplaceAll(const TString &s1, const TString &s2)
Definition TString.h:713
@ kIgnoreCase
Definition TString.h:285
void ToUpper()
Change string to upper case.
Definition TString.cxx:1202
Bool_t IsNull() const
Definition TString.h:422
virtual void Streamer(TBuffer &)
Stream a string object.
Definition TString.cxx:1418
TString & Append(const char *cs)
Definition TString.h:581
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
Definition TString.cxx:2384
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Definition TString.h:641
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
Definition TString.h:660
Int_t GetOptStat() const
Definition TStyle.h:247
void SetOptStat(Int_t stat=1)
The type of information printed in the histogram statistics box can be selected via the parameter mod...
Definition TStyle.cxx:1641
void SetHistFillColor(Color_t color=1)
Definition TStyle.h:383
Color_t GetHistLineColor() const
Definition TStyle.h:235
Bool_t IsReading() const
Definition TStyle.h:300
Float_t GetBarOffset() const
Definition TStyle.h:184
void SetHistLineStyle(Style_t styl=0)
Definition TStyle.h:386
Style_t GetHistFillStyle() const
Definition TStyle.h:236
Color_t GetHistFillColor() const
Definition TStyle.h:234
Float_t GetBarWidth() const
Definition TStyle.h:185
Bool_t GetCanvasPreferGL() const
Definition TStyle.h:189
void SetHistLineColor(Color_t color=1)
Definition TStyle.h:384
void SetBarOffset(Float_t baroff=0.5)
Definition TStyle.h:339
Style_t GetHistLineStyle() const
Definition TStyle.h:237
void SetBarWidth(Float_t barwidth=0.5)
Definition TStyle.h:340
void SetHistFillStyle(Style_t styl=0)
Definition TStyle.h:385
Width_t GetHistLineWidth() const
Definition TStyle.h:238
Int_t GetOptFit() const
Definition TStyle.h:246
void SetHistLineWidth(Width_t width=1)
Definition TStyle.h:387
TVectorT.
Definition TVectorT.h:29
TVirtualFFT is an interface class for Fast Fourier Transforms.
Definition TVirtualFFT.h:88
static TVirtualFFT * FFT(Int_t ndim, Int_t *n, Option_t *option)
Returns a pointer to the FFT of requested size and type.
static TVirtualFFT * SineCosine(Int_t ndim, Int_t *n, Int_t *r2rkind, Option_t *option)
Returns a pointer to a sine or cosine transform of requested size and kind.
Abstract Base Class for Fitting.
static TVirtualFitter * GetFitter()
static: return the current Fitter
Abstract interface to a histogram painter.
virtual void DrawPanel()=0
Int_t DistancetoPrimitive(Int_t px, Int_t py) override=0
Computes distance from point (px,py) to the object.
void ExecuteEvent(Int_t event, Int_t px, Int_t py) override=0
Execute action corresponding to an event at (px,py).
virtual void SetHighlight()=0
static TVirtualHistPainter * HistPainter(TH1 *obj)
Static function returning a pointer to the current histogram painter.
void Paint(Option_t *option="") override=0
This method must be overridden if a class wants to paint itself.
double gamma_quantile_c(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the upper tail of the gamma distribution (gamm...
double gamma_quantile(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the lower tail of the gamma distribution (gamm...
const Double_t sigma
Double_t y[n]
Definition legend1.C:17
return c1
Definition legend1.C:41
Double_t x[n]
Definition legend1.C:17
const Int_t n
Definition legend1.C:16
TH1F * h1
Definition legend1.C:5
TF1 * f1
Definition legend1.C:11
return c2
Definition legend2.C:14
R__ALWAYS_INLINE bool HasBeenDeleted(const TObject *obj)
Check if the TObject's memory has been deleted.
Definition TObject.h:405
TFitResultPtr FitObject(TH1 *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
fitting function for a TH1 (called from TH1::Fit)
Definition HFitImpl.cxx:977
double Chisquare(const TH1 &h1, TF1 &f1, bool useRange, EChisquareType type)
compute the chi2 value for an histogram given a function (see TH1::Chisquare for the documentation)
void FitOptionsMake(EFitObjectType type, const char *option, Foption_t &fitOption)
Decode list of options into fitOption.
Definition HFitImpl.cxx:685
void FillData(BinData &dv, const TH1 *hist, TF1 *func=nullptr)
fill the data vector from a TH1.
R__EXTERN TVirtualRWMutex * gCoreMutex
Bool_t IsNaN(Double_t x)
Definition TMath.h:903
Int_t Nint(T x)
Round to nearest integer. Rounds half integers to the nearest even integer.
Definition TMath.h:704
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
Definition TMathBase.h:249
Double_t Prob(Double_t chi2, Int_t ndf)
Computation of the probability for a certain Chi-squared (chi2) and number of degrees of freedom (ndf...
Definition TMath.cxx:637
Double_t Median(Long64_t n, const T *a, const Double_t *w=nullptr, Long64_t *work=nullptr)
Same as RMS.
Definition TMath.h:1359
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754.
Definition TMath.h:913
Double_t Floor(Double_t x)
Rounds x downward, returning the largest integral value that is not greater than x.
Definition TMath.h:691
Double_t ATan(Double_t)
Returns the principal value of the arc tangent of x, expressed in radians.
Definition TMath.h:651
Double_t Ceil(Double_t x)
Rounds x upward, returning the smallest integral value that is not less than x.
Definition TMath.h:679
T MinElement(Long64_t n, const T *a)
Returns minimum of array a of length n.
Definition TMath.h:971
Double_t Log(Double_t x)
Returns the natural logarithm of x.
Definition TMath.h:767
Double_t Sqrt(Double_t x)
Returns the square root of x.
Definition TMath.h:673
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
Definition TMathBase.h:197
constexpr Double_t Pi()
Definition TMath.h:40
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Comparing floating points.
Definition TMath.h:429
Bool_t AreEqualAbs(Double_t af, Double_t bf, Double_t epsilon)
Comparing floating points.
Definition TMath.h:421
Double_t KolmogorovProb(Double_t z)
Calculates the Kolmogorov distribution function,.
Definition TMath.cxx:679
void Sort(Index n, const Element *a, Index *index, Bool_t down=kTRUE)
Sort the n elements of the array a of generic templated type Element.
Definition TMathBase.h:413
Long64_t BinarySearch(Long64_t n, const T *array, T value)
Binary search in an array of n values to locate value.
Definition TMathBase.h:329
Double_t Log10(Double_t x)
Returns the common (base-10) logarithm of x.
Definition TMath.h:773
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
Definition TMathBase.h:122
Double_t Infinity()
Returns an infinity as defined by the IEEE standard.
Definition TMath.h:928
th1 Draw()
TMarker m
Definition textangle.C:8
TLine l
Definition textangle.C:4
static uint64_t sum(uint64_t i)
Definition Factory.cxx:2339