Logo ROOT  
Reference Guide
TEfficiency.cxx
Go to the documentation of this file.
1#ifndef ROOT_TEfficiency_cxx
2#define ROOT_TEfficiency_cxx
3
4//standard header
5#include <vector>
6#include <string>
7#include <cmath>
8#include <stdlib.h>
9#include <cassert>
10
11//ROOT headers
14#include "TDirectory.h"
15#include "TF1.h"
16#include "TGraphAsymmErrors.h"
17#include "TH1.h"
18#include "TH2.h"
19#include "TH3.h"
20#include "TList.h"
21#include "TMath.h"
22#include "TROOT.h"
23#include "TStyle.h"
24#include "TVirtualPad.h"
25#include "TError.h"
28
29//custom headers
30#include "TEfficiency.h"
31
32// file with extra class for FC method
33#include "TEfficiencyHelper.h"
34
35//default values
38const Double_t kDefConfLevel = 0.682689492137; // 1 sigma
41
43
44////////////////////////////////////////////////////////////////////////////////
45/** \class TEfficiency
46 \ingroup Hist
47 \brief Class to handle efficiency histograms
48
49## I. Overview
50This class handles the calculation of efficiencies and their uncertainties. It
51provides several statistical methods for calculating frequentist and Bayesian
52confidence intervals as well as a function for combining several efficiencies.
53
54Efficiencies have a lot of applications and meanings but in principle, they can
55be described by the fraction of good/passed events k out of sample containing
56N events. One is usually interested in the dependency of the efficiency on other
57(binned) variables. The number of passed and total events is therefore stored
58internally in two histograms (TEfficiency::fTotalHistogram and TEfficiency::fPassedHistogram).
59Then the efficiency, as well as its upper and lower error, can be calculated for each bin
60individually.
61
62As the efficiency can be regarded as a parameter of a binomial distribution, the
63number of passed and total events must always be integer numbers. Therefore a
64filling with weights is not possible. However, you can assign a global weight to each
65TEfficiency object (TEfficiency::SetWeight).
66It is necessary to create one TEfficiency object
67for each weight if you investigate a process involving different weights. This
68procedure needs more effort but enables you to re-use the filled object in cases
69where you want to change one or more weights. This would not be possible if all
70events with different weights were filled in the same histogram.
71
72## II. Creating a TEfficiency object
73If you start a new analysis, it is highly recommended to use the TEfficiency class
74from the beginning. You can then use one of the constructors for fixed or
75variable bin size and your desired dimension. These constructors append the
76created TEfficiency object to the current directory. So it will be written
77automatically to a file during the next TFile::Write command.
78
79Example: create a two-dimensional TEfficiency object with
80- name = "eff"
81- title = "my efficiency"
82- axis titles: x, y and LaTeX-formatted epsilon as a label for Z axis
83- 10 bins with constant bin width (= 1) along X axis starting at 0 (lower edge
84 from the first bin) up to 10 (upper edge of last bin)
85- 20 bins with constant bin width (= 0.5) along Y axis starting at -5 (lower
86 edge from the first bin) up to 5 (upper edge of last bin)
87
88 TEfficiency* pEff = new TEfficiency("eff","my efficiency;x;y;#epsilon",10,0,10,20,-5,5);
89
90If you already have two histograms filled with the number of passed and total
91events, you will use the constructor TEfficiency(const TH1& passed,const TH1& total)
92to construct the TEfficiency object. The histograms "passed" and "total" have
93to fulfill the conditions mentioned in TEfficiency::CheckConsistency, otherwise the construction will fail.
94As the histograms already exist, the new TEfficiency is by default **not** attached
95to the current directory to avoid duplication of data. If you want to store the
96new object anyway, you can either write it directly by calling TObject::Write or attach it to a directory using TEfficiency::SetDirectory.
97This also applies to TEfficiency objects created by the copy constructor TEfficiency::TEfficiency(const TEfficiency& rEff).
98
99
100### Example 1
101
102~~~~~~~~~~~~~~~{.cpp}
103TEfficiency* pEff = 0;
104TFile* pFile = new TFile("myfile.root","recreate");
105
106//h_pass and h_total are valid and consistent histograms
107if(TEfficiency::CheckConsistency(h_pass,h_total))
108{
109 pEff = new TEfficiency(h_pass,h_total);
110 // this will write the TEfficiency object to "myfile.root"
111 // AND pEff will be attached to the current directory
112 pEff->Write();
113}
114~~~~~~~~~~~~~~~
115
116### Example 2
117
118~~~~~~~~~~~~~~~{.cpp}
119TEfficiency* pEff = 0;
120TFile* pFile = new TFile("myfile.root","recreate");
121
122//h_pass and h_total are valid and consistent histograms
123if(TEfficiency::CheckConsistency(h_pass,h_total))
124{
125 pEff = new TEfficiency(h_pass,h_total);
126 //this will attach the TEfficiency object to the current directory
127 pEff->SetDirectory(gDirectory);
128 //now all objects in gDirectory will be written to "myfile.root"
129 pFile->Write();
130}
131~~~~~~~~~~~~~~~
132
133In case you already have two filled histograms and you only want to
134plot them as a graph, you should rather use TGraphAsymmErrors::TGraphAsymmErrors(const TH1* pass,const TH1* total,Option_t* opt)
135to create a graph object.
136
137## III. Filling with events
138You can fill the TEfficiency object by calling the TEfficiency::Fill(Bool_t bPassed,Double_t x,Double_t y,Double_t z) method.
139The "bPassed" boolean flag indicates whether the current event is good
140(both histograms are filled) or not (only TEfficiency::fTotalHistogram is filled).
141The x, y and z variables determine the bin which is filled. For lower dimensions, the z- or even the y-value may be omitted.
142
143Begin_Macro(source)
144{
145 //canvas only needed for this documentation
146 TCanvas* c1 = new TCanvas("example","",600,400);
147 c1->SetFillStyle(1001);
148 c1->SetFillColor(kWhite);
149
150 //create one-dimensional TEfficiency object with fixed bin size
151 TEfficiency* pEff = new TEfficiency("eff","my efficiency;x;#epsilon",20,0,10);
152 TRandom3 rand3;
153
154 bool bPassed;
155 double x;
156 for(int i=0; i<10000; ++i)
157 {
158 //simulate events with variable under investigation
159 x = rand3.Uniform(10);
160 //check selection: bPassed = DoesEventPassSelection(x)
161 bPassed = rand3.Rndm() < TMath::Gaus(x,5,4);
162 pEff->Fill(bPassed,x);
163 }
164
165 pEff->Draw("AP");
166
167 //only for this documentation
168 return c1;
169}
170End_Macro
171
172You can also set the number of passed or total events for a bin directly by
173using the TEfficiency::SetPassedEvents or TEfficiency::SetTotalEvents method.
174
175## IV. Statistic options
176The calculation of the estimated efficiency depends on the chosen statistic
177option. Let k denotes the number of passed events and N the number of total
178events.
179
180###Frequentist methods
181The expectation value of the number of passed events is given by the true
182efficiency times the total number of events. One can estimate the efficiency
183by replacing the expected number of passed events by the observed number of
184passed events.
185
186\f[
187 k = \epsilon \times N \Rightarrow \hat{\varepsilon} = \frac{k}{N}
188\f]
189
190### Bayesian methods
191In Bayesian statistics a likelihood-function (how probable is it to get the
192observed data assuming a true efficiency) and a prior probability (what is the
193probability that a certain true efficiency is actually realised) are used to
194determine a posterior probability by using Bayes theorem. At the moment, only
195beta distributions (have 2 free parameters) are supported as prior
196probabilities.
197
198\f{eqnarray*}{
199 P(\epsilon | k ; N) &=& \frac{1}{norm} \times P(k | \epsilon ; N) \times Prior(\epsilon) \\
200 P(k | \epsilon ; N) &=& Binomial(N,k) \times \epsilon^{k} \times (1 - \epsilon)^{N - k} ...\ binomial\ distribution \\
201 Prior(\epsilon) &=& \frac{1}{B(\alpha,\beta)} \times \epsilon ^{\alpha - 1} \times (1 - \epsilon)^{\beta - 1} \equiv Beta(\epsilon; \alpha,\beta) \\
202 \Rightarrow P(\epsilon | k ; N) &=& \frac{1}{norm'} \times \epsilon^{k + \alpha - 1} \times (1 - \epsilon)^{N - k + \beta - 1} \equiv Beta(\epsilon; k + \alpha, N - k + \beta)
203\f}
204
205By default the expectation value of this posterior distribution is used as an estimator for the efficiency:
206
207\f[
208 \hat{\varepsilon} = \frac{k + \alpha}{N + \alpha + \beta}
209\f]
210
211Optionally the mode can also be used as a value for the estimated efficiency. This can be done by calling
212SetBit(kPosteriorMode) or TEfficiency::SetPosteriorMode. In this case, the estimated efficiency is:
213
214\f[
215 \hat{\varepsilon} = \frac{k + \alpha -1}{N + \alpha + \beta - 2}
216\f]
217
218In the case of a uniform prior distribution, B(x,1,1), the posterior mode is k/n, equivalent to the frequentist
219estimate (the maximum likelihood value).
220
221The statistic options also specify which confidence interval is used for calculating
222the uncertainties of the efficiency. The following properties define the error
223calculation:
224- **fConfLevel:** desired confidence level: 0 < fConfLevel < 1 (TEfficiency::GetConfidenceLevel / TEfficiency::SetConfidenceLevel)
225- **fStatisticOption** defines which method is used to calculate the boundaries of the confidence interval (TEfficiency::SetStatisticOption)
226- **fBeta_alpha, fBeta_beta:** parameters for the prior distribution which is only used in the bayesian case (TEfficiency::GetBetaAlpha / TEfficiency::GetBetaBeta / TEfficiency::SetBetaAlpha / TEfficiency::SetBetaBeta)
227- **kIsBayesian:** flag whether bayesian statistics are used or not (TEfficiency::UsesBayesianStat)
228- **kShortestInterval:** flag whether shortest interval (instead of central one) are used in case of Bayesian statistics (TEfficiency::UsesShortestInterval). Normally shortest interval should be used in combination with the mode (see TEfficiency::UsesPosteriorMode)
229- **fWeight:** global weight for this TEfficiency object which is used during combining or merging with other TEfficiency objects(TEfficiency::GetWeight / TEfficiency::SetWeight)
230
231In the following table, the implemented confidence intervals are listed
232with their corresponding statistic option. For more details on the calculation,
233please have a look at the mentioned functions.
234
235
236| name | statistic option | function | kIsBayesian | parameters |
237|------------------|------------------|---------------------|-------------|------------|
238| Clopper-Pearson | kFCP | TEfficiency::ClopperPearson |false |total events, passed events, confidence level |
239| normal approximation | kFNormal | TEfficiency::Normal | false | total events, passed events, confidence level |
240| Wilson | kFWilson | TEfficiency::Wilson | false | total events, passed events, confidence level |
241| Agresti-Coull | kFAC | TEfficiency::AgrestiCoull | false | total events, passed events. confidence level |
242| Feldman-Cousins | kFFC | TEfficiency::FeldmanCousins | false | total events, passed events, confidence level |
243| Mid-P Lancaster | kMidP | TEfficiency::MidPInterval | false | total events, passed events, confidence level |
244| Jeffrey | kBJeffrey | TEfficiency::Bayesian | true | total events, passed events, confidence level, fBeta_alpha = 0.5, fBeta_beta = 0.5 |
245| Uniform prior | kBUniform |TEfficiency::Bayesian | true |total events, passed events, confidence level, fBeta_alpha = 1, fBeta_beta = 1 |
246| custom prior | kBBayesian |TEfficiency::Bayesian | true |total events, passed events, confidence level, fBeta_alpha, fBeta_beta |
247
248The following example demonstrates the effect of different statistic options and
249confidence levels.
250
251Begin_Macro(source)
252{
253 //canvas only needed for the documentation
254 TCanvas* c1 = new TCanvas("c1","",600,400);
255 c1->Divide(2);
256 c1->SetFillStyle(1001);
257 c1->SetFillColor(kWhite);
258
259 //create one-dimensional TEfficiency object with fixed bin size
260 TEfficiency* pEff = new TEfficiency("eff","different confidence levels;x;#epsilon",20,0,10);
261 TRandom3 rand3;
262
263 bool bPassed;
264 double x;
265 for(int i=0; i<1000; ++i)
266 {
267 //simulate events with variable under investigation
268 x = rand3.Uniform(10);
269 //check selection: bPassed = DoesEventPassSelection(x)
270 bPassed = rand3.Rndm() < TMath::Gaus(x,5,4);
271 pEff->Fill(bPassed,x);
272 }
273
274 //set style attributes
275 pEff->SetFillStyle(3004);
276 pEff->SetFillColor(kRed);
277
278 //copy current TEfficiency object and set new confidence level
279 TEfficiency* pCopy = new TEfficiency(*pEff);
280 pCopy->SetConfidenceLevel(0.90);
281
282 //set style attributes
283 pCopy->SetFillStyle(3005);
284 pCopy->SetFillColor(kBlue);
285
286 c1->cd(1);
287
288 //add legend
289 TLegend* leg1 = new TLegend(0.3,0.1,0.7,0.5);
290 leg1->AddEntry(pEff,"95%","F");
291 leg1->AddEntry(pCopy,"68.3%","F");
292
293 pEff->Draw("A4");
294 pCopy->Draw("same4");
295 leg1->Draw("same");
296
297 //use same confidence level but different statistic methods
298 TEfficiency* pEff2 = new TEfficiency(*pEff);
299 TEfficiency* pCopy2 = new TEfficiency(*pEff);
300
301 pEff2->SetStatisticOption(TEfficiency::kFNormal);
302 pCopy2->SetStatisticOption(TEfficiency::kFAC);
303
304 pEff2->SetTitle("different statistic options;x;#epsilon");
305
306 //set style attributes
307 pCopy2->SetFillStyle(3005);
308 pCopy2->SetFillColor(kBlue);
309
310 c1->cd(2);
311
312 //add legend
313 TLegend* leg2 = new TLegend(0.3,0.1,0.7,0.5);
314 leg2->AddEntry(pEff2,"kFNormal","F");
315 leg2->AddEntry(pCopy2,"kFAC","F");
316
317 pEff2->Draw("a4");
318 pCopy2->Draw("same4");
319 leg2->Draw("same");
320
321 //only for this documentation
322 c1->cd(0);
323 return c1;
324}
325End_Macro
326
327The prior probability of the efficiency in Bayesian statistics can be given
328in terms of a beta distribution. The beta distribution has two positive shape
329parameters. The resulting priors for different combinations of these shape
330parameters are shown in the plot below.
331
332Begin_Macro(source)
333{
334 //canvas only needed for the documentation
335 TCanvas* c1 = new TCanvas("c1","",600,400);
336 c1->SetFillStyle(1001);
337 c1->SetFillColor(kWhite);
338
339 //create different beta distributions
340 TF1* f1 = new TF1("f1","TMath::BetaDist(x,1,1)",0,1);
341 f1->SetLineColor(kBlue);
342 TF1* f2 = new TF1("f2","TMath::BetaDist(x,0.5,0.5)",0,1);
343 f2->SetLineColor(kRed);
344 TF1* f3 = new TF1("f3","TMath::BetaDist(x,1,5)",0,1);
345 f3->SetLineColor(kGreen+3);
346 f3->SetTitle("Beta distributions as priors;#epsilon;P(#epsilon)");
347 TF1* f4 = new TF1("f4","TMath::BetaDist(x,4,3)",0,1);
348 f4->SetLineColor(kViolet);
349
350 //add legend
351 TLegend* leg = new TLegend(0.25,0.5,0.85,0.89);
352 leg->SetFillColor(kWhite);
353 leg->SetFillStyle(1001);
354 leg->AddEntry(f1,"a=1, b=1","L");
355 leg->AddEntry(f2,"a=0.5, b=0.5","L");
356 leg->AddEntry(f3,"a=1, b=5","L");
357 leg->AddEntry(f4,"a=4, b=3","L");
358
359 f3->Draw();
360 f1->Draw("same");
361 f2->Draw("Same");
362 f4->Draw("same");
363 leg->Draw("same");
364
365 //only for this documentation
366 return c1;
367}
368End_Macro
369
370
371## IV.1 Coverage probabilities for different methods
372The following pictures illustrate the actual coverage probability for the
373different values of the true efficiency and the total number of events when a
374confidence level of 95% is desired.
375
376\image html normal95.gif "Normal Approximation"
377
378
379\image html wilson95.gif "Wilson"
380
381
382\image html ac95.gif "Agresti Coull"
383
384
385\image html cp95.gif "Clopper Pearson"
386
387
388\image html uni95.gif "Bayesian with Uniform Prior"
389
390
391\image html jeffrey95.gif "Bayesian with Jeffrey Prior"
392
393The average (over all possible true efficiencies) coverage probability for
394different number of total events is shown in the next picture.
395\image html av_cov.png "Average Coverage"
396
397## V. Merging and combining TEfficiency objects
398In many applications, the efficiency should be calculated for an inhomogeneous
399sample in the sense that it contains events with different weights. In order
400to be able to determine the correct overall efficiency, it is necessary to
401use for each subsample (= all events with the same weight) a different
402TEfficiency object. After finishing your analysis you can then construct the
403overall efficiency with its uncertainty.
404
405This procedure has the advantage that you can change the weight of one
406subsample easily without rerunning the whole analysis. On the other hand, more
407effort is needed to handle several TEfficiency objects instead of one
408histogram. In the case of many different or even continuously distributed
409weights, this approach becomes cumbersome. One possibility to overcome this
410problem is the usage of binned weights.
411
412### Example
413In particle physics weights arises from the fact that you want to
414normalise your results to a certain reference value. A very common formula for
415calculating weights is
416
417\f{eqnarray*}{
418 w &=& \frac{\sigma L}{N_{gen} \epsilon_{trig}} \\
419 &-& \sigma ...\ cross\ section \\
420 &-& L ...\ luminosity \\
421 &-& N_{gen}\ ... number\ of\ generated\ events \\
422 &-& \epsilon_{trig}\ ...\ (known)\ trigger\ efficiency \\
423\f}
424
425The reason for different weights can therefore be:
426- different processes
427- other integrated luminosity
428- varying trigger efficiency
429- different sample sizes
430- ...
431- or even combination of them
432
433Depending on the actual meaning of different weights in your case, you
434should either merge or combine them to get the overall efficiency.
435
436### V.1 When should I use merging?
437If the weights are artificial and do not represent real alternative hypotheses,
438you should merge the different TEfficiency objects. That means especially for
439the Bayesian case that the prior probability should be the same for all merged
440TEfficiency objects. The merging can be done by invoking one of the following
441operations:
442- eff1.Add(eff2)
443- eff1 += eff2
444- eff1 = eff1 + eff2
445
446The result of the merging is stored in the TEfficiency object which is marked
447bold above. The contents of the internal histograms of both TEfficiency
448objects are added and a new weight is assigned. The statistic options are not
449changed.
450
451\f[
452 \frac{1}{w_{new}} = \frac{1}{w_{1}} + \frac{1}{w_{2}}
453\f]
454
455### Example:
456If you use two samples with different numbers of generated events for the same
457process and you want to normalise both to the same integrated luminosity and
458trigger efficiency, the different weights then arise just from the fact that
459you have different numbers of events. The TEfficiency objects should be merged
460because the samples do not represent true alternatives. You expect the same
461result as if you would have a big sample with all events in it.
462
463\f[
464 w_{1} = \frac{\sigma L}{\epsilon N_{1}}, w_{2} = \frac{\sigma L}{\epsilon N_{2}} \Rightarrow w_{new} = \frac{\sigma L}{\epsilon (N_{1} + N_{2})} = \frac{1}{\frac{1}{w_{1}} + \frac{1}{w_{2}}}
465\f]
466
467### V.2 When should I use combining?
468You should combine TEfficiency objects whenever the weights represent
469alternatives processes for the efficiency. As the combination of two TEfficiency
470objects is not always consistent with the representation by two internal
471histograms, the result is not stored in a TEfficiency object but a TGraphAsymmErrors
472is returned which shows the estimated combined efficiency and its uncertainty
473for each bin.
474At the moment the combination method TEfficiency::Combine only supports a combination of 1-dimensional
475efficiencies in a Bayesian approach.
476
477
478For calculating the combined efficiency and its uncertainty for each bin only Bayesian statistics
479is used. No frequentists methods are presently supported for computing the combined efficiency and
480its confidence interval.
481In the case of the Bayesian statistics, a combined posterior is constructed taking into account the
482weight of each TEfficiency object. The same prior is used for all the TEfficiency objects.
483
484\f{eqnarray*}{
485 P_{comb}(\epsilon | {w_{i}}, {k_{i}} , {N_{i}}) = \frac{1}{norm} \prod_{i}{L(k_{i} | N_{i}, \epsilon)}^{w_{i}} \Pi( \epsilon )\\
486L(k_{i} | N_{i}, \epsilon)\ is\ the\ likelihood\ function\ for\ the\ sample\ i\ (a\ Binomial\ distribution)\\
487\Pi( \epsilon)\ is\ the\ prior,\ a\ beta\ distribution\ B(\epsilon, \alpha, \beta).\\
488The\ resulting\ combined\ posterior\ is \\
489P_{comb}(\epsilon |{w_{i}}; {k_{i}}; {N_{i}}) = B(\epsilon, \sum_{i}{ w_{i} k_{i}} + \alpha, \sum_{i}{ w_{i}(n_{i}-k_{i})}+\beta) \\
490\hat{\varepsilon} = \int_{0}^{1} \epsilon \times P_{comb}(\epsilon | {k_{i}} , {N_{i}}) d\epsilon \\
491confidence\ level = 1 - \alpha \\
492\frac{\alpha}{2} = \int_{0}^{\epsilon_{low}} P_{comb}(\epsilon | {k_{i}} , {N_{i}}) d\epsilon ...\ defines\ lower\ boundary \\
4931- \frac{\alpha}{2} = \int_{0}^{\epsilon_{up}} P_{comb}(\epsilon | {k_{i}} , {N_{i}}) d\epsilon ...\ defines\ upper\ boundary
494\f}
495
496
497###Example:
498If you use cuts to select electrons which can originate from two different
499processes, you can determine the selection efficiency for each process. The
500overall selection efficiency is then the combined efficiency. The weights to be used in the
501combination should be the probability that an
502electron comes from the corresponding process.
503
504\f[
505p_{1} = \frac{\sigma_{1}}{\sigma_{1} + \sigma_{2}} = \frac{N_{1}w_{1}}{N_{1}w_{1} + N_{2}w_{2}}\\
506p_{2} = \frac{\sigma_{2}}{\sigma_{1} + \sigma_{2}} = \frac{N_{2}w_{2}}{N_{1}w_{1} + N_{2}w_{2}}
507\f]
508
509## VI. Further operations
510
511### VI.Information about the internal histograms
512The methods TEfficiency::GetPassedHistogram and TEfficiency::GetTotalHistogram
513return a constant pointer to the internal histograms. They can be used to
514obtain information about the internal histograms (e.g., the binning, number of passed / total events in a bin, mean values...).
515One can obtain a clone of the internal histograms by calling TEfficiency::GetCopyPassedHisto or TEfficiency::GetCopyTotalHisto.
516The returned histograms are completely independent from the current
517TEfficiency object. By default, they are not attached to a directory to
518avoid the duplication of data and the user is responsible for deleting them.
519
520
521~~~~~~~~~~~~~~~{.cpp}
522//open a root file which contains a TEfficiency object
523TFile* pFile = new TFile("myfile.root","update");
524
525//get TEfficiency object with name "my_eff"
526TEfficiency* pEff = (TEfficiency*)pFile->Get("my_eff");
527
528//get clone of total histogram
529TH1* clone = pEff->GetCopyTotalHisto();
530
531//change clone...
532//save changes of clone directly
533clone->Write();
534//or append it to the current directory and write the file
535//clone->SetDirectory(gDirectory);
536//pFile->Write();
537
538//delete histogram object
539delete clone;
540clone = 0;
541~~~~~~~~~~~~~~~
542
543It is also possible to set the internal total or passed histogram by using the
544methods TEfficiency::SetPassedHistogram or TEfficiency::SetTotalHistogram.
545
546In order to ensure the validity of the TEfficiency object, the consistency of the
547new histogram and the stored histogram is checked. It might be
548impossible sometimes to change the histograms in a consistent way. Therefore one can force
549the replacement by passing the "f" option. Then the user has to ensure that the
550other internal histogram is replaced as well and that the TEfficiency object is
551in a valid state.
552
553### VI.2 Fitting
554The efficiency can be fitted using the TEfficiency::Fit function which internally uses
555the TBinomialEfficiencyFitter::Fit method.
556As this method is using a maximum-likelihood-fit, it is necessary to initialise
557the given fit function with reasonable start values.
558The resulting fit function is attached to the list of associated functions and
559will be drawn automatically during the next TEfficiency::Draw command.
560The list of associated function can be modified by using the pointer returned
561by TEfficiency::GetListOfFunctions.
562
563Begin_Macro(source)
564{
565 //canvas only needed for this documentation
566 TCanvas* c1 = new TCanvas("example","",600,400);
567 c1->SetFillStyle(1001);
568 c1->SetFillColor(kWhite);
569
570 //create one-dimensional TEfficiency object with fixed bin size
571 TEfficiency* pEff = new TEfficiency("eff","my efficiency;x;#epsilon",20,0,10);
572 TRandom3 rand3;
573
574 bool bPassed;
575 double x;
576 for(int i=0; i<10000; ++i)
577 {
578 //simulate events with variable under investigation
579 x = rand3.Uniform(10);
580 //check selection: bPassed = DoesEventPassSelection(x)
581 bPassed = rand3.Rndm() < TMath::Gaus(x,5,4);
582 pEff->Fill(bPassed,x);
583 }
584
585 //create a function for fitting and do the fit
586 TF1* f1 = new TF1("f1","gaus",0,10);
587 f1->SetParameters(1,5,2);
588 pEff->Fit(f1);
589
590 //create a threshold function
591 TF1* f2 = new TF1("thres","0.8",0,10);
592 f2->SetLineColor(kRed);
593 //add it to the list of functions
594 //use add first because the parameters of the last function will be displayed
595 pEff->GetListOfFunctions()->AddFirst(f2);
596
597 pEff->Draw("AP");
598
599 //only for this documentation
600 return c1;
601}
602End_Macro
603
604### VI.3 Draw a TEfficiency object
605A TEfficiency object can be drawn by calling the usual TEfficiency::Draw method.
606At the moment drawing is only supported for 1- and 2-dimensional TEfficiency objects.
607In the 1-dimensional case, you can use the same options as for the TGraphAsymmErrors::Draw
608method. For 2-dimensional TEfficiency objects, you can pass the same options as
609for a TH2::Draw object.
610
611********************************************************************************/
612//______________________________________________________________________________
613
614////////////////////////////////////////////////////////////////////////////////
615///default constructor
616///
617///should not be used explicitly
618
620fBeta_alpha(kDefBetaAlpha),
621fBeta_beta(kDefBetaBeta),
622fBoundary(0),
623fConfLevel(kDefConfLevel),
624fDirectory(0),
625fFunctions(0),
626fPaintGraph(0),
627fPaintHisto(0),
628fPassedHistogram(0),
629fTotalHistogram(0),
630fWeight(kDefWeight)
631{
633
634 // create 2 dummy histograms
635 fPassedHistogram = new TH1F("h_passed","passed",10,0,10);
636 fTotalHistogram = new TH1F("h_total","total",10,0,10);
637}
638
639////////////////////////////////////////////////////////////////////////////////
640///constructor using two existing histograms as input
641///
642///Input: passed - contains the events fulfilling some criteria
643/// total - contains all investigated events
644///
645///Notes: - both histograms have to fulfill the conditions of CheckConsistency
646/// - dimension of the resulting efficiency object depends
647/// on the dimension of the given histograms
648/// - Clones of both histograms are stored internally
649/// - The function SetName(total.GetName() + "_clone") is called to set
650/// the names of the new object and the internal histograms..
651/// - The created TEfficiency object is NOT appended to a directory. It
652/// will not be written to disk during the next TFile::Write() command
653/// in order to prevent duplication of data. If you want to save this
654/// TEfficiency object anyway, you can either append it to a
655/// directory by calling SetDirectory(TDirectory*) or write it
656/// explicitly to disk by calling Write().
657
658TEfficiency::TEfficiency(const TH1& passed,const TH1& total):
659fBeta_alpha(kDefBetaAlpha),
660fBeta_beta(kDefBetaBeta),
661fConfLevel(kDefConfLevel),
662fDirectory(0),
663fFunctions(0),
664fPaintGraph(0),
665fPaintHisto(0),
666fWeight(kDefWeight)
667{
668 //check consistency of histograms
669 if(CheckConsistency(passed,total)) {
672 fTotalHistogram = (TH1*)total.Clone();
673 fPassedHistogram = (TH1*)passed.Clone();
674 TH1::AddDirectory(bStatus);
675
676 TString newName = total.GetName();
677 newName += TString("_clone");
678 SetName(newName);
679
680 // are the histograms filled with weights?
681 if(CheckWeights(passed,total))
682 {
683 Info("TEfficiency","given histograms are filled with weights");
685 }
686 }
687 else {
688 Error("TEfficiency(const TH1&,const TH1&)","histograms are not consistent -> results are useless");
689 Warning("TEfficiency(const TH1&,const TH1&)","using two empty TH1D('h1','h1',10,0,10)");
690
693 fTotalHistogram = new TH1D("h1_total","h1 (total)",10,0,10);
694 fPassedHistogram = new TH1D("h1_passed","h1 (passed)",10,0,10);
695 TH1::AddDirectory(bStatus);
696 }
697
698 SetBit(kPosteriorMode,false);
700
702 SetDirectory(0);
703}
704
705////////////////////////////////////////////////////////////////////////////////
706/// Create 1-dimensional TEfficiency object with variable bin size.
707///
708/// Constructor creates two new and empty histograms with a given binning
709///
710/// Input:
711///
712/// - `name`: the common part of the name for both histograms (no blanks)
713/// fTotalHistogram has name: name + "_total"
714/// fPassedHistogram has name: name + "_passed"
715/// - `title`: the common part of the title for both histogram
716/// fTotalHistogram has title: title + " (total)"
717/// fPassedHistogram has title: title + " (passed)"
718/// It is possible to label the axis by passing a title with
719/// the following format: "title;xlabel;ylabel".
720/// - `nbins`: number of bins on the x-axis
721/// - `xbins`: array of length (nbins + 1) with low-edges for each bin
722/// xbins[nbinsx] ... lower edge for overflow bin
723
724TEfficiency::TEfficiency(const char* name,const char* title,Int_t nbins,
725 const Double_t* xbins):
726fBeta_alpha(kDefBetaAlpha),
727fBeta_beta(kDefBetaBeta),
728fConfLevel(kDefConfLevel),
729fDirectory(0),
730fFunctions(0),
731fPaintGraph(0),
732fPaintHisto(0),
733fWeight(kDefWeight)
734{
737 fTotalHistogram = new TH1D("total","total",nbins,xbins);
738 fPassedHistogram = new TH1D("passed","passed",nbins,xbins);
739 TH1::AddDirectory(bStatus);
740
741 Build(name,title);
742}
743
744////////////////////////////////////////////////////////////////////////////////
745/// Create 1-dimensional TEfficiency object with fixed bins size.
746///
747/// Constructor creates two new and empty histograms with a fixed binning.
748///
749/// Input:
750///
751/// - `name`: the common part of the name for both histograms(no blanks)
752/// fTotalHistogram has name: name + "_total"
753/// fPassedHistogram has name: name + "_passed"
754/// - `title`: the common part of the title for both histogram
755/// fTotalHistogram has title: title + " (total)"
756/// fPassedHistogram has title: title + " (passed)"
757/// It is possible to label the axis by passing a title with
758/// the following format: "title;xlabel;ylabel".
759/// - `nbinsx`: number of bins on the x-axis
760/// - `xlow`: lower edge of first bin
761/// - `xup`: upper edge of last bin
762
763TEfficiency::TEfficiency(const char* name,const char* title,Int_t nbinsx,
764 Double_t xlow,Double_t xup):
765fBeta_alpha(kDefBetaAlpha),
766fBeta_beta(kDefBetaBeta),
767fConfLevel(kDefConfLevel),
768fDirectory(0),
769fFunctions(0),
770fPaintGraph(0),
771fPaintHisto(0),
772fWeight(kDefWeight)
773{
776 fTotalHistogram = new TH1D("total","total",nbinsx,xlow,xup);
777 fPassedHistogram = new TH1D("passed","passed",nbinsx,xlow,xup);
778 TH1::AddDirectory(bStatus);
779
780 Build(name,title);
781}
782
783////////////////////////////////////////////////////////////////////////////////
784/// Create 2-dimensional TEfficiency object with fixed bin size.
785///
786/// Constructor creates two new and empty histograms with a fixed binning.
787///
788/// Input:
789///
790/// - `name`: the common part of the name for both histograms(no blanks)
791/// fTotalHistogram has name: name + "_total"
792/// fPassedHistogram has name: name + "_passed"
793/// - `title`: the common part of the title for both histogram
794/// fTotalHistogram has title: title + " (total)"
795/// fPassedHistogram has title: title + " (passed)"
796/// It is possible to label the axis by passing a title with
797/// the following format: "title;xlabel;ylabel;zlabel".
798/// - `nbinsx`: number of bins on the x-axis
799/// - `xlow`: lower edge of first x-bin
800/// - `xup`: upper edge of last x-bin
801/// - `nbinsy`: number of bins on the y-axis
802/// - `ylow`: lower edge of first y-bin
803/// - `yup`: upper edge of last y-bin
804
805TEfficiency::TEfficiency(const char* name,const char* title,Int_t nbinsx,
806 Double_t xlow,Double_t xup,Int_t nbinsy,
807 Double_t ylow,Double_t yup):
808fBeta_alpha(kDefBetaAlpha),
809fBeta_beta(kDefBetaBeta),
810fConfLevel(kDefConfLevel),
811fDirectory(0),
812fFunctions(0),
813fPaintGraph(0),
814fPaintHisto(0),
815fWeight(kDefWeight)
816{
819 fTotalHistogram = new TH2D("total","total",nbinsx,xlow,xup,nbinsy,ylow,yup);
820 fPassedHistogram = new TH2D("passed","passed",nbinsx,xlow,xup,nbinsy,ylow,yup);
821 TH1::AddDirectory(bStatus);
822
823 Build(name,title);
824}
825
826////////////////////////////////////////////////////////////////////////////////
827/// Create 2-dimensional TEfficiency object with variable bin size.
828///
829/// Constructor creates two new and empty histograms with a given binning.
830///
831/// Input:
832///
833/// - `name`: the common part of the name for both histograms(no blanks)
834/// fTotalHistogram has name: name + "_total"
835/// fPassedHistogram has name: name + "_passed"
836/// - `title`: the common part of the title for both histogram
837/// fTotalHistogram has title: title + " (total)"
838/// fPassedHistogram has title: title + " (passed)"
839/// It is possible to label the axis by passing a title with
840/// the following format: "title;xlabel;ylabel;zlabel".
841/// - `nbinsx`: number of bins on the x-axis
842/// - `xbins`: array of length (nbins + 1) with low-edges for each bin
843/// xbins[nbinsx] ... lower edge for overflow x-bin
844/// - `nbinsy`: number of bins on the y-axis
845/// - `ybins`: array of length (nbins + 1) with low-edges for each bin
846/// ybins[nbinsy] ... lower edge for overflow y-bin
847
848TEfficiency::TEfficiency(const char* name,const char* title,Int_t nbinsx,
849 const Double_t* xbins,Int_t nbinsy,
850 const Double_t* ybins):
851fBeta_alpha(kDefBetaAlpha),
852fBeta_beta(kDefBetaBeta),
853fConfLevel(kDefConfLevel),
854fDirectory(0),
855fFunctions(0),
856fPaintGraph(0),
857fPaintHisto(0),
858fWeight(kDefWeight)
859{
862 fTotalHistogram = new TH2D("total","total",nbinsx,xbins,nbinsy,ybins);
863 fPassedHistogram = new TH2D("passed","passed",nbinsx,xbins,nbinsy,ybins);
864 TH1::AddDirectory(bStatus);
865
866 Build(name,title);
867}
868
869////////////////////////////////////////////////////////////////////////////////
870/// Create 3-dimensional TEfficiency object with fixed bin size.
871///
872/// Constructor creates two new and empty histograms with a fixed binning.
873///
874/// Input:
875///
876/// - `name`: the common part of the name for both histograms(no blanks)
877/// fTotalHistogram has name: name + "_total"
878/// fPassedHistogram has name: name + "_passed"
879/// - `title`: the common part of the title for both histogram
880/// fTotalHistogram has title: title + " (total)"
881/// fPassedHistogram has title: title + " (passed)"
882/// It is possible to label the axis by passing a title with
883/// the following format: "title;xlabel;ylabel;zlabel".
884/// - `nbinsx`: number of bins on the x-axis
885/// - `xlow`: lower edge of first x-bin
886/// - `xup`: upper edge of last x-bin
887/// - `nbinsy`: number of bins on the y-axis
888/// - `ylow`: lower edge of first y-bin
889/// - `yup`: upper edge of last y-bin
890/// - `nbinsz`: number of bins on the z-axis
891/// - `zlow`: lower edge of first z-bin
892/// - `zup`: upper edge of last z-bin
893
894TEfficiency::TEfficiency(const char* name,const char* title,Int_t nbinsx,
895 Double_t xlow,Double_t xup,Int_t nbinsy,
896 Double_t ylow,Double_t yup,Int_t nbinsz,
897 Double_t zlow,Double_t zup):
898fBeta_alpha(kDefBetaAlpha),
899fBeta_beta(kDefBetaBeta),
900fConfLevel(kDefConfLevel),
901fDirectory(0),
902fFunctions(0),
903fPaintGraph(0),
904fPaintHisto(0),
905fWeight(kDefWeight)
906{
909 fTotalHistogram = new TH3D("total","total",nbinsx,xlow,xup,nbinsy,ylow,yup,nbinsz,zlow,zup);
910 fPassedHistogram = new TH3D("passed","passed",nbinsx,xlow,xup,nbinsy,ylow,yup,nbinsz,zlow,zup);
911 TH1::AddDirectory(bStatus);
912
913 Build(name,title);
914}
915
916////////////////////////////////////////////////////////////////////////////////
917/// Create 3-dimensional TEfficiency object with variable bin size.
918///
919/// Constructor creates two new and empty histograms with a given binning.
920///
921/// Input:
922///
923/// - `name`: the common part of the name for both histograms(no blanks)
924/// fTotalHistogram has name: name + "_total"
925/// fPassedHistogram has name: name + "_passed"
926/// - `title`: the common part of the title for both histogram
927/// fTotalHistogram has title: title + " (total)"
928/// fPassedHistogram has title: title + " (passed)"
929/// It is possible to label the axis by passing a title with
930/// the following format: "title;xlabel;ylabel;zlabel".
931/// - `nbinsx`: number of bins on the x-axis
932/// - `xbins`: array of length (nbins + 1) with low-edges for each bin
933/// xbins[nbinsx] ... lower edge for overflow x-bin
934/// - `nbinsy`: number of bins on the y-axis
935/// - `ybins`: array of length (nbins + 1) with low-edges for each bin
936/// xbins[nbinsx] ... lower edge for overflow y-bin
937/// - `nbinsz`: number of bins on the z-axis
938/// - `zbins`: array of length (nbins + 1) with low-edges for each bin
939/// xbins[nbinsx] ... lower edge for overflow z-bin
940
941TEfficiency::TEfficiency(const char* name,const char* title,Int_t nbinsx,
942 const Double_t* xbins,Int_t nbinsy,
943 const Double_t* ybins,Int_t nbinsz,
944 const Double_t* zbins):
945fBeta_alpha(kDefBetaAlpha),
946fBeta_beta(kDefBetaBeta),
947fConfLevel(kDefConfLevel),
948fDirectory(0),
949fFunctions(0),
950fPaintGraph(0),
951fPaintHisto(0),
952fWeight(kDefWeight)
953{
956 fTotalHistogram = new TH3D("total","total",nbinsx,xbins,nbinsy,ybins,nbinsz,zbins);
957 fPassedHistogram = new TH3D("passed","passed",nbinsx,xbins,nbinsy,ybins,nbinsz,zbins);
958 TH1::AddDirectory(bStatus);
959
960 Build(name,title);
961}
962
963////////////////////////////////////////////////////////////////////////////////
964/// Copy constructor.
965///
966///The list of associated objects (e.g. fitted functions) is not copied.
967///
968///Note:
969///
970/// - SetName(rEff.GetName() + "_copy") is called to set the names of the
971/// object and the histograms.
972/// - The titles are set by calling SetTitle("[copy] " + rEff.GetTitle()).
973/// - The copied TEfficiency object is NOT appended to a directory. It
974/// will not be written to disk during the next TFile::Write() command
975/// in order to prevent duplication of data. If you want to save this
976/// TEfficiency object anyway, you can either append it to a directory
977/// by calling SetDirectory(TDirectory*) or write it explicitly to disk
978/// by calling Write().
979
981TNamed(),
982TAttLine(),
983TAttFill(),
984TAttMarker(),
985fBeta_alpha(rEff.fBeta_alpha),
986fBeta_beta(rEff.fBeta_beta),
987fBeta_bin_params(rEff.fBeta_bin_params),
988fConfLevel(rEff.fConfLevel),
989fDirectory(0),
990fFunctions(0),
991fPaintGraph(0),
992fPaintHisto(0),
993fWeight(rEff.fWeight)
994{
995 // copy TObject bits
996 ((TObject&)rEff).Copy(*this);
997
1000 fTotalHistogram = (TH1*)((rEff.fTotalHistogram)->Clone());
1001 fPassedHistogram = (TH1*)((rEff.fPassedHistogram)->Clone());
1002 TH1::AddDirectory(bStatus);
1003
1004 TString name = rEff.GetName();
1005 name += "_copy";
1006 SetName(name);
1007 TString title = "[copy] ";
1008 title += rEff.GetTitle();
1009 SetTitle(title);
1010
1012
1013 SetDirectory(0);
1014
1015 //copy style
1016 rEff.TAttLine::Copy(*this);
1017 rEff.TAttFill::Copy(*this);
1018 rEff.TAttMarker::Copy(*this);
1019}
1020
1021////////////////////////////////////////////////////////////////////////////////
1022///default destructor
1023
1025{
1026 //delete all function in fFunctions
1027 // use same logic as in TH1 destructor
1028 // (see TH1::~TH1 code in TH1.cxx)
1029 if(fFunctions) {
1031 TObject* obj = 0;
1032 while ((obj = fFunctions->First())) {
1033 while(fFunctions->Remove(obj)) { }
1034 if (!obj->TestBit(kNotDeleted)) {
1035 break;
1036 }
1037 delete obj;
1038 obj = 0;
1039 }
1040 delete fFunctions;
1041 fFunctions = 0;
1042 }
1043
1044 if(fDirectory)
1045 fDirectory->Remove(this);
1046
1047 delete fTotalHistogram;
1048 delete fPassedHistogram;
1049 delete fPaintGraph;
1050 delete fPaintHisto;
1051}
1052
1053////////////////////////////////////////////////////////////////////////////////
1054/**
1055 Calculates the boundaries for the frequentist Agresti-Coull interval
1056
1057 \param total number of total events
1058 \param passed 0 <= number of passed events <= total
1059 \param level confidence level
1060 \param bUpper true - upper boundary is returned
1061 false - lower boundary is returned
1062
1063
1064 \f{eqnarray*}{
1065 \alpha &=& 1 - \frac{level}{2} \\
1066 \kappa &=& \Phi^{-1}(1 - \alpha,1)\ ... normal\ quantile\ function\\
1067 mode &=& \frac{passed + \frac{\kappa^{2}}{2}}{total + \kappa^{2}}\\
1068 \Delta &=& \kappa * \sqrt{\frac{mode * (1 - mode)}{total + \kappa^{2}}}\\
1069 return &=& max(0,mode - \Delta)\ or\ min(1,mode + \Delta)
1070 \f}
1071
1072*/
1073
1075{
1076 Double_t alpha = (1.0 - level)/2;
1077 Double_t kappa = ROOT::Math::normal_quantile(1 - alpha,1);
1078
1079 Double_t mode = (passed + 0.5 * kappa * kappa) / (total + kappa * kappa);
1080 Double_t delta = kappa * std::sqrt(mode * (1 - mode) / (total + kappa * kappa));
1081
1082 if(bUpper)
1083 return ((mode + delta) > 1) ? 1.0 : (mode + delta);
1084 else
1085 return ((mode - delta) < 0) ? 0.0 : (mode - delta);
1086}
1087
1088////////////////////////////////////////////////////////////////////////////////
1089/// Calculates the boundaries for the frequentist Feldman-Cousins interval
1090///
1091/// \param total number of total events
1092/// \param passed 0 <= number of passed events <= total
1093/// \param level confidence level
1094/// \param bUpper: true - upper boundary is returned
1095/// false - lower boundary is returned
1096
1098{
1099 Double_t lower = 0;
1100 Double_t upper = 1;
1101 if (!FeldmanCousinsInterval(total,passed,level, lower, upper)) {
1102 ::Error("FeldmanCousins","Error running FC method - return 0 or 1");
1103 }
1104 return (bUpper) ? upper : lower;
1105}
1106
1107////////////////////////////////////////////////////////////////////////////////
1108/// Calculates the interval boundaries using the frequentist methods of Feldman-Cousins
1109///
1110/// \param[in] total number of total events
1111/// \param[in] passed 0 <= number of passed events <= total
1112/// \param[in] level confidence level
1113/// \param[out] lower lower boundary returned on exit
1114/// \param[out] upper lower boundary returned on exit
1115/// \return a flag with the status of the calculation
1116///
1117/// Calculation:
1118///
1119/// The Feldman-Cousins is a frequentist method where the interval is estimated using a Neyman construction where the ordering
1120/// is based on the likelihood ratio:
1121/// \f[
1122/// LR = \frac{Binomial(k | N, \epsilon)}{Binomial(k | N, \hat{\epsilon} ) }
1123/// \f]
1124/// See G. J. Feldman and R. D. Cousins, Phys. Rev. D57 (1998) 3873
1125/// and R. D. Cousins, K. E. Hymes, J. Tucker, Nuclear Instruments and Methods in Physics Research A 612 (2010) 388
1126///
1127/// Implemented using classes developed by Jordan Tucker and Luca Lista
1128/// See File hist/hist/src/TEfficiencyHelper.h
1129
1131{
1133 double alpha = 1.-level;
1134 fc.Init(alpha);
1135 fc.Calculate(passed, total);
1136 lower = fc.Lower();
1137 upper = fc.Upper();
1138 return true;
1139}
1140
1141////////////////////////////////////////////////////////////////////////////////
1142/// Calculates the boundaries using the mid-P binomial
1143/// interval (Lancaster method) from B. Cousing and J. Tucker.
1144/// See http://arxiv.org/abs/0905.3831 for a description and references for the method
1145///
1146/// Modify equal_tailed to get the kind of interval you want.
1147/// Can also be converted to interval on ratio of poisson means X/Y by the substitutions
1148/// ~~~ {.cpp}
1149/// X = passed
1150/// total = X + Y
1151/// lower_poisson = lower/(1 - lower)
1152/// upper_poisson = upper/(1 - upper)
1153/// ~~~
1154
1156{
1157 const double alpha = 1. - level;
1158 const bool equal_tailed = true; // change if you don;t want equal tailed interval
1159 const double alpha_min = equal_tailed ? alpha/2 : alpha;
1160 const double tol = 1e-9; // tolerance
1161 double pmin = 0;
1162 double pmax = 0;
1163 double p = 0;
1164
1165 pmin = 0; pmax = 1;
1166
1167
1168 // treat special case for 0<passed<1
1169 // do a linear interpolation of the upper limit values
1170 if ( passed > 0 && passed < 1) {
1171 double p0 = MidPInterval(total,0.0,level,bUpper);
1172 double p1 = MidPInterval(total,1.0,level,bUpper);
1173 p = (p1 - p0) * passed + p0;
1174 return p;
1175 }
1176
1177 while (std::abs(pmax - pmin) > tol) {
1178 p = (pmin + pmax)/2;
1179 //double v = 0.5 * ROOT::Math::binomial_pdf(int(passed), p, int(total));
1180 // make it work for non integer using the binomial - beta relationship
1181 double v = 0.5 * ROOT::Math::beta_pdf(p, passed+1., total-passed+1)/(total+1);
1182 //if (passed > 0) v += ROOT::Math::binomial_cdf(int(passed - 1), p, int(total));
1183 // compute the binomial cdf at passed -1
1184 if ( (passed-1) >= 0) v += ROOT::Math::beta_cdf_c(p, passed, total-passed+1);
1185
1186 double vmin = (bUpper) ? alpha_min : 1.- alpha_min;
1187 if (v > vmin)
1188 pmin = p;
1189 else
1190 pmax = p;
1191 }
1192
1193 return p;
1194}
1195
1196
1197////////////////////////////////////////////////////////////////////////////////
1198/**
1199Calculates the boundaries for a Bayesian confidence interval (shortest or central interval depending on the option)
1200
1201\param[in] total number of total events
1202\param[in] passed 0 <= number of passed events <= total
1203\param[in] level confidence level
1204\param[in] alpha shape parameter > 0 for the prior distribution (fBeta_alpha)
1205\param[in] beta shape parameter > 0 for the prior distribution (fBeta_beta)
1206\param[in] bUpper
1207 - true - upper boundary is returned
1208 - false - lower boundary is returned
1209\param[in] bShortest ??
1210
1211Note: In the case central confidence interval is calculated.
1212 when passed = 0 (or passed = total) the lower (or upper)
1213 interval values will be larger than 0 (or smaller than 1).
1214
1215Calculation:
1216
1217The posterior probability in bayesian statistics is given by:
1218\f[
1219 P(\varepsilon |k,N) \propto L(\varepsilon|k,N) \times Prior(\varepsilon)
1220\f]
1221As an efficiency can be interpreted as probability of a positive outcome of
1222a Bernoullli trial the likelihood function is given by the binomial
1223distribution:
1224\f[
1225 L(\varepsilon|k,N) = Binomial(N,k) \varepsilon ^{k} (1 - \varepsilon)^{N-k}
1226\f]
1227At the moment only beta distributions are supported as prior probabilities
1228of the efficiency (\f$ B(\alpha,\beta)\f$ is the beta function):
1229\f[
1230 Prior(\varepsilon) = \frac{1}{B(\alpha,\beta)} \varepsilon ^{\alpha - 1} (1 - \varepsilon)^{\beta - 1}
1231\f]
1232The posterior probability is therefore again given by a beta distribution:
1233\f[
1234 P(\varepsilon |k,N) \propto \varepsilon ^{k + \alpha - 1} (1 - \varepsilon)^{N - k + \beta - 1}
1235\f]
1236In case of central intervals
1237the lower boundary for the equal-tailed confidence interval is given by the
1238inverse cumulative (= quantile) function for the quantile \f$ \frac{1 - level}{2} \f$.
1239The upper boundary for the equal-tailed confidence interval is given by the
1240inverse cumulative (= quantile) function for the quantile \f$ \frac{1 + level}{2} \f$.
1241Hence it is the solution \f$ \varepsilon \f$ of the following equation:
1242\f[
1243 I_{\varepsilon}(k + \alpha,N - k + \beta) = \frac{1}{norm} \int_{0}^{\varepsilon} dt t^{k + \alpha - 1} (1 - t)^{N - k + \beta - 1} = \frac{1 \pm level}{2}
1244\f]
1245In the case of shortest interval the minimum interval around the mode is found by minimizing the length of all intervals width the
1246given probability content. See TEfficiency::BetaShortestInterval
1247*/
1248
1250{
1251 Double_t a = double(passed)+alpha;
1252 Double_t b = double(total-passed)+beta;
1253
1254 if (bShortest) {
1255 double lower = 0;
1256 double upper = 1;
1257 BetaShortestInterval(level,a,b,lower,upper);
1258 return (bUpper) ? upper : lower;
1259 }
1260 else
1261 return BetaCentralInterval(level, a, b, bUpper);
1262}
1263
1264////////////////////////////////////////////////////////////////////////////////
1265/// Calculates the boundaries for a central confidence interval for a Beta distribution
1266///
1267/// \param[in] level confidence level
1268/// \param[in] a parameter > 0 for the beta distribution (for a posterior is passed + prior_alpha
1269/// \param[in] b parameter > 0 for the beta distribution (for a posterior is (total-passed) + prior_beta
1270/// \param[in] bUpper true - upper boundary is returned
1271/// false - lower boundary is returned
1272
1274{
1275 if(bUpper) {
1276 if((a > 0) && (b > 0))
1277 return ROOT::Math::beta_quantile((1+level)/2,a,b);
1278 else {
1279 gROOT->Error("TEfficiency::BayesianCentral","Invalid input parameters - return 1");
1280 return 1;
1281 }
1282 }
1283 else {
1284 if((a > 0) && (b > 0))
1285 return ROOT::Math::beta_quantile((1-level)/2,a,b);
1286 else {
1287 gROOT->Error("TEfficiency::BayesianCentral","Invalid input parameters - return 0");
1288 return 0;
1289 }
1290 }
1291}
1292
1293struct Beta_interval_length {
1294 Beta_interval_length(Double_t level,Double_t alpha,Double_t beta ) :
1295 fCL(level), fAlpha(alpha), fBeta(beta)
1296 {}
1297
1298 Double_t LowerMax() {
1299 // max allowed value of lower given the interval size
1300 return ROOT::Math::beta_quantile_c(fCL, fAlpha,fBeta);
1301 }
1302
1303 Double_t operator() (double lower) const {
1304 // return length of interval
1305 Double_t plow = ROOT::Math::beta_cdf(lower, fAlpha, fBeta);
1306 Double_t pup = plow + fCL;
1307 double upper = ROOT::Math::beta_quantile(pup, fAlpha,fBeta);
1308 return upper-lower;
1309 }
1310 Double_t fCL; // interval size (confidence level)
1311 Double_t fAlpha; // beta distribution alpha parameter
1312 Double_t fBeta; // beta distribution beta parameter
1313
1314};
1315
1316////////////////////////////////////////////////////////////////////////////////
1317/// Calculates the boundaries for a shortest confidence interval for a Beta distribution
1318///
1319/// \param[in] level confidence level
1320/// \param[in] a parameter > 0 for the beta distribution (for a posterior is passed + prior_alpha
1321/// \param[in] b parameter > 0 for the beta distribution (for a posterior is (total-passed) + prior_beta
1322/// \param[out] upper upper boundary is returned
1323/// \param[out] lower lower boundary is returned
1324///
1325/// The lower/upper boundary are then obtained by finding the shortest interval of the beta distribution
1326/// contained the desired probability level.
1327/// The length of all possible intervals is minimized in order to find the shortest one
1328
1330{
1331 if (a <= 0 || b <= 0) {
1332 lower = 0; upper = 1;
1333 gROOT->Error("TEfficiency::BayesianShortest","Invalid input parameters - return [0,1]");
1334 return kFALSE;
1335 }
1336
1337 // treat here special cases when mode == 0 or 1
1338 double mode = BetaMode(a,b);
1339 if (mode == 0.0) {
1340 lower = 0;
1341 upper = ROOT::Math::beta_quantile(level, a, b);
1342 return kTRUE;
1343 }
1344 if (mode == 1.0) {
1345 lower = ROOT::Math::beta_quantile_c(level, a, b);
1346 upper = 1.0;
1347 return kTRUE;
1348 }
1349 // special case when the shortest interval is undefined return the central interval
1350 // can happen for a posterior when passed=total=0
1351 //
1352 if ( a==b && a<=1.0) {
1353 lower = BetaCentralInterval(level,a,b,kFALSE);
1354 upper = BetaCentralInterval(level,a,b,kTRUE);
1355 return kTRUE;
1356 }
1357
1358 // for the other case perform a minimization
1359 // make a function of the length of the posterior interval as a function of lower bound
1360 Beta_interval_length intervalLength(level,a,b);
1361 // minimize the interval length
1364 minim.SetFunction(func, 0, intervalLength.LowerMax() );
1365 minim.SetNpx(2); // no need to bracket with many iterations. Just do few times to estimate some better points
1366 bool ret = minim.Minimize(100, 1.E-10,1.E-10);
1367 if (!ret) {
1368 gROOT->Error("TEfficiency::BayesianShortes","Error finding the shortest interval");
1369 return kFALSE;
1370 }
1371 lower = minim.XMinimum();
1372 upper = lower + minim.FValMinimum();
1373 return kTRUE;
1374}
1375
1376////////////////////////////////////////////////////////////////////////////////
1377/// Compute the mean (average) of the beta distribution
1378///
1379/// \param[in] a parameter > 0 for the beta distribution (for a posterior is passed + prior_alpha
1380/// \param[in] b parameter > 0 for the beta distribution (for a posterior is (total-passed) + prior_beta
1381///
1382
1384{
1385 if (a <= 0 || b <= 0 ) {
1386 gROOT->Error("TEfficiency::BayesianMean","Invalid input parameters - return 0");
1387 return 0;
1388 }
1389
1390 Double_t mean = a / (a + b);
1391 return mean;
1392}
1393
1394////////////////////////////////////////////////////////////////////////////////
1395/// Compute the mode of the beta distribution
1396///
1397/// \param[in] a parameter > 0 for the beta distribution (for a posterior is passed + prior_alpha
1398/// \param[in] b parameter > 0 for the beta distribution (for a posterior is (total-passed) + prior_beta
1399///
1400/// note the mode is defined for a Beta(a,b) only if (a,b)>1 (a = passed+alpha; b = total-passed+beta)
1401/// return then the following in case (a,b) < 1:
1402/// - if (a==b) return 0.5 (it is really undefined)
1403/// - if (a < b) return 0;
1404/// - if (a > b) return 1;
1405
1407{
1408 if (a <= 0 || b <= 0 ) {
1409 gROOT->Error("TEfficiency::BayesianMode","Invalid input parameters - return 0");
1410 return 0;
1411 }
1412 if ( a <= 1 || b <= 1) {
1413 if ( a < b) return 0;
1414 if ( a > b) return 1;
1415 if (a == b) return 0.5; // cannot do otherwise
1416 }
1417
1418 // since a and b are > 1 here denominator cannot be 0 or < 0
1419 Double_t mode = (a - 1.0) / (a + b -2.0);
1420 return mode;
1421}
1422////////////////////////////////////////////////////////////////////////////////
1423/// Building standard data structure of a TEfficiency object
1424///
1425/// Notes:
1426/// - calls: SetName(name), SetTitle(title)
1427/// - set the statistic option to the default (kFCP)
1428/// - appends this object to the current directory SetDirectory(gDirectory)
1429
1430void TEfficiency::Build(const char* name,const char* title)
1431{
1432 SetName(name);
1433 SetTitle(title);
1434
1437
1438 SetBit(kPosteriorMode,false);
1440 SetBit(kUseWeights,false);
1441
1442 //set normalisation factors to 0, otherwise the += may not work properly
1445}
1446
1447////////////////////////////////////////////////////////////////////////////////
1448/// Checks binning for each axis
1449///
1450/// It is assumed that the passed histograms have the same dimension.
1451
1453{
1454
1455 const TAxis* ax1 = 0;
1456 const TAxis* ax2 = 0;
1457
1458 //check binning along axis
1459 for(Int_t j = 0; j < pass.GetDimension(); ++j) {
1460 switch(j) {
1461 case 0:
1462 ax1 = pass.GetXaxis();
1463 ax2 = total.GetXaxis();
1464 break;
1465 case 1:
1466 ax1 = pass.GetYaxis();
1467 ax2 = total.GetYaxis();
1468 break;
1469 case 2:
1470 ax1 = pass.GetZaxis();
1471 ax2 = total.GetZaxis();
1472 break;
1473 }
1474
1475 if(ax1->GetNbins() != ax2->GetNbins()) {
1476 gROOT->Info("TEfficiency::CheckBinning","Histograms are not consistent: they have different number of bins");
1477 return false;
1478 }
1479
1480 for(Int_t i = 1; i <= ax1->GetNbins() + 1; ++i)
1481 if(!TMath::AreEqualRel(ax1->GetBinLowEdge(i), ax2->GetBinLowEdge(i), 1.E-15)) {
1482 gROOT->Info("TEfficiency::CheckBinning","Histograms are not consistent: they have different bin edges");
1483 return false;
1484 }
1485
1486
1487 }
1488
1489 return true;
1490}
1491
1492////////////////////////////////////////////////////////////////////////////////
1493/// Checks the consistence of the given histograms
1494///
1495/// The histograms are considered as consistent if:
1496/// - both have the same dimension
1497/// - both have the same binning
1498/// - pass.GetBinContent(i) <= total.GetBinContent(i) for each bin i
1499///
1500
1502{
1503 if(pass.GetDimension() != total.GetDimension()) {
1504 gROOT->Error("TEfficiency::CheckConsistency","passed TEfficiency objects have different dimensions");
1505 return false;
1506 }
1507
1508 if(!CheckBinning(pass,total)) {
1509 gROOT->Error("TEfficiency::CheckConsistency","passed TEfficiency objects have different binning");
1510 return false;
1511 }
1512
1513 if(!CheckEntries(pass,total)) {
1514 gROOT->Error("TEfficiency::CheckConsistency","passed TEfficiency objects do not have consistent bin contents");
1515 return false;
1516 }
1517
1518 return true;
1519}
1520
1521////////////////////////////////////////////////////////////////////////////////
1522/// Checks whether bin contents are compatible with binomial statistics
1523///
1524/// The following inequality has to be valid for each bin i:
1525/// total.GetBinContent(i) >= pass.GetBinContent(i)
1526///
1527///
1528///
1529/// Note:
1530///
1531/// - It is assumed that both histograms have the same dimension and binning.
1532
1534{
1535
1536 //check: pass <= total
1537 Int_t nbinsx, nbinsy, nbinsz, nbins;
1538
1539 nbinsx = pass.GetNbinsX();
1540 nbinsy = pass.GetNbinsY();
1541 nbinsz = pass.GetNbinsZ();
1542
1543 switch(pass.GetDimension()) {
1544 case 1: nbins = nbinsx + 2; break;
1545 case 2: nbins = (nbinsx + 2) * (nbinsy + 2); break;
1546 case 3: nbins = (nbinsx + 2) * (nbinsy + 2) * (nbinsz + 2); break;
1547 default: nbins = 0;
1548 }
1549
1550 for(Int_t i = 0; i < nbins; ++i) {
1551 if(pass.GetBinContent(i) > total.GetBinContent(i)) {
1552 gROOT->Info("TEfficiency::CheckEntries","Histograms are not consistent: passed bin content > total bin content");
1553 return false;
1554 }
1555 }
1556
1557 return true;
1558}
1559
1560////////////////////////////////////////////////////////////////////////////////
1561/// Check if both histogram are weighted. If they are weighted a true is returned
1562///
1564{
1565 if (pass.GetSumw2N() == 0 && total.GetSumw2N() == 0) return false;
1566
1567 // check also that the total sum of weight and weight squares are consistent
1568 Double_t statpass[TH1::kNstat];
1569 Double_t stattotal[TH1::kNstat];
1570
1571 pass.GetStats(statpass);
1572 total.GetStats(stattotal);
1573
1574 double tolerance = (total.IsA() == TH1F::Class() ) ? 1.E-5 : 1.E-12;
1575
1576 //require: sum of weights == sum of weights^2
1577 if(!TMath::AreEqualRel(statpass[0],statpass[1],tolerance) ||
1578 !TMath::AreEqualRel(stattotal[0],stattotal[1],tolerance) ) {
1579 return true;
1580 }
1581
1582 // histograms are not weighted
1583 return false;
1584
1585}
1586
1587
1588////////////////////////////////////////////////////////////////////////////////
1589/// Create the graph used be painted (for dim=1 TEfficiency)
1590/// The return object is managed by the caller
1591
1593{
1594 if (GetDimension() != 1) {
1595 Error("CreatePaintingGraph","Call this function only for dimension == 1");
1596 return 0;
1597 }
1598
1599
1600 Int_t npoints = fTotalHistogram->GetNbinsX();
1601 TGraphAsymmErrors * graph = new TGraphAsymmErrors(npoints);
1602 graph->SetName("eff_graph");
1603 FillGraph(graph,opt);
1604
1605 return graph;
1606}
1607
1608
1609////////////////////////////////////////////////////////////////////////////////
1610/// Fill the graph to be painted with information from TEfficiency
1611/// Internal method called by TEfficiency::Paint or TEfficiency::CreateGraph
1612
1614{
1615 TString option = opt;
1616 option.ToLower();
1617
1618 Bool_t plot0Bins = false;
1619 if (option.Contains("e0") ) plot0Bins = true;
1620
1621 Double_t x,y,xlow,xup,ylow,yup;
1622 //point i corresponds to bin i+1 in histogram
1623 // point j is point graph index
1624 // LM: cannot use TGraph::SetPoint because it deletes the underlying
1625 // histogram each time (see TGraph::SetPoint)
1626 // so use it only when extra points are added to the graph
1627 Int_t j = 0;
1628 double * px = graph->GetX();
1629 double * py = graph->GetY();
1630 double * exl = graph->GetEXlow();
1631 double * exh = graph->GetEXhigh();
1632 double * eyl = graph->GetEYlow();
1633 double * eyh = graph->GetEYhigh();
1634 Int_t npoints = fTotalHistogram->GetNbinsX();
1635 for (Int_t i = 0; i < npoints; ++i) {
1636 if (!plot0Bins && fTotalHistogram->GetBinContent(i+1) == 0 ) continue;
1638 y = GetEfficiency(i+1);
1640 xup = fTotalHistogram->GetBinWidth(i+1) - xlow;
1641 ylow = GetEfficiencyErrorLow(i+1);
1642 yup = GetEfficiencyErrorUp(i+1);
1643 // in the case the graph already existed and extra points have been added
1644 if (j >= graph->GetN() ) {
1645 graph->SetPoint(j,x,y);
1646 graph->SetPointError(j,xlow,xup,ylow,yup);
1647 }
1648 else {
1649 px[j] = x;
1650 py[j] = y;
1651 exl[j] = xlow;
1652 exh[j] = xup;
1653 eyl[j] = ylow;
1654 eyh[j] = yup;
1655 }
1656 j++;
1657 }
1658
1659 // tell the graph the effective number of points
1660 graph->Set(j);
1661 //refresh title before painting if changed
1662 TString oldTitle = graph->GetTitle();
1663 TString newTitle = GetTitle();
1664 if (oldTitle != newTitle ) {
1665 graph->SetTitle(newTitle);
1666 }
1667
1668 // set the axis labels
1671 if (xlabel) graph->GetXaxis()->SetTitle(xlabel);
1672 if (ylabel) graph->GetYaxis()->SetTitle(ylabel);
1673
1674 //copying style information
1678
1679 // copy axis labels if existing. Assume are there in the total histogram
1680 if (fTotalHistogram->GetXaxis()->GetLabels() != nullptr) {
1681 for (int ibin = 1; ibin <= fTotalHistogram->GetXaxis()->GetNbins(); ++ibin) {
1682 // we need to find the right bin for the Histogram representing the xaxis of the graph
1683 int grbin = graph->GetXaxis()->FindBin(fTotalHistogram->GetXaxis()->GetBinCenter(ibin));
1684 graph->GetXaxis()->SetBinLabel(grbin, fTotalHistogram->GetXaxis()->GetBinLabel(ibin));
1685 }
1686 }
1687 // this method forces the graph to compute correctly the axis
1688 // according to the given points
1689 graph->GetHistogram();
1690
1691}
1692
1693////////////////////////////////////////////////////////////////////////////////
1694/// Create the histogram used to be painted (for dim=2 TEfficiency)
1695/// The return object is managed by the caller
1696
1698{
1699 if (GetDimension() != 2) {
1700 Error("CreatePaintingistogram","Call this function only for dimension == 2");
1701 return 0;
1702 }
1703
1704 Int_t nbinsx = fTotalHistogram->GetNbinsX();
1705 Int_t nbinsy = fTotalHistogram->GetNbinsY();
1706 TAxis * xaxis = fTotalHistogram->GetXaxis();
1707 TAxis * yaxis = fTotalHistogram->GetYaxis();
1708 TH2 * hist = 0;
1709
1710 if (xaxis->IsVariableBinSize() && yaxis->IsVariableBinSize() )
1711 hist = new TH2F("eff_histo",GetTitle(),nbinsx,xaxis->GetXbins()->GetArray(),
1712 nbinsy,yaxis->GetXbins()->GetArray());
1713 else if (xaxis->IsVariableBinSize() && ! yaxis->IsVariableBinSize() )
1714 hist = new TH2F("eff_histo",GetTitle(),nbinsx,xaxis->GetXbins()->GetArray(),
1715 nbinsy,yaxis->GetXmin(), yaxis->GetXmax());
1716 else if (!xaxis->IsVariableBinSize() && yaxis->IsVariableBinSize() )
1717 hist = new TH2F("eff_histo",GetTitle(),nbinsx,xaxis->GetXmin(), xaxis->GetXmax(),
1718 nbinsy,yaxis->GetXbins()->GetArray());
1719 else
1720 hist = new TH2F("eff_histo",GetTitle(),nbinsx,xaxis->GetXmin(), xaxis->GetXmax(),
1721 nbinsy,yaxis->GetXmin(), yaxis->GetXmax());
1722
1723
1724 hist->SetDirectory(0);
1725
1726 FillHistogram(hist);
1727
1728 return hist;
1729}
1730
1731////////////////////////////////////////////////////////////////////////////////
1732/// Fill the 2d histogram to be painted with information from TEfficiency 2D
1733/// Internal method called by TEfficiency::Paint or TEfficiency::CreatePaintingGraph
1734
1736{
1737 //refresh title before each painting
1738 hist->SetTitle(GetTitle());
1739
1740 // set the axis labels
1744 if (xlabel) hist->GetXaxis()->SetTitle(xlabel);
1745 if (ylabel) hist->GetYaxis()->SetTitle(ylabel);
1746 if (zlabel) hist->GetZaxis()->SetTitle(zlabel);
1747
1748 Int_t bin;
1749 Int_t nbinsx = hist->GetNbinsX();
1750 Int_t nbinsy = hist->GetNbinsY();
1751 for(Int_t i = 0; i < nbinsx + 2; ++i) {
1752 for(Int_t j = 0; j < nbinsy + 2; ++j) {
1753 bin = GetGlobalBin(i,j);
1754 hist->SetBinContent(bin,GetEfficiency(bin));
1755 }
1756 }
1757
1758 // copy axis labels if existing. Assume are there in the total histogram
1759 if (fTotalHistogram->GetXaxis()->GetLabels() != nullptr) {
1760 for (int ibinx = 1; ibinx <= fTotalHistogram->GetXaxis()->GetNbins(); ++ibinx)
1761 hist->GetXaxis()->SetBinLabel(ibinx, fTotalHistogram->GetXaxis()->GetBinLabel(ibinx));
1762 }
1763 if (fTotalHistogram->GetYaxis()->GetLabels() != nullptr) {
1764 for (int ibiny = 1; ibiny <= fTotalHistogram->GetYaxis()->GetNbins(); ++ibiny)
1765 hist->GetYaxis()->SetBinLabel(ibiny, fTotalHistogram->GetYaxis()->GetBinLabel(ibiny));
1766 }
1767
1768 //copying style information
1769 TAttLine::Copy(*hist);
1770 TAttFill::Copy(*hist);
1771 TAttMarker::Copy(*hist);
1772 hist->SetStats(0);
1773
1774 return;
1775
1776}
1777////////////////////////////////////////////////////////////////////////////////
1778/**
1779Calculates the boundaries for the frequentist Clopper-Pearson interval
1780
1781This interval is recommended by the PDG.
1782
1783\param[in] total number of total events
1784\param[in] passed 0 <= number of passed events <= total
1785\param[in] level confidence level
1786\param[in] bUpper true - upper boundary is returned
1787 ;false - lower boundary is returned
1788
1789Calculation:
1790
1791The lower boundary of the Clopper-Pearson interval is the "exact" inversion
1792of the test:
1793 \f{eqnarray*}{
1794 P(x \geq passed; total) &=& \frac{1 - level}{2}\\
1795 P(x \geq passed; total) &=& 1 - P(x \leq passed - 1; total)\\
1796 &=& 1 - \frac{1}{norm} * \int_{0}^{1 - \varepsilon} t^{total - passed} (1 - t)^{passed - 1} dt\\
1797 &=& 1 - \frac{1}{norm} * \int_{\varepsilon}^{1} t^{passed - 1} (1 - t)^{total - passed} dt\\
1798 &=& \frac{1}{norm} * \int_{0}^{\varepsilon} t^{passed - 1} (1 - t)^{total - passed} dt\\
1799 &=& I_{\varepsilon}(passed,total - passed + 1)
1800 \f}
1801The lower boundary is therefore given by the \f$ \frac{1 - level}{2}\f$ quantile
1802of the beta distribution.
1803
1804The upper boundary of the Clopper-Pearson interval is the "exact" inversion
1805of the test:
1806 \f{eqnarray*}{
1807 P(x \leq passed; total) &=& \frac{1 - level}{2}\\
1808 P(x \leq passed; total) &=& \frac{1}{norm} * \int_{0}^{1 - \varepsilon} t^{total - passed - 1} (1 - t)^{passed} dt\\
1809 &=& \frac{1}{norm} * \int_{\varepsilon}^{1} t^{passed} (1 - t)^{total - passed - 1} dt\\
1810 &=& 1 - \frac{1}{norm} * \int_{0}^{\varepsilon} t^{passed} (1 - t)^{total - passed - 1} dt\\
1811 \Rightarrow 1 - \frac{1 - level}{2} &=& \frac{1}{norm} * \int_{0}^{\varepsilon} t^{passed} (1 - t)^{total - passed -1} dt\\
1812 \frac{1 + level}{2} &=& I_{\varepsilon}(passed + 1,total - passed)
1813 \f}
1814The upper boundary is therefore given by the \f$\frac{1 + level}{2}\f$ quantile
1815of the beta distribution.
1816
1817Note: The connection between the binomial distribution and the regularized
1818 incomplete beta function \f$ I_{\varepsilon}(\alpha,\beta)\f$ has been used.
1819*/
1820
1822{
1823 Double_t alpha = (1.0 - level) / 2;
1824 if(bUpper)
1825 return ((passed == total) ? 1.0 : ROOT::Math::beta_quantile(1 - alpha,passed + 1,total-passed));
1826 else
1827 return ((passed == 0) ? 0.0 : ROOT::Math::beta_quantile(alpha,passed,total-passed+1.0));
1828}
1829////////////////////////////////////////////////////////////////////////////////
1830/**
1831 Calculates the combined efficiency and its uncertainties
1832
1833 This method does a bayesian combination of the given samples.
1834
1835 \param[in] up contains the upper limit of the confidence interval afterwards
1836 \param[in] low contains the lower limit of the confidence interval afterwards
1837 \param[in] n number of samples which are combined
1838 \param[in] pass array of length n containing the number of passed events
1839 \param[in] total array of length n containing the corresponding numbers of total events
1840 \param[in] alpha shape parameters for the beta distribution as prior
1841 \param[in] beta shape parameters for the beta distribution as prior
1842 \param[in] level desired confidence level
1843 \param[in] w weights for each sample; if not given, all samples get the weight 1
1844 The weights do not need to be normalized, since they are internally renormalized
1845 to the number of effective entries.
1846 \param[in] opt
1847 - mode : The mode is returned instead of the mean of the posterior as best value
1848 When using the mode the shortest interval is also computed instead of the central one
1849 - shortest: compute shortest interval (done by default if mode option is set)
1850 - central: compute central interval (done by default if mode option is NOT set)
1851
1852 Calculation:
1853
1854 The combined posterior distributions is calculated from the Bayes theorem assuming a common prior Beta distribution.
1855 It is easy to proof that the combined posterior is then:
1856 \f{eqnarray*}{
1857 P_{comb}(\epsilon |{w_{i}}; {k_{i}}; {N_{i}}) &=& B(\epsilon, \sum_{i}{ w_{i} k_{i}} + \alpha, \sum_{i}{ w_{i}(n_{i}-k_{i})}+\beta)\\
1858 w_{i} &=& weight\ for\ each\ sample\ renormalized\ to\ the\ effective\ entries\\
1859 w^{'}_{i} &=& w_{i} \frac{ \sum_{i} {w_{i} } } { \sum_{i} {w_{i}^{2} } }
1860 \f}
1861
1862 The estimated efficiency is the mode (or the mean) of the obtained posterior distribution
1863
1864 The boundaries of the confidence interval for a confidence level (1 - a)
1865 are given by the a/2 and 1-a/2 quantiles of the resulting cumulative
1866 distribution.
1867
1868 Example (uniform prior distribution):
1869
1870Begin_Macro(source)
1871{
1872 TCanvas* c1 = new TCanvas("c1","",600,800);
1873 c1->Divide(1,2);
1874 c1->SetFillStyle(1001);
1875 c1->SetFillColor(kWhite);
1876
1877 TF1* p1 = new TF1("p1","TMath::BetaDist(x,19,9)",0,1);
1878 TF1* p2 = new TF1("p2","TMath::BetaDist(x,4,8)",0,1);
1879 TF1* comb = new TF1("comb2","TMath::BetaDist(x,[0],[1])",0,1);
1880 double nrm = 1./(0.6*0.6+0.4*0.4); // weight normalization
1881 double a = 0.6*18.0 + 0.4*3.0 + 1.0; // new alpha parameter of combined beta dist.
1882 double b = 0.6*10+0.4*7+1.0; // new beta parameter of combined beta dist.
1883 comb->SetParameters(nrm*a ,nrm *b );
1884 TF1* const1 = new TF1("const1","0.05",0,1);
1885 TF1* const2 = new TF1("const2","0.95",0,1);
1886
1887 p1->SetLineColor(kRed);
1888 p1->SetTitle("combined posteriors;#epsilon;P(#epsilon|k,N)");
1889 p2->SetLineColor(kBlue);
1890 comb->SetLineColor(kGreen+2);
1891
1892 TLegend* leg1 = new TLegend(0.12,0.65,0.5,0.85);
1893 leg1->AddEntry(p1,"k1 = 18, N1 = 26","l");
1894 leg1->AddEntry(p2,"k2 = 3, N2 = 10","l");
1895 leg1->AddEntry(comb,"combined: p1 = 0.6, p2=0.4","l");
1896
1897 c1->cd(1);
1898 comb->Draw();
1899 p1->Draw("same");
1900 p2->Draw("same");
1901 leg1->Draw("same");
1902 c1->cd(2);
1903 const1->SetLineWidth(1);
1904 const2->SetLineWidth(1);
1905 TGraph* gr = (TGraph*)comb->DrawIntegral();
1906 gr->SetTitle("cumulative function of combined posterior with boundaries for cl = 95%;#epsilon;CDF");
1907 const1->Draw("same");
1908 const2->Draw("same");
1909
1910 c1->cd(0);
1911 return c1;
1912}
1913End_Macro
1914
1915**/
1916////////////////////////////////////////////////////////////////////
1918 const Int_t* pass,const Int_t* total,
1919 Double_t alpha, Double_t beta,
1920 Double_t level,const Double_t* w,Option_t* opt)
1921{
1922 TString option(opt);
1923 option.ToLower();
1924
1925 //LM: new formula for combination
1926 // works only if alpha beta are the same always
1927 // the weights are normalized to w(i) -> N_eff w(i)/ Sum w(i)
1928 // i.e. w(i) -> Sum (w(i) / Sum (w(i)^2) * w(i)
1929 // norm = Sum (w(i) / Sum (w(i)^2)
1930 double ntot = 0;
1931 double ktot = 0;
1932 double sumw = 0;
1933 double sumw2 = 0;
1934 for (int i = 0; i < n ; ++i) {
1935 if(pass[i] > total[i]) {
1936 ::Error("TEfficiency::Combine","total events = %i < passed events %i",total[i],pass[i]);
1937 ::Info("TEfficiency::Combine","stop combining");
1938 return -1;
1939 }
1940
1941 ntot += w[i] * total[i];
1942 ktot += w[i] * pass[i];
1943 sumw += w[i];
1944 sumw2 += w[i]*w[i];
1945 //mean += w[i] * (pass[i] + alpha[i])/(total[i] + alpha[i] + beta[i]);
1946 }
1947 double norm = sumw/sumw2;
1948 ntot *= norm;
1949 ktot *= norm;
1950 if(ktot > ntot) {
1951 ::Error("TEfficiency::Combine","total = %f < passed %f",ntot,ktot);
1952 ::Info("TEfficiency::Combine","stop combining");
1953 return -1;
1954 }
1955
1956 double a = ktot + alpha;
1957 double b = ntot - ktot + beta;
1958
1959 double mean = a/(a+b);
1960 double mode = BetaMode(a,b);
1961
1962
1963 Bool_t shortestInterval = option.Contains("sh") || ( option.Contains("mode") && !option.Contains("cent") );
1964
1965 if (shortestInterval)
1966 BetaShortestInterval(level, a, b, low, up);
1967 else {
1968 low = BetaCentralInterval(level, a, b, false);
1969 up = BetaCentralInterval(level, a, b, true);
1970 }
1971
1972 if (option.Contains("mode")) return mode;
1973 return mean;
1974
1975}
1976////////////////////////////////////////////////////////////////////////////////
1977/// Combines a list of 1-dimensional TEfficiency objects
1978///
1979/// A TGraphAsymmErrors object is returned which contains the estimated
1980/// efficiency and its uncertainty for each bin.
1981/// If the combination fails, a zero pointer is returned.
1982///
1983/// At the moment the combining is only implemented for bayesian statistics.
1984///
1985/// \param[in] pList list containing TEfficiency objects which should be combined
1986/// only one-dimensional efficiencies are taken into account
1987/// \param[in] option
1988/// - s : strict combining; only TEfficiency objects with the same beta
1989/// prior and the flag kIsBayesian == true are combined
1990/// If not specified the prior parameter of the first TEfficiency object is used
1991/// - v : verbose mode; print information about combining
1992/// - cl=x : set confidence level (0 < cl < 1). If not specified, the
1993/// confidence level of the first TEfficiency object is used.
1994/// - mode Use mode of combined posterior as estimated value for the efficiency
1995/// - shortest: compute shortest interval (done by default if mode option is set)
1996/// - central: compute central interval (done by default if mode option is NOT set)
1997/// \param[in] n number of weights (has to be the number of one-dimensional
1998/// TEfficiency objects in pList)
1999/// If no weights are passed, the internal weights GetWeight() of
2000/// the given TEfficiency objects are used.
2001/// \param[in] w array of length n with weights for each TEfficiency object in
2002/// pList (w[0] correspond to pList->First ... w[n-1] -> pList->Last)
2003/// The weights do not have to be normalised.
2004///
2005/// For each bin the calculation is done by the Combine(double&, double& ...) method.
2006
2008 Int_t n,const Double_t* w)
2009{
2010 TString opt = option;
2011 opt.ToLower();
2012
2013 //parameter of prior distribution, confidence level and normalisation factor
2014 Double_t alpha = -1;
2015 Double_t beta = -1;
2016 Double_t level = 0;
2017
2018 //flags for combining
2019 Bool_t bStrict = false;
2020 Bool_t bOutput = false;
2021 Bool_t bWeights = false;
2022 //list of all information needed to weight and combine efficiencies
2023 std::vector<TH1*> vTotal; vTotal.reserve(n);
2024 std::vector<TH1*> vPassed; vPassed.reserve(n);
2025 std::vector<Double_t> vWeights; vWeights.reserve(n);
2026 // std::vector<Double_t> vAlpha;
2027 // std::vector<Double_t> vBeta;
2028
2029 if(opt.Contains("s")) {
2030 opt.ReplaceAll("s","");
2031 bStrict = true;
2032 }
2033
2034 if(opt.Contains("v")) {
2035 opt.ReplaceAll("v","");
2036 bOutput = true;
2037 }
2038
2039 if(opt.Contains("cl=")) {
2040 Ssiz_t pos = opt.Index("cl=") + 3;
2041 level = atof( opt(pos,opt.Length() ).Data() );
2042 if((level <= 0) || (level >= 1))
2043 level = 0;
2044 opt.ReplaceAll("cl=","");
2045 }
2046
2047 //are weights explicitly given
2048 if(n && w) {
2049 bWeights = true;
2050 for(Int_t k = 0; k < n; ++k) {
2051 if(w[k] > 0)
2052 vWeights.push_back(w[k]);
2053 else {
2054 gROOT->Error("TEfficiency::Combine","invalid custom weight found w = %.2lf",w[k]);
2055 gROOT->Info("TEfficiency::Combine","stop combining");
2056 return 0;
2057 }
2058 }
2059 }
2060
2061 TIter next(pList);
2062 TObject* obj = 0;
2063 TEfficiency* pEff = 0;
2064 while((obj = next())) {
2065 pEff = dynamic_cast<TEfficiency*>(obj);
2066 //is object a TEfficiency object?
2067 if(pEff) {
2068 if(pEff->GetDimension() > 1)
2069 continue;
2070 if(!level) level = pEff->GetConfidenceLevel();
2071
2072 if(alpha<1) alpha = pEff->GetBetaAlpha();
2073 if(beta<1) beta = pEff->GetBetaBeta();
2074
2075 //if strict combining, check priors, confidence level and statistic
2076 if(bStrict) {
2077 if(alpha != pEff->GetBetaAlpha())
2078 continue;
2079 if(beta != pEff->GetBetaBeta())
2080 continue;
2081 if(!pEff->UsesBayesianStat())
2082 continue;
2083 }
2084
2085 vTotal.push_back(pEff->fTotalHistogram);
2086 vPassed.push_back(pEff->fPassedHistogram);
2087
2088 //no weights given -> use weights of TEfficiency objects
2089 if(!bWeights)
2090 vWeights.push_back(pEff->fWeight);
2091
2092 //strict combining -> using global prior
2093 // if(bStrict) {
2094 // vAlpha.push_back(alpha);
2095 // vBeta.push_back(beta);
2096 // }
2097 // else {
2098 // vAlpha.push_back(pEff->GetBetaAlpha());
2099 // vBeta.push_back(pEff->GetBetaBeta());
2100 // }
2101 }
2102 }
2103
2104 //no TEfficiency objects found
2105 if(vTotal.empty()) {
2106 gROOT->Error("TEfficiency::Combine","no TEfficiency objects in given list");
2107 gROOT->Info("TEfficiency::Combine","stop combining");
2108 return 0;
2109 }
2110
2111 //invalid number of custom weights
2112 if(bWeights && (n != (Int_t)vTotal.size())) {
2113 gROOT->Error("TEfficiency::Combine","number of weights n=%i differs from number of TEfficiency objects k=%i which should be combined",n,(Int_t)vTotal.size());
2114 gROOT->Info("TEfficiency::Combine","stop combining");
2115 return 0;
2116 }
2117
2118 Int_t nbins_max = vTotal.at(0)->GetNbinsX();
2119 //check binning of all histograms
2120 for(UInt_t i=0; i<vTotal.size(); ++i) {
2121 if (!TEfficiency::CheckBinning(*vTotal.at(0),*vTotal.at(i)) )
2122 gROOT->Warning("TEfficiency::Combine","histograms have not the same binning -> results may be useless");
2123 if(vTotal.at(i)->GetNbinsX() < nbins_max) nbins_max = vTotal.at(i)->GetNbinsX();
2124 }
2125
2126 //display information about combining
2127 if(bOutput) {
2128 gROOT->Info("TEfficiency::Combine","combining %i TEfficiency objects",(Int_t)vTotal.size());
2129 if(bWeights)
2130 gROOT->Info("TEfficiency::Combine","using custom weights");
2131 if(bStrict) {
2132 gROOT->Info("TEfficiency::Combine","using the following prior probability for the efficiency: P(e) ~ Beta(e,%.3lf,%.3lf)",alpha,beta);
2133 }
2134 else
2135 gROOT->Info("TEfficiency::Combine","using individual priors of each TEfficiency object");
2136 gROOT->Info("TEfficiency::Combine","confidence level = %.2lf",level);
2137 }
2138
2139 //create TGraphAsymmErrors with efficiency
2140 std::vector<Double_t> x(nbins_max);
2141 std::vector<Double_t> xlow(nbins_max);
2142 std::vector<Double_t> xhigh(nbins_max);
2143 std::vector<Double_t> eff(nbins_max);
2144 std::vector<Double_t> efflow(nbins_max);
2145 std::vector<Double_t> effhigh(nbins_max);
2146
2147 //parameters for combining:
2148 //number of objects
2149 Int_t num = vTotal.size();
2150 std::vector<Int_t> pass(num);
2151 std::vector<Int_t> total(num);
2152
2153 //loop over all bins
2154 Double_t low = 0;
2155 Double_t up = 0;
2156 for(Int_t i=1; i <= nbins_max; ++i) {
2157 //the binning of the x-axis is taken from the first total histogram
2158 x[i-1] = vTotal.at(0)->GetBinCenter(i);
2159 xlow[i-1] = x[i-1] - vTotal.at(0)->GetBinLowEdge(i);
2160 xhigh[i-1] = vTotal.at(0)->GetBinWidth(i) - xlow[i-1];
2161
2162 for(Int_t j = 0; j < num; ++j) {
2163 pass[j] = (Int_t)(vPassed.at(j)->GetBinContent(i) + 0.5);
2164 total[j] = (Int_t)(vTotal.at(j)->GetBinContent(i) + 0.5);
2165 }
2166
2167 //fill efficiency and errors
2168 eff[i-1] = Combine(up,low,num,&pass[0],&total[0],alpha,beta,level,&vWeights[0],opt.Data());
2169 //did an error occurred ?
2170 if(eff[i-1] == -1) {
2171 gROOT->Error("TEfficiency::Combine","error occurred during combining");
2172 gROOT->Info("TEfficiency::Combine","stop combining");
2173 return 0;
2174 }
2175 efflow[i-1]= eff[i-1] - low;
2176 effhigh[i-1]= up - eff[i-1];
2177 }//loop over all bins
2178
2179 TGraphAsymmErrors* gr = new TGraphAsymmErrors(nbins_max,&x[0],&eff[0],&xlow[0],&xhigh[0],&efflow[0],&effhigh[0]);
2180
2181 return gr;
2182}
2183
2184////////////////////////////////////////////////////////////////////////////////
2185/// Compute distance from point px,py to a graph.
2186///
2187/// Compute the closest distance of approach from point px,py to this line.
2188/// The distance is computed in pixels units.
2189///
2190/// Forward the call to the painted graph
2191
2193{
2194 if (fPaintGraph) return fPaintGraph->DistancetoPrimitive(px,py);
2195 if (fPaintHisto) return fPaintHisto->DistancetoPrimitive(px,py);
2196 return 0;
2197}
2198
2199
2200////////////////////////////////////////////////////////////////////////////////
2201/// Draws the current TEfficiency object
2202///
2203/// \param[in] opt
2204/// - 1-dimensional case: same options as TGraphAsymmErrors::Draw()
2205/// but as default "AP" is used
2206/// - 2-dimensional case: same options as TH2::Draw()
2207/// - 3-dimensional case: not yet supported
2208///
2209/// Specific TEfficiency drawing options:
2210/// - E0 - plot bins where the total number of passed events is zero
2211/// (the error interval will be [0,1] )
2212
2214{
2215 //check options
2216 TString option = opt;
2217 option.ToLower();
2218 // use by default "AP"
2219 if (option.IsNull() ) option = "ap";
2220
2221 if(gPad && !option.Contains("same"))
2222 gPad->Clear();
2223 else {
2224 // add always "a" if not present
2225 if (!option.Contains("a") ) option += "a";
2226 }
2227
2228 // add always p to the option
2229 if (!option.Contains("p") ) option += "p";
2230
2231
2232 AppendPad(option.Data());
2233}
2234
2235////////////////////////////////////////////////////////////////////////////////
2236/// Execute action corresponding to one event.
2237///
2238/// This member function is called when the drawn class is clicked with the locator
2239/// If Left button clicked on one of the line end points, this point
2240/// follows the cursor until button is released.
2241///
2242/// if Middle button clicked, the line is moved parallel to itself
2243/// until the button is released.
2244/// Forward the call to the underlying graph
2245
2247{
2248 if (fPaintGraph) fPaintGraph->ExecuteEvent(event,px,py);
2249 else if (fPaintHisto) fPaintHisto->ExecuteEvent(event,px,py);
2250}
2251
2252////////////////////////////////////////////////////////////////////////////////
2253/// This function is used for filling the two histograms.
2254///
2255/// \param[in] bPassed flag whether the current event passed the selection
2256/// - true: both histograms are filled
2257/// - false: only the total histogram is filled
2258/// \param[in] x x-value
2259/// \param[in] y y-value (use default=0 for 1-D efficiencies)
2260/// \param[in] z z-value (use default=0 for 2-D or 1-D efficiencies)
2261
2263{
2264 switch(GetDimension()) {
2265 case 1:
2267 if(bPassed)
2269 break;
2270 case 2:
2271 ((TH2*)(fTotalHistogram))->Fill(x,y);
2272 if(bPassed)
2273 ((TH2*)(fPassedHistogram))->Fill(x,y);
2274 break;
2275 case 3:
2276 ((TH3*)(fTotalHistogram))->Fill(x,y,z);
2277 if(bPassed)
2278 ((TH3*)(fPassedHistogram))->Fill(x,y,z);
2279 break;
2280 }
2281}
2282
2283////////////////////////////////////////////////////////////////////////////////
2284///This function is used for filling the two histograms with a weight.
2285///
2286/// \param[in] bPassed flag whether the current event passed the selection
2287/// - true: both histograms are filled
2288/// - false: only the total histogram is filled
2289/// \param[in] weight weight for the event
2290/// \param[in] x x-value
2291/// \param[in] y y-value (use default=0 for 1-D efficiencies)
2292/// \param[in] z z-value (use default=0 for 2-D or 1-D efficiencies)
2293///
2294/// Note: - this function will call SetUseWeightedEvents if it was not called by the user before
2295
2297{
2298 if(!TestBit(kUseWeights))
2299 {
2300 // Info("FillWeighted","call SetUseWeightedEvents() manually to ensure correct storage of sum of weights squared");
2302 }
2303
2304 switch(GetDimension()) {
2305 case 1:
2306 fTotalHistogram->Fill(x,weight);
2307 if(bPassed)
2308 fPassedHistogram->Fill(x,weight);
2309 break;
2310 case 2:
2311 ((TH2*)(fTotalHistogram))->Fill(x,y,weight);
2312 if(bPassed)
2313 ((TH2*)(fPassedHistogram))->Fill(x,y,weight);
2314 break;
2315 case 3:
2316 ((TH3*)(fTotalHistogram))->Fill(x,y,z,weight);
2317 if(bPassed)
2318 ((TH3*)(fPassedHistogram))->Fill(x,y,z,weight);
2319 break;
2320 }
2321}
2322
2323////////////////////////////////////////////////////////////////////////////////
2324/// Returns the global bin number containing the given values
2325///
2326/// Note:
2327///
2328/// - values which belong to dimensions higher than the current dimension
2329/// of the TEfficiency object are ignored (i.e. for 1-dimensional
2330/// efficiencies only the x-value is considered)
2331
2333{
2335 Int_t ny = 0;
2336 Int_t nz = 0;
2337
2338 switch(GetDimension()) {
2339 case 3: nz = fTotalHistogram->GetZaxis()->FindFixBin(z);
2340 case 2: ny = fTotalHistogram->GetYaxis()->FindFixBin(y);break;
2341 }
2342
2343 return GetGlobalBin(nx,ny,nz);
2344}
2345
2346////////////////////////////////////////////////////////////////////////////////
2347/// Fits the efficiency using the TBinomialEfficiencyFitter class
2348///
2349/// The resulting fit function is added to the list of associated functions.
2350///
2351/// Options:
2352/// - "+": previous fitted functions in the list are kept, by default
2353/// all functions in the list are deleted
2354/// - for more fitting options see TBinomialEfficiencyFitter::Fit
2355
2357{
2358 TString option = opt;
2359 option.ToLower();
2360
2361 //replace existing functions in list with same name
2362 Bool_t bDeleteOld = true;
2363 if(option.Contains("+")) {
2364 option.ReplaceAll("+","");
2365 bDeleteOld = false;
2366 }
2367
2369
2370 TFitResultPtr result = Fitter.Fit(f1,option.Data());
2371
2372 //create copy which is appended to the list
2373 TF1* pFunc = new TF1(*f1);
2374
2375 if(bDeleteOld) {
2376 TIter next(fFunctions);
2377 TObject* obj = 0;
2378 while((obj = next())) {
2379 if(obj->InheritsFrom(TF1::Class())) {
2380 fFunctions->Remove(obj);
2381 delete obj;
2382 }
2383 }
2384 }
2385
2386 // create list if necessary
2387 if(!fFunctions)
2388 fFunctions = new TList();
2389
2390 fFunctions->Add(pFunc);
2391
2392 return result;
2393}
2394
2395////////////////////////////////////////////////////////////////////////////////
2396/// Returns a cloned version of fPassedHistogram
2397///
2398/// Notes:
2399/// - The histogram is filled with unit weights. You might want to scale
2400/// it with the global weight GetWeight().
2401/// - The returned object is owned by the user who has to care about the
2402/// deletion of the new TH1 object.
2403/// - This histogram is by default NOT attached to the current directory
2404/// to avoid duplication of data. If you want to store it automatically
2405/// during the next TFile::Write() command, you have to attach it to
2406/// the corresponding directory.
2407///
2408/// ~~~~~~~{.cpp}
2409/// TFile* pFile = new TFile("passed.root","update");
2410/// TEfficiency* pEff = (TEfficiency*)gDirectory->Get("my_eff");
2411/// TH1* copy = pEff->GetCopyPassedHisto();
2412/// copy->SetDirectory(gDirectory);
2413/// pFile->Write();
2414/// ~~~~~~~
2415
2417{
2418 Bool_t bStatus = TH1::AddDirectoryStatus();
2420 TH1* tmp = (TH1*)(fPassedHistogram->Clone());
2421 TH1::AddDirectory(bStatus);
2422
2423 return tmp;
2424}
2425
2426////////////////////////////////////////////////////////////////////////////////
2427/// Returns a cloned version of fTotalHistogram
2428///
2429/// Notes:
2430/// - The histogram is filled with unit weights. You might want to scale
2431/// it with the global weight GetWeight().
2432/// - The returned object is owned by the user who has to care about the
2433/// deletion of the new TH1 object.
2434/// - This histogram is by default NOT attached to the current directory
2435/// to avoid duplication of data. If you want to store it automatically
2436/// during the next TFile::Write() command, you have to attach it to
2437/// the corresponding directory.
2438///
2439/// ~~~~~~~{.cpp}
2440/// TFile* pFile = new TFile("total.root","update");
2441/// TEfficiency* pEff = (TEfficiency*)gDirectory->Get("my_eff");
2442/// TH1* copy = pEff->GetCopyTotalHisto();
2443/// copy->SetDirectory(gDirectory);
2444/// pFile->Write();
2445/// ~~~~~~~
2446
2448{
2449 Bool_t bStatus = TH1::AddDirectoryStatus();
2451 TH1* tmp = (TH1*)(fTotalHistogram->Clone());
2452 TH1::AddDirectory(bStatus);
2453
2454 return tmp;
2455}
2456
2457////////////////////////////////////////////////////////////////////////////////
2458///returns the dimension of the current TEfficiency object
2459
2461{
2462 return fTotalHistogram->GetDimension();
2463}
2464
2465////////////////////////////////////////////////////////////////////////////////
2466/// Returns the efficiency in the given global bin
2467///
2468/// Note:
2469/// - The estimated efficiency depends on the chosen statistic option:
2470/// for frequentist ones:
2471/// \f$ \hat{\varepsilon} = \frac{passed}{total} \f$
2472/// for bayesian ones the expectation value of the resulting posterior
2473/// distribution is returned:
2474/// \f$ \hat{\varepsilon} = \frac{passed + \alpha}{total + \alpha + \beta} \f$
2475/// If the bit kPosteriorMode is set (or the method TEfficiency::UsePosteriorMode() has been called ) the
2476/// mode (most probable value) of the posterior is returned:
2477/// \f$ \hat{\varepsilon} = \frac{passed + \alpha -1}{total + \alpha + \beta -2} \f$
2478/// - If the denominator is equal to 0, an efficiency of 0 is returned.
2479/// - When \f$ passed + \alpha < 1 \f$ or \f$ total - passed + \beta < 1 \f$ the above
2480/// formula for the mode is not valid. In these cases values the estimated efficiency is 0 or 1.
2481
2483{
2486
2487 if(TestBit(kIsBayesian)) {
2488
2489 // parameters for the beta prior distribution
2492
2493 Double_t aa,bb;
2494 if(TestBit(kUseWeights))
2495 {
2497 Double_t tw2 = fTotalHistogram->GetSumw2()->At(bin);
2499
2500 if (tw2 <= 0 ) return pw/tw;
2501
2502 // tw/tw2 renormalize the weights
2503 double norm = tw/tw2;
2504 aa = pw * norm + alpha;
2505 bb = (tw - pw) * norm + beta;
2506 }
2507 else
2508 {
2509 aa = passed + alpha;
2510 bb = total - passed + beta;
2511 }
2512
2513 if (!TestBit(kPosteriorMode) )
2514 return BetaMean(aa,bb);
2515 else
2516 return BetaMode(aa,bb);
2517
2518 }
2519 else
2520 return (total)? ((Double_t)passed)/total : 0;
2521}
2522
2523////////////////////////////////////////////////////////////////////////////////
2524/// Returns the lower error on the efficiency in the given global bin
2525///
2526/// The result depends on the current confidence level fConfLevel and the
2527/// chosen statistic option fStatisticOption. See SetStatisticOption(Int_t) for
2528/// more details.
2529///
2530/// Note: If the histograms are filled with weights, only bayesian methods and the
2531/// normal approximation are supported.
2532
2534{
2537
2538 Double_t eff = GetEfficiency(bin);
2539
2540 // check whether weights have been used
2541 if(TestBit(kUseWeights))
2542 {
2544 Double_t tw2 = fTotalHistogram->GetSumw2()->At(bin);
2546 Double_t pw2 = fPassedHistogram->GetSumw2()->At(bin);
2547
2548 if(TestBit(kIsBayesian))
2549 {
2552
2553 if (tw2 <= 0) return 0;
2554
2555 // tw/tw2 renormalize the weights
2556 Double_t norm = tw/tw2;
2557 Double_t aa = pw * norm + alpha;
2558 Double_t bb = (tw - pw) * norm + beta;
2559 Double_t low = 0;
2560 Double_t upper = 1;
2563 }
2564 else {
2566 }
2567
2568 return eff - low;
2569 }
2570 else
2571 {
2573 {
2574 Warning("GetEfficiencyErrorLow","frequentist confidence intervals for weights are only supported by the normal approximation");
2575 Info("GetEfficiencyErrorLow","setting statistic option to kFNormal");
2576 const_cast<TEfficiency*>(this)->SetStatisticOption(kFNormal);
2577 }
2578
2579 Double_t variance = ( pw2 * (1. - 2 * eff) + tw2 * eff *eff ) / ( tw * tw) ;
2580 Double_t sigma = sqrt(variance);
2581
2582 Double_t prob = 0.5 * (1.- fConfLevel);
2584
2585 // avoid to return errors which makes eff-err < 0
2586 return (eff - delta < 0) ? eff : delta;
2587 }
2588 }
2589 else
2590 {
2591 if(TestBit(kIsBayesian))
2592 {
2593 // parameters for the beta prior distribution
2596 return (eff - Bayesian(total,passed,fConfLevel,alpha,beta,false,TestBit(kShortestInterval)));
2597 }
2598 else
2599 return (eff - fBoundary(total,passed,fConfLevel,false));
2600 }
2601}
2602
2603////////////////////////////////////////////////////////////////////////////////
2604/// Returns the upper error on the efficiency in the given global bin
2605///
2606/// The result depends on the current confidence level fConfLevel and the
2607/// chosen statistic option fStatisticOption. See SetStatisticOption(Int_t) for
2608/// more details.
2609///
2610/// Note: If the histograms are filled with weights, only bayesian methods and the
2611/// normal approximation are supported.
2612
2614{
2617
2618 Double_t eff = GetEfficiency(bin);
2619
2620 // check whether weights have been used
2621 if(TestBit(kUseWeights))
2622 {
2624 Double_t tw2 = fTotalHistogram->GetSumw2()->At(bin);
2626 Double_t pw2 = fPassedHistogram->GetSumw2()->At(bin);
2627
2628 if(TestBit(kIsBayesian))
2629 {
2632
2633 if (tw2 <= 0) return 0;
2634
2635 // tw/tw2 renormalize the weights
2636 Double_t norm = tw/tw2;
2637 Double_t aa = pw * norm + alpha;
2638 Double_t bb = (tw - pw) * norm + beta;
2639 Double_t low = 0;
2640 Double_t upper = 1;
2643 }
2644 else {
2645 upper = TEfficiency::BetaCentralInterval(fConfLevel,aa,bb,true);
2646 }
2647
2648 return upper - eff;
2649 }
2650 else
2651 {
2653 {
2654 Warning("GetEfficiencyErrorUp","frequentist confidence intervals for weights are only supported by the normal approximation");
2655 Info("GetEfficiencyErrorUp","setting statistic option to kFNormal");
2656 const_cast<TEfficiency*>(this)->SetStatisticOption(kFNormal);
2657 }
2658
2659 Double_t variance = ( pw2 * (1. - 2 * eff) + tw2 * eff *eff ) / ( tw * tw) ;
2660 Double_t sigma = sqrt(variance);
2661
2662 Double_t prob = 0.5 * (1.- fConfLevel);
2664
2665 return (eff + delta > 1) ? 1.-eff : delta;
2666 }
2667 }
2668 else
2669 {
2670 if(TestBit(kIsBayesian))
2671 {
2672 // parameters for the beta prior distribution
2675 return (Bayesian(total,passed,fConfLevel,alpha,beta,true,TestBit(kShortestInterval)) - eff);
2676 }
2677 else
2678 return fBoundary(total,passed,fConfLevel,true) - eff;
2679 }
2680}
2681
2682////////////////////////////////////////////////////////////////////////////////
2683/// Returns the global bin number which can be used as argument for the
2684/// following functions:
2685///
2686/// - GetEfficiency(bin), GetEfficiencyErrorLow(bin), GetEfficiencyErrorUp(bin)
2687/// - SetPassedEvents(bin), SetTotalEvents(bin)
2688///
2689/// see TH1::GetBin() for conventions on numbering bins
2690
2692{
2693 return fTotalHistogram->GetBin(binx,biny,binz);
2694}
2695
2696////////////////////////////////////////////////////////////////////////////////
2697
2699{
2700 return (fFunctions) ? fFunctions : fFunctions = new TList();
2701}
2702
2703////////////////////////////////////////////////////////////////////////////////
2704/// Merges the TEfficiency objects in the given list to the given
2705/// TEfficiency object using the operator+=(TEfficiency&)
2706///
2707/// The merged result is stored in the current object. The statistic options and
2708/// the confidence level are taken from the current object.
2709///
2710/// This function should be used when all TEfficiency objects correspond to
2711/// the same process.
2712///
2713/// The new weight is set according to:
2714/// \f$ \frac{1}{w_{new}} = \sum_{i} \frac{1}{w_{i}} \f$
2715
2717{
2718 if(!pList->IsEmpty()) {
2719 TIter next(pList);
2720 TObject* obj = 0;
2721 TEfficiency* pEff = 0;
2722 while((obj = next())) {
2723 pEff = dynamic_cast<TEfficiency*>(obj);
2724 if(pEff) {
2725 *this += *pEff;
2726 }
2727 }
2728 }
2730}
2731
2732////////////////////////////////////////////////////////////////////////////////
2733/**
2734Returns the confidence limits for the efficiency supposing that the
2735efficiency follows a normal distribution with the rms below
2736
2737\param[in] total number of total events
2738\param[in] passed 0 <= number of passed events <= total
2739\param[in] level confidence level
2740\param[in] bUpper
2741 - true - upper boundary is returned
2742 - false - lower boundary is returned
2743
2744Calculation:
2745
2746\f{eqnarray*}{
2747 \hat{\varepsilon} &=& \frac{passed}{total}\\
2748 \sigma_{\varepsilon} &=& \sqrt{\frac{\hat{\varepsilon} (1 - \hat{\varepsilon})}{total}}\\
2749 \varepsilon_{low} &=& \hat{\varepsilon} \pm \Phi^{-1}(\frac{level}{2},\sigma_{\varepsilon})
2750\f}
2751*/
2752
2754{
2755 Double_t alpha = (1.0 - level)/2;
2756 if (total == 0) return (bUpper) ? 1 : 0;
2757 Double_t average = passed / total;
2758 Double_t sigma = std::sqrt(average * (1 - average) / total);
2759 Double_t delta = ROOT::Math::normal_quantile(1 - alpha,sigma);
2760
2761 if(bUpper)
2762 return ((average + delta) > 1) ? 1.0 : (average + delta);
2763 else
2764 return ((average - delta) < 0) ? 0.0 : (average - delta);
2765}
2766
2767////////////////////////////////////////////////////////////////////////////////
2768/// Adds the histograms of another TEfficiency object to current histograms
2769///
2770/// The statistic options and the confidence level remain unchanged.
2771///
2772/// fTotalHistogram += rhs.fTotalHistogram;
2773/// fPassedHistogram += rhs.fPassedHistogram;
2774///
2775/// calculates a new weight:
2776/// current weight of this TEfficiency object = \f$ w_{1} \f$
2777/// weight of rhs = \f$ w_{2} \f$
2778/// \f$ w_{new} = \frac{w_{1} \times w_{2}}{w_{1} + w_{2}} \f$
2779
2781{
2782
2783 if (fTotalHistogram == 0 && fPassedHistogram == 0) {
2784 // efficiency is empty just copy it over
2785 *this = rhs;
2786 return *this;
2787 }
2788 else if (fTotalHistogram == 0 || fPassedHistogram == 0) {
2789 Fatal("operator+=","Adding to a non consistent TEfficiency object which has not a total or a passed histogram ");
2790 return *this;
2791 }
2792
2793 if (rhs.fTotalHistogram == 0 && rhs.fPassedHistogram == 0 ) {
2794 Warning("operator+=","no operation: adding an empty object");
2795 return *this;
2796 }
2797 else if (rhs.fTotalHistogram == 0 || rhs.fPassedHistogram == 0 ) {
2798 Fatal("operator+=","Adding a non consistent TEfficiency object which has not a total or a passed histogram ");
2799 return *this;
2800 }
2801
2804
2807
2808 SetWeight((fWeight * rhs.GetWeight())/(fWeight + rhs.GetWeight()));
2809
2810 return *this;
2811}
2812
2813////////////////////////////////////////////////////////////////////////////////
2814/// Assignment operator
2815///
2816/// The histograms, statistic option, confidence level, weight and paint styles
2817/// of rhs are copied to the this TEfficiency object.
2818///
2819/// Note: - The list of associated functions is not copied. After this
2820/// operation the list of associated functions is empty.
2821
2823{
2824 if(this != &rhs)
2825 {
2826 //statistic options
2830 SetBetaBeta(rhs.GetBetaBeta());
2831 SetWeight(rhs.GetWeight());
2832
2833 //associated list of functions
2834 if(fFunctions)
2835 fFunctions->Delete();
2836
2837 //copy histograms
2838 delete fTotalHistogram;
2839 delete fPassedHistogram;
2840
2841 Bool_t bStatus = TH1::AddDirectoryStatus();
2845 TH1::AddDirectory(bStatus);
2846
2847 //delete temporary paint objects
2848 delete fPaintHisto;
2849 delete fPaintGraph;
2850 fPaintHisto = 0;
2851 fPaintGraph = 0;
2852
2853 //copy style
2854 rhs.TAttLine::Copy(*this);
2855 rhs.TAttFill::Copy(*this);
2856 rhs.TAttMarker::Copy(*this);
2857 }
2858
2859 return *this;
2860}
2861
2862////////////////////////////////////////////////////////////////////////////////
2863/// Paints this TEfficiency object
2864///
2865/// For details on the possible option see Draw(Option_t*)
2866///
2867/// Note for 1D classes
2868/// In 1D the TEfficiency uses a TGraphAsymmErrors for drawing
2869/// The TGraph is created only the first time Paint is used. The user can manipulate the
2870/// TGraph via the method TEfficiency::GetPaintedGraph()
2871/// The TGraph creates behing an histogram for the axis. The histogram is created also only the first time.
2872/// If the axis needs to be updated because in the meantime the class changed use this trick
2873/// which will trigger a re-calculation of the axis of the graph
2874/// TEfficiency::GetPaintedGraph()->Set(0)
2875///
2876/// Note that in order to access the painted graph via GetPaintedGraph() you need either to call Paint or better
2877/// gPad->Update();
2878///
2879
2881{
2882
2883
2884 if(!gPad)
2885 return;
2886
2887
2888 //use TGraphAsymmErrors for painting
2889 if(GetDimension() == 1) {
2890 if(!fPaintGraph) {
2891 fPaintGraph = CreateGraph(opt);
2892 }
2893 else
2894 // update existing graph already created
2895 FillGraph(fPaintGraph, opt);
2896
2897 //paint graph
2898
2899 fPaintGraph->Paint(opt);
2900
2901 //paint all associated functions
2902 if(fFunctions) {
2903 //paint box with fit parameters
2904 //the fit statistics will be painted if gStyle->SetOptFit(1) has been
2905 // called by the user
2906 TIter next(fFunctions);
2907 TObject* obj = 0;
2908 while((obj = next())) {
2909 if(obj->InheritsFrom(TF1::Class())) {
2910 fPaintGraph->PaintStats((TF1*)obj);
2911 ((TF1*)obj)->Paint("sameC");
2912 }
2913 }
2914 }
2915
2916 return;
2917 }
2918
2919 //use TH2 for painting
2920 if(GetDimension() == 2) {
2921 if(!fPaintHisto) {
2923 }
2924 else
2926
2927 //paint histogram
2928 fPaintHisto->Paint(opt);
2929 return;
2930 }
2931 Warning("Paint","Painting 3D efficiency is not implemented");
2932}
2933
2934////////////////////////////////////////////////////////////////////////////////
2935/// Have histograms fixed bins along each axis?
2936
2937void TEfficiency::SavePrimitive(std::ostream& out,Option_t* opt)
2938{
2939 Bool_t equi_bins = true;
2940
2941 //indentation
2942 TString indent = " ";
2943 //names for arrays containing the bin edges
2944 //static counter needed if more objects are saved
2945 static Int_t naxis = 0;
2946 TString sxaxis="xAxis",syaxis="yAxis",szaxis="zAxis";
2947
2948 //note the missing break statements!
2949 switch(GetDimension()) {
2950 case 3:
2951 equi_bins = equi_bins && !fTotalHistogram->GetZaxis()->GetXbins()->fArray
2953 case 2:
2954 equi_bins = equi_bins && !fTotalHistogram->GetYaxis()->GetXbins()->fArray
2956 case 1:
2957 equi_bins = equi_bins && !fTotalHistogram->GetXaxis()->GetXbins()->fArray
2959 }
2960
2961 //create arrays containing the variable binning
2962 if(!equi_bins) {
2963 Int_t i;
2964 ++naxis;
2965 sxaxis += naxis;
2966 syaxis += naxis;
2967 szaxis += naxis;
2968 //x axis
2969 out << indent << "Double_t " << sxaxis << "["
2970 << fTotalHistogram->GetXaxis()->GetXbins()->fN << "] = {";
2971 for (i = 0; i < fTotalHistogram->GetXaxis()->GetXbins()->fN; ++i) {
2972 if (i != 0) out << ", ";
2973 out << fTotalHistogram->GetXaxis()->GetXbins()->fArray[i];
2974 }
2975 out << "}; " << std::endl;
2976 //y axis
2977 if(GetDimension() > 1) {
2978 out << indent << "Double_t " << syaxis << "["
2979 << fTotalHistogram->GetYaxis()->GetXbins()->fN << "] = {";
2980 for (i = 0; i < fTotalHistogram->GetYaxis()->GetXbins()->fN; ++i) {
2981 if (i != 0) out << ", ";
2982 out << fTotalHistogram->GetYaxis()->GetXbins()->fArray[i];
2983 }
2984 out << "}; " << std::endl;
2985 }
2986 //z axis
2987 if(GetDimension() > 2) {
2988 out << indent << "Double_t " << szaxis << "["
2989 << fTotalHistogram->GetZaxis()->GetXbins()->fN << "] = {";
2990 for (i = 0; i < fTotalHistogram->GetZaxis()->GetXbins()->fN; ++i) {
2991 if (i != 0) out << ", ";
2992 out << fTotalHistogram->GetZaxis()->GetXbins()->fArray[i];
2993 }
2994 out << "}; " << std::endl;
2995 }
2996 }//creating variable binning
2997
2998 //TEfficiency pointer has efficiency name + counter
2999 static Int_t eff_count = 0;
3000 ++eff_count;
3001 TString eff_name = GetName();
3002 eff_name += eff_count;
3003
3004 const char* name = eff_name.Data();
3005
3006 //construct TEfficiency object
3007 const char quote = '"';
3008 out << indent << std::endl;
3009 out << indent << ClassName() << " * " << name << " = new " << ClassName()
3010 << "(" << quote << GetName() << quote << "," << quote
3011 << GetTitle() << quote <<",";
3012 //fixed bin size -> use n,min,max constructor
3013 if(equi_bins) {
3014 out << fTotalHistogram->GetXaxis()->GetNbins() << ","
3015 << fTotalHistogram->GetXaxis()->GetXmin() << ","
3017 if(GetDimension() > 1) {
3018 out << "," << fTotalHistogram->GetYaxis()->GetNbins() << ","
3019 << fTotalHistogram->GetYaxis()->GetXmin() << ","
3021 }
3022 if(GetDimension() > 2) {
3023 out << "," << fTotalHistogram->GetZaxis()->GetNbins() << ","
3024 << fTotalHistogram->GetZaxis()->GetXmin() << ","
3026 }
3027 }
3028 //variable bin size -> use n,*bins constructor
3029 else {
3030 out << fTotalHistogram->GetXaxis()->GetNbins() << "," << sxaxis;
3031 if(GetDimension() > 1)
3032 out << "," << fTotalHistogram->GetYaxis()->GetNbins() << ","
3033 << syaxis;
3034 if(GetDimension() > 2)
3035 out << "," << fTotalHistogram->GetZaxis()->GetNbins() << ","
3036 << szaxis;
3037 }
3038 out << ");" << std::endl;
3039 out << indent << std::endl;
3040
3041 //set statistic options
3042 out << indent << name << "->SetConfidenceLevel(" << fConfLevel << ");"
3043 << std::endl;
3044 out << indent << name << "->SetBetaAlpha(" << fBeta_alpha << ");"
3045 << std::endl;
3046 out << indent << name << "->SetBetaBeta(" << fBeta_beta << ");" << std::endl;
3047 out << indent << name << "->SetWeight(" << fWeight << ");" << std::endl;
3048 out << indent << name << "->SetStatisticOption(" << fStatisticOption << ");"
3049 << std::endl;
3050 out << indent << name << "->SetPosteriorMode(" << TestBit(kPosteriorMode) << ");" << std::endl;
3051 out << indent << name << "->SetShortestInterval(" << TestBit(kShortestInterval) << ");" << std::endl;
3052 if(TestBit(kUseWeights))
3053 out << indent << name << "->SetUseWeightedEvents();" << std::endl;
3054
3055 // save bin-by-bin prior parameters
3056 for(unsigned int i = 0; i < fBeta_bin_params.size(); ++i)
3057 {
3058 out << indent << name << "->SetBetaBinParameters(" << i << "," << fBeta_bin_params.at(i).first
3059 << "," << fBeta_bin_params.at(i).second << ");" << std::endl;
3060 }
3061
3062 //set bin contents
3063 Int_t nbins = fTotalHistogram->GetNbinsX() + 2;
3064 if(GetDimension() > 1)
3065 nbins *= fTotalHistogram->GetNbinsY() + 2;
3066 if(GetDimension() > 2)
3067 nbins *= fTotalHistogram->GetNbinsZ() + 2;
3068
3069 //important: set first total number than passed number
3070 for(Int_t i = 0; i < nbins; ++i) {
3071 out << indent << name <<"->SetTotalEvents(" << i << "," <<
3072 fTotalHistogram->GetBinContent(i) << ");" << std::endl;
3073 out << indent << name <<"->SetPassedEvents(" << i << "," <<
3074 fPassedHistogram->GetBinContent(i) << ");" << std::endl;
3075 }
3076
3077 //save list of functions
3078 TIter next(fFunctions);
3079 TObject* obj = 0;
3080 while((obj = next())) {
3081 obj->SavePrimitive(out,"nodraw");
3082 if(obj->InheritsFrom(TF1::Class())) {
3083 out << indent << name << "->GetListOfFunctions()->Add("
3084 << obj->GetName() << ");" << std::endl;
3085 }
3086 }
3087
3088 //set style
3092
3093 //draw TEfficiency object
3094 TString option = opt;
3095 option.ToLower();
3096 if (!option.Contains("nodraw"))
3097 out<< indent << name<< "->Draw(" << quote << opt << quote << ");"
3098 << std::endl;
3099}
3100
3101////////////////////////////////////////////////////////////////////////////////
3102/// Sets the shape parameter &alpha;
3103///
3104/// The prior probability of the efficiency is given by the beta distribution:
3105/// \f[
3106/// f(\varepsilon;\alpha;\beta) = \frac{1}{B(\alpha,\beta)} \varepsilon^{\alpha-1} (1 - \varepsilon)^{\beta-1}
3107/// \f]
3108///
3109/// Note: - both shape parameters have to be positive (i.e. > 0)
3110
3112{
3113 if(alpha > 0)
3114 fBeta_alpha = alpha;
3115 else
3116 Warning("SetBetaAlpha(Double_t)","invalid shape parameter %.2lf",alpha);
3117}
3118
3119////////////////////////////////////////////////////////////////////////////////
3120/// Sets the shape parameter &beta;
3121///
3122/// The prior probability of the efficiency is given by the beta distribution:
3123/// \f[
3124/// f(\varepsilon;\alpha,\beta) = \frac{1}{B(\alpha,\beta)} \varepsilon^{\alpha-1} (1 - \varepsilon)^{\beta-1}
3125/// \f]
3126///
3127/// Note: - both shape parameters have to be positive (i.e. > 0)
3128
3130{
3131 if(beta > 0)
3132 fBeta_beta = beta;
3133 else
3134 Warning("SetBetaBeta(Double_t)","invalid shape parameter %.2lf",beta);
3135}
3136
3137////////////////////////////////////////////////////////////////////////////////
3138/// Sets different shape parameter &alpha; and &beta;
3139/// for the prior distribution for each bin. By default the global parameter are used if they are not set
3140/// for the specific bin
3141/// The prior probability of the efficiency is given by the beta distribution:
3142/// \f[
3143/// f(\varepsilon;\alpha;\beta) = \frac{1}{B(\alpha,\beta)} \varepsilon^{\alpha-1} (1 - \varepsilon)^{\beta-1}
3144/// \f]
3145///
3146/// Note:
3147/// - both shape parameters have to be positive (i.e. > 0)
3148/// - bin gives the global bin number (cf. GetGlobalBin)
3149
3151{
3152 if (!fPassedHistogram || !fTotalHistogram) return;
3154 // doing this I get h1->fN which is available only for a TH1D
3155 UInt_t n = h1->GetBin(h1->GetNbinsX()+1, h1->GetNbinsY()+1, h1->GetNbinsZ()+1 ) + 1;
3156
3157 // in case vector is not created do with default alpha, beta params
3158 if (fBeta_bin_params.size() != n )
3159 fBeta_bin_params = std::vector<std::pair<Double_t, Double_t> >(n, std::make_pair(fBeta_alpha, fBeta_beta) );
3160
3161 // vector contains also values for under/overflows
3162 fBeta_bin_params[bin] = std::make_pair(alpha,beta);
3163 SetBit(kUseBinPrior,true);
3164
3165}
3166
3167////////////////////////////////////////////////////////////////////////////////
3168/// Set the bins for the underlined passed and total histograms
3169/// If the class have been already filled the previous contents will be lost
3170
3172{
3173 if (GetDimension() != 1) {
3174 Error("SetBins","Using wrong SetBins function for a %d-d histogram",GetDimension());
3175 return kFALSE;
3176 }
3177 if (fTotalHistogram->GetEntries() != 0 ) {
3178 Warning("SetBins","Histogram entries will be lost after SetBins");
3181 }
3184 return kTRUE;
3185}
3186
3187////////////////////////////////////////////////////////////////////////////////
3188/// Set the bins for the underlined passed and total histograms
3189/// If the class have been already filled the previous contents will be lost
3190
3192{
3193 if (GetDimension() != 1) {
3194 Error("SetBins","Using wrong SetBins function for a %d-d histogram",GetDimension());
3195 return kFALSE;
3196 }
3197 if (fTotalHistogram->GetEntries() != 0 ) {
3198 Warning("SetBins","Histogram entries will be lost after SetBins");
3201 }
3202 fPassedHistogram->SetBins(nx,xBins);
3203 fTotalHistogram->SetBins(nx,xBins);
3204 return kTRUE;
3205}
3206
3207////////////////////////////////////////////////////////////////////////////////
3208/// Set the bins for the underlined passed and total histograms
3209/// If the class have been already filled the previous contents will be lost
3210
3212{
3213 if (GetDimension() != 2) {
3214 Error("SetBins","Using wrong SetBins function for a %d-d histogram",GetDimension());
3215 return kFALSE;
3216 }
3217 if (fTotalHistogram->GetEntries() != 0 ) {
3218 Warning("SetBins","Histogram entries will be lost after SetBins");
3221 }
3224 return kTRUE;
3225}
3226
3227////////////////////////////////////////////////////////////////////////////////
3228/// Set the bins for the underlined passed and total histograms
3229/// If the class have been already filled the previous contents will be lost
3230
3231Bool_t TEfficiency::SetBins(Int_t nx, const Double_t *xBins, Int_t ny, const Double_t *yBins)
3232{
3233 if (GetDimension() != 2) {
3234 Error("SetBins","Using wrong SetBins function for a %d-d histogram",GetDimension());
3235 return kFALSE;
3236 }
3237 if (fTotalHistogram->GetEntries() != 0 ) {
3238 Warning("SetBins","Histogram entries will be lost after SetBins");
3241 }
3242 fPassedHistogram->SetBins(nx,xBins,ny,yBins);
3243 fTotalHistogram->SetBins(nx,xBins,ny,yBins);
3244 return kTRUE;
3245}
3246
3247////////////////////////////////////////////////////////////////////////////////
3248/// Set the bins for the underlined passed and total histograms
3249/// If the class have been already filled the previous contents will be lost
3250
3252 Int_t nz, Double_t zmin, Double_t zmax)
3253{
3254 if (GetDimension() != 3) {
3255 Error("SetBins","Using wrong SetBins function for a %d-d histogram",GetDimension());
3256 return kFALSE;
3257 }
3258 if (fTotalHistogram->GetEntries() != 0 ) {
3259 Warning("SetBins","Histogram entries will be lost after SetBins");
3262 }
3263 fPassedHistogram->SetBins(nx,xmin,xmax,ny,ymin,ymax,nz,zmin,zmax);
3264 fTotalHistogram->SetBins (nx,xmin,xmax,ny,ymin,ymax,nz,zmin,zmax);
3265 return kTRUE;
3266}
3267
3268////////////////////////////////////////////////////////////////////////////////
3269/// Set the bins for the underlined passed and total histograms
3270/// If the class have been already filled the previous contents will be lost
3271
3272Bool_t TEfficiency::SetBins(Int_t nx, const Double_t *xBins, Int_t ny, const Double_t *yBins, Int_t nz,
3273 const Double_t *zBins )
3274{
3275 if (GetDimension() != 3) {
3276 Error("SetBins","Using wrong SetBins function for a %d-d histogram",GetDimension());
3277 return kFALSE;
3278 }
3279 if (fTotalHistogram->GetEntries() != 0 ) {
3280 Warning("SetBins","Histogram entries will be lost after SetBins");
3283 }
3284 fPassedHistogram->SetBins(nx,xBins,ny,yBins,nz,zBins);
3285 fTotalHistogram->SetBins(nx,xBins,ny,yBins,nz,zBins);
3286 return kTRUE;
3287}
3288
3289////////////////////////////////////////////////////////////////////////////////
3290/// Sets the confidence level (0 < level < 1)
3291/// The default value is 1-sigma :~ 0.683
3292
3294{
3295 if((level > 0) && (level < 1))
3296 fConfLevel = level;
3297 else
3298 Warning("SetConfidenceLevel(Double_t)","invalid confidence level %.2lf",level);
3299}
3300
3301////////////////////////////////////////////////////////////////////////////////
3302/// Sets the directory holding this TEfficiency object
3303///
3304/// A reference to this TEfficiency object is removed from the current
3305/// directory (if it exists) and a new reference to this TEfficiency object is
3306/// added to the given directory.
3307///
3308/// Notes: - If the given directory is 0, the TEfficiency object does not
3309/// belong to any directory and will not be written to file during the
3310/// next TFile::Write() command.
3311
3313{
3314 if(fDirectory == dir)
3315 return;
3316 if(fDirectory)
3317 fDirectory->Remove(this);
3318 fDirectory = dir;
3319 if(fDirectory)
3320 fDirectory->Append(this);
3321}
3322
3323////////////////////////////////////////////////////////////////////////////////
3324/// Sets the name
3325///
3326/// Note: The names of the internal histograms are set to "name + _total" and
3327/// "name + _passed" respectively.
3328
3330{
3332
3333 //setting the names (appending the correct ending)
3334 TString name_total = name + TString("_total");
3335 TString name_passed = name + TString("_passed");
3336 fTotalHistogram->SetName(name_total);
3337 fPassedHistogram->SetName(name_passed);
3338}
3339
3340////////////////////////////////////////////////////////////////////////////////
3341/// Sets the number of passed events in the given global bin
3342///
3343/// returns "true" if the number of passed events has been updated
3344/// otherwise "false" ist returned
3345///
3346/// Note: - requires: 0 <= events <= fTotalHistogram->GetBinContent(bin)
3347
3349{
3350 if(events <= fTotalHistogram->GetBinContent(bin)) {
3351 fPassedHistogram->SetBinContent(bin,events);
3352 return true;
3353 }
3354 else {
3355 Error("SetPassedEvents(Int_t,Int_t)","total number of events (%.1lf) in bin %i is less than given number of passed events %i",fTotalHistogram->GetBinContent(bin),bin,events);
3356 return false;
3357 }
3358}
3359
3360////////////////////////////////////////////////////////////////////////////////
3361/// Sets the histogram containing the passed events
3362///
3363/// The given histogram is cloned and stored internally as histogram containing
3364/// the passed events. The given histogram has to be consistent with the current
3365/// fTotalHistogram (see CheckConsistency(const TH1&,const TH1&)).
3366/// The method returns whether the fPassedHistogram has been replaced (true) or
3367/// not (false).
3368///
3369/// Note: The list of associated functions fFunctions is cleared.
3370///
3371/// Option:
3372/// - "f": force the replacement without checking the consistency
3373/// This can lead to inconsistent histograms and useless results
3374/// or unexpected behaviour. But sometimes it might be the only
3375/// way to change the histograms. If you use this option, you
3376/// should ensure that the fTotalHistogram is replaced by a
3377/// consistent one (with respect to rPassed) as well.
3378
3380{
3381 TString option = opt;
3382 option.ToLower();
3383
3384 Bool_t bReplace = option.Contains("f");
3385
3386 if(!bReplace)
3387 bReplace = CheckConsistency(rPassed,*fTotalHistogram);
3388
3389 if(bReplace) {
3390 delete fPassedHistogram;
3391 Bool_t bStatus = TH1::AddDirectoryStatus();
3393 fPassedHistogram = (TH1*)(rPassed.Clone());
3395 TH1::AddDirectory(bStatus);
3396
3397 if(fFunctions)
3398 fFunctions->Delete();
3399
3400 //check whether both histograms are filled with weights
3401 bool useWeights = CheckWeights(rPassed,*fTotalHistogram);
3402
3403 SetUseWeightedEvents(useWeights);
3404
3405 return true;
3406 }
3407 else
3408 return false;
3409}
3410
3411////////////////////////////////////////////////////////////////////////////////
3412/// Sets the statistic option which affects the calculation of the confidence interval
3413///
3414/// Options:
3415/// - kFCP (=0)(default): using the Clopper-Pearson interval (recommended by PDG)
3416/// sets kIsBayesian = false
3417/// see also ClopperPearson
3418/// - kFNormal (=1) : using the normal approximation
3419/// sets kIsBayesian = false
3420/// see also Normal
3421/// - kFWilson (=2) : using the Wilson interval
3422/// sets kIsBayesian = false
3423/// see also Wilson
3424/// - kFAC (=3) : using the Agresti-Coull interval
3425/// sets kIsBayesian = false
3426/// see also AgrestiCoull
3427/// - kFFC (=4) : using the Feldman-Cousins frequentist method
3428/// sets kIsBayesian = false
3429/// see also FeldmanCousins
3430/// - kBJeffrey (=5) : using the Jeffrey interval
3431/// sets kIsBayesian = true, fBeta_alpha = 0.5 and fBeta_beta = 0.5
3432/// see also Bayesian
3433/// - kBUniform (=6) : using a uniform prior
3434/// sets kIsBayesian = true, fBeta_alpha = 1 and fBeta_beta = 1
3435/// see also Bayesian
3436/// - kBBayesian (=7) : using a custom prior defined by fBeta_alpha and fBeta_beta
3437/// sets kIsBayesian = true
3438/// see also Bayesian
3439/// - kMidP (=8) : using the Lancaster Mid-P method
3440/// sets kIsBayesian = false
3441
3442
3444{
3445 fStatisticOption = option;
3446
3447 switch(option)
3448 {
3449 case kFCP:
3451 SetBit(kIsBayesian,false);
3452 break;
3453 case kFNormal:
3454 fBoundary = &Normal;
3455 SetBit(kIsBayesian,false);
3456 break;
3457 case kFWilson:
3458 fBoundary = &Wilson;
3459 SetBit(kIsBayesian,false);
3460 break;
3461 case kFAC:
3463 SetBit(kIsBayesian,false);
3464 break;
3465 case kFFC:
3467 SetBit(kIsBayesian,false);
3468 break;
3469 case kMidP:
3471 SetBit(kIsBayesian,false);
3472 break;
3473 case kBJeffrey:
3474 fBeta_alpha = 0.5;
3475 fBeta_beta = 0.5;
3476 SetBit(kIsBayesian,true);
3477 SetBit(kUseBinPrior,false);
3478 break;
3479 case kBUniform:
3480 fBeta_alpha = 1;
3481 fBeta_beta = 1;
3482 SetBit(kIsBayesian,true);
3483 SetBit(kUseBinPrior,false);
3484 break;
3485 case kBBayesian:
3486 SetBit(kIsBayesian,true);
3487 break;
3488 default:
3491 SetBit(kIsBayesian,false);
3492 }
3493}
3494
3495////////////////////////////////////////////////////////////////////////////////
3496/// Sets the title
3497///
3498/// Notes:
3499/// - The titles of the internal histograms are set to "title + (total)"
3500/// or "title + (passed)" respectively.
3501/// - It is possible to label the axis of the histograms as usual (see
3502/// TH1::SetTitle).
3503///
3504/// Example: Setting the title to "My Efficiency" and label the axis
3505/// pEff->SetTitle("My Efficiency;x label;eff");
3506
3507void TEfficiency::SetTitle(const char* title)
3508{
3509
3510 //setting the titles (looking for the first semicolon and insert the tokens there)
3511 TString title_passed = title;
3512 TString title_total = title;
3513 Ssiz_t pos = title_passed.First(";");
3514 if (pos != kNPOS) {
3515 title_passed.Insert(pos," (passed)");
3516 title_total.Insert(pos," (total)");
3517 }
3518 else {
3519 title_passed.Append(" (passed)");
3520 title_total.Append(" (total)");
3521 }
3522 fPassedHistogram->SetTitle(title_passed);
3523 fTotalHistogram->SetTitle(title_total);
3524
3525 // strip (total) for the TEfficiency title
3526 // HIstogram SetTitle has already stripped the axis
3527 TString teffTitle = fTotalHistogram->GetTitle();
3528 teffTitle.ReplaceAll(" (total)","");
3529 TNamed::SetTitle(teffTitle);
3530
3531}
3532
3533////////////////////////////////////////////////////////////////////////////////
3534/// Sets the number of total events in the given global bin
3535///
3536/// returns "true" if the number of total events has been updated
3537/// otherwise "false" ist returned
3538///
3539/// Note: - requires: fPassedHistogram->GetBinContent(bin) <= events
3540
3542{
3543 if(events >= fPassedHistogram->GetBinContent(bin)) {
3544 fTotalHistogram->SetBinContent(bin,events);
3545 return true;
3546 }
3547 else {
3548 Error("SetTotalEvents(Int_t,Int_t)","passed number of events (%.1lf) in bin %i is bigger than given number of total events %i",fPassedHistogram->GetBinContent(bin),bin,events);
3549 return false;
3550 }
3551}
3552
3553////////////////////////////////////////////////////////////////////////////////
3554/// Sets the histogram containing all events
3555///
3556/// The given histogram is cloned and stored internally as histogram containing
3557/// all events. The given histogram has to be consistent with the current
3558/// fPassedHistogram (see CheckConsistency(const TH1&,const TH1&)).
3559/// The method returns whether the fTotalHistogram has been replaced (true) or
3560/// not (false).
3561///
3562/// Note: The list of associated functions fFunctions is cleared.
3563///
3564/// Option:
3565/// - "f": force the replacement without checking the consistency
3566/// This can lead to inconsistent histograms and useless results
3567/// or unexpected behaviour. But sometimes it might be the only
3568/// way to change the histograms. If you use this option, you
3569/// should ensure that the fPassedHistogram is replaced by a
3570/// consistent one (with respect to rTotal) as well.
3571
3573{
3574 TString option = opt;
3575 option.ToLower();
3576
3577 Bool_t bReplace = option.Contains("f");
3578
3579 if(!bReplace)
3580 bReplace = CheckConsistency(*fPassedHistogram,rTotal);
3581
3582 if(bReplace) {
3583 delete fTotalHistogram;
3584 Bool_t bStatus = TH1::AddDirectoryStatus();
3586 fTotalHistogram = (TH1*)(rTotal.Clone());
3588 TH1::AddDirectory(bStatus);
3589
3590 if(fFunctions)
3591 fFunctions->Delete();
3592
3593 //check whether both histograms are filled with weights
3594 bool useWeights = CheckWeights(*fPassedHistogram,rTotal);
3595 SetUseWeightedEvents(useWeights);
3596
3597 return true;
3598 }
3599 else
3600 return false;
3601}
3602
3603////////////////////////////////////////////////////////////////////////////////
3604
3606{
3607 if (on && !TestBit(kUseWeights) )
3608 gROOT->Info("TEfficiency::SetUseWeightedEvents","Handle weighted events for computing efficiency");
3609
3610 SetBit(kUseWeights,on);
3611
3616}
3617
3618////////////////////////////////////////////////////////////////////////////////
3619/// Sets the global weight for this TEfficiency object
3620///
3621/// Note: - weight has to be positive ( > 0)
3622
3624{
3625 if(weight > 0)
3626 fWeight = weight;
3627 else
3628 Warning("SetWeight","invalid weight %.2lf",weight);
3629}
3630
3631////////////////////////////////////////////////////////////////////////////////
3632/**
3633Calculates the boundaries for the frequentist Wilson interval
3634
3635\param[in] total number of total events
3636\param[in] passed 0 <= number of passed events <= total
3637\param[in] level confidence level
3638\param[in] bUpper
3639 - true - upper boundary is returned
3640 - false - lower boundary is returned
3641
3642Calculation:
3643\f{eqnarray*}{
3644 \alpha &=& 1 - \frac{level}{2}\\
3645 \kappa &=& \Phi^{-1}(1 - \alpha,1) ...\ normal\ quantile\ function\\
3646 mode &=& \frac{passed + \frac{\kappa^{2}}{2}}{total + \kappa^{2}}\\
3647 \Delta &=& \frac{\kappa}{total + \kappa^{2}} * \sqrt{passed (1 - \frac{passed}{total}) + \frac{\kappa^{2}}{4}}\\
3648 return &=& max(0,mode - \Delta)\ or\ min(1,mode + \Delta)
3649\f}
3650
3651*/
3652
3654{
3655 Double_t alpha = (1.0 - level)/2;
3656 if (total == 0) return (bUpper) ? 1 : 0;
3657 Double_t average = ((Double_t)passed) / total;
3658 Double_t kappa = ROOT::Math::normal_quantile(1 - alpha,1);
3659
3660 Double_t mode = (passed + 0.5 * kappa * kappa) / (total + kappa * kappa);
3661 Double_t delta = kappa / (total + kappa*kappa) * std::sqrt(total * average
3662 * (1 - average) + kappa * kappa / 4);
3663 if(bUpper)
3664 return ((mode + delta) > 1) ? 1.0 : (mode + delta);
3665 else
3666 return ((mode - delta) < 0) ? 0.0 : (mode - delta);
3667}
3668
3669////////////////////////////////////////////////////////////////////////////////
3670/// Addition operator
3671///
3672/// adds the corresponding histograms:
3673/// ~~~ {.cpp}
3674/// lhs.GetTotalHistogram() + rhs.GetTotalHistogram()
3675/// lhs.GetPassedHistogram() + rhs.GetPassedHistogram()
3676/// ~~~
3677/// the statistic option and the confidence level are taken from lhs
3678
3679const TEfficiency operator+(const TEfficiency& lhs,const TEfficiency& rhs)
3680{
3681 TEfficiency tmp(lhs);
3682 tmp += rhs;
3683 return tmp;
3684}
3685
3686#endif
void Class()
Definition: Class.C:29
double
Definition: Converters.cxx:921
#define b(i)
Definition: RSha256.hxx:100
#define e(i)
Definition: RSha256.hxx:103
const Ssiz_t kNPOS
Definition: RtypesCore.h:113
int Int_t
Definition: RtypesCore.h:43
const Bool_t kFALSE
Definition: RtypesCore.h:90
double Double_t
Definition: RtypesCore.h:57
long long Long64_t
Definition: RtypesCore.h:71
const Bool_t kTRUE
Definition: RtypesCore.h:89
const char Option_t
Definition: RtypesCore.h:64
#define ClassImp(name)
Definition: Rtypes.h:361
static void indent(ostringstream &buf, int indent_level)
#define gDirectory
Definition: TDirectory.h:229
const TEfficiency operator+(const TEfficiency &lhs, const TEfficiency &rhs)
Addition operator.
const Double_t kDefBetaAlpha
Definition: TEfficiency.cxx:36
const Double_t kDefWeight
Definition: TEfficiency.cxx:40
const Double_t kDefBetaBeta
Definition: TEfficiency.cxx:37
const TEfficiency::EStatOption kDefStatOpt
Definition: TEfficiency.cxx:39
const Double_t kDefConfLevel
Definition: TEfficiency.cxx:38
static unsigned int total
char name[80]
Definition: TGX11.cxx:109
float xmin
Definition: THbookFile.cxx:93
float ymin
Definition: THbookFile.cxx:93
float xmax
Definition: THbookFile.cxx:93
float ymax
Definition: THbookFile.cxx:93
double sqrt(double)
TRObject operator()(const T1 &t1) const
#define gROOT
Definition: TROOT.h:406
#define gPad
Definition: TVirtualPad.h:287
static struct mg_connection * fc(struct mg_context *ctx)
Definition: civetweb.c:3728
User class for performing function minimization.
virtual bool Minimize(int maxIter, double absTol=1.E-8, double relTol=1.E-10)
Find minimum position iterating until convergence specified by the absolute and relative tolerance or...
virtual double XMinimum() const
Return current estimate of the position of the minimum.
void SetFunction(const ROOT::Math::IGenFunction &f, double xlow, double xup)
Sets function to be minimized.
void SetNpx(int npx)
Set the number of point used to bracket root using a grid.
virtual double FValMinimum() const
Return function value at current estimate of the minimum.
Template class to wrap any C++ callable object which takes one argument i.e.
Double_t At(Int_t i) const
Definition: TArrayD.h:79
Double_t * fArray
Definition: TArrayD.h:30
const Double_t * GetArray() const
Definition: TArrayD.h:43
Int_t fN
Definition: TArray.h:38
Fill Area Attributes class.
Definition: TAttFill.h:19
void Copy(TAttFill &attfill) const
Copy this fill attributes to a new TAttFill.
Definition: TAttFill.cxx:202
virtual void SaveFillAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1001)
Save fill attributes as C++ statement(s) on output stream out.
Definition: TAttFill.cxx:234
Line Attributes class.
Definition: TAttLine.h:18
void Copy(TAttLine &attline) const
Copy this line attributes to a new TAttLine.
Definition: TAttLine.cxx:172
virtual void SaveLineAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t widdef=1)
Save line attributes as C++ statement(s) on output stream out.
Definition: TAttLine.cxx:270
Marker Attributes class.
Definition: TAttMarker.h:19
virtual void SaveMarkerAttributes(std::ostream &out, const char *name, Int_t coldef=1, Int_t stydef=1, Int_t sizdef=1)
Save line attributes as C++ statement(s) on output stream out.
Definition: TAttMarker.cxx:339
void Copy(TAttMarker &attmarker) const
Copy this marker attributes to a new TAttMarker.
Definition: TAttMarker.cxx:235
Class to manage histogram axis.
Definition: TAxis.h:30
virtual void SetBinLabel(Int_t bin, const char *label)
Set label for bin.
Definition: TAxis.cxx:820
Bool_t IsVariableBinSize() const
Definition: TAxis.h:136
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
Definition: TAxis.cxx:475
const TArrayD * GetXbins() const
Definition: TAxis.h:130
Double_t GetXmax() const
Definition: TAxis.h:134
const char * GetBinLabel(Int_t bin) const
Return label for bin.
Definition: TAxis.cxx:437
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Definition: TAxis.cxx:515
virtual Int_t FindFixBin(Double_t x) const
Find bin number corresponding to abscissa x.
Definition: TAxis.cxx:416
Double_t GetXmin() const
Definition: TAxis.h:133
Int_t GetNbins() const
Definition: TAxis.h:121
const char * GetTitle() const
Returns title of object.
Definition: TAxis.h:129
THashList * GetLabels() const
Definition: TAxis.h:117
Binomial fitter for the division of two histograms.
TFitResultPtr Fit(TF1 *f1, Option_t *option="")
Carry out the fit of the given function to the given histograms.
Collection abstract base class.
Definition: TCollection.h:63
virtual Bool_t IsEmpty() const
Definition: TCollection.h:186
Describe directory structure in memory.
Definition: TDirectory.h:40
virtual void Append(TObject *obj, Bool_t replace=kFALSE)
Append object to this directory.
Definition: TDirectory.cxx:191
virtual TObject * Remove(TObject *)
Remove an object from the in-memory list.
Class to handle efficiency histograms.
Definition: TEfficiency.h:28
static Bool_t FeldmanCousinsInterval(Double_t total, Double_t passed, Double_t level, Double_t &lower, Double_t &upper)
Calculates the interval boundaries using the frequentist methods of Feldman-Cousins.
static Double_t BetaMode(Double_t alpha, Double_t beta)
Compute the mode of the beta distribution.
Bool_t SetPassedEvents(Int_t bin, Int_t events)
Sets the number of passed events in the given global bin.
TH2 * CreateHistogram(Option_t *opt="") const
Create the histogram used to be painted (for dim=2 TEfficiency) The return object is managed by the c...
static Bool_t BetaShortestInterval(Double_t level, Double_t alpha, Double_t beta, Double_t &lower, Double_t &upper)
Calculates the boundaries for a shortest confidence interval for a Beta distribution.
static Bool_t CheckWeights(const TH1 &pass, const TH1 &total)
Check if both histogram are weighted.
static Double_t BetaMean(Double_t alpha, Double_t beta)
Compute the mean (average) of the beta distribution.
TEfficiency()
default constructor
Double_t GetBetaAlpha(Int_t bin=-1) const
Definition: TEfficiency.h:106
void FillWeighted(Bool_t bPassed, Double_t weight, Double_t x, Double_t y=0, Double_t z=0)
This function is used for filling the two histograms with a weight.
~TEfficiency()
default destructor
TList * GetListOfFunctions()
static Double_t Bayesian(Double_t total, Double_t passed, Double_t level, Double_t alpha, Double_t beta, Bool_t bUpper, Bool_t bShortest=false)
Calculates the boundaries for a Bayesian confidence interval (shortest or central interval depending ...
static Double_t AgrestiCoull(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Agresti-Coull interval.
Long64_t Merge(TCollection *list)
Merges the TEfficiency objects in the given list to the given TEfficiency object using the operator+=...
std::vector< std::pair< Double_t, Double_t > > fBeta_bin_params
Definition: TEfficiency.h:48
static Double_t FeldmanCousins(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Feldman-Cousins interval.
EStatOption fStatisticOption
Definition: TEfficiency.h:57
void SetStatisticOption(EStatOption option)
Sets the statistic option which affects the calculation of the confidence interval.
void SetWeight(Double_t weight)
Sets the global weight for this TEfficiency object.
TH1 * fTotalHistogram
Definition: TEfficiency.h:58
Int_t GetDimension() const
returns the dimension of the current TEfficiency object
TEfficiency & operator+=(const TEfficiency &rhs)
Adds the histograms of another TEfficiency object to current histograms.
Bool_t SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Set the bins for the underlined passed and total histograms If the class have been already filled the...
void Build(const char *name, const char *title)
Building standard data structure of a TEfficiency object.
TH1 * GetCopyPassedHisto() const
Returns a cloned version of fPassedHistogram.
Double_t GetEfficiencyErrorUp(Int_t bin) const
Returns the upper error on the efficiency in the given global bin.
void Draw(Option_t *opt="")
Draws the current TEfficiency object.
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
Compute distance from point px,py to a graph.
Double_t fBeta_alpha
Definition: TEfficiency.h:46
Bool_t UsesBayesianStat() const
Definition: TEfficiency.h:156
void SetBetaBeta(Double_t beta)
Sets the shape parameter β.
Double_t GetConfidenceLevel() const
Definition: TEfficiency.h:108
static Bool_t CheckBinning(const TH1 &pass, const TH1 &total)
Checks binning for each axis.
static Double_t BetaCentralInterval(Double_t level, Double_t alpha, Double_t beta, Bool_t bUpper)
Calculates the boundaries for a central confidence interval for a Beta distribution.
Int_t GetGlobalBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Returns the global bin number which can be used as argument for the following functions:
TH1 * fPassedHistogram
temporary histogram for painting
Definition: TEfficiency.h:56
static Double_t MidPInterval(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries using the mid-P binomial interval (Lancaster method) from B.
void SetBetaAlpha(Double_t alpha)
Sets the shape parameter α.
@ kShortestInterval
Definition: TEfficiency.h:64
static Bool_t CheckEntries(const TH1 &pass, const TH1 &total, Option_t *opt="")
Checks whether bin contents are compatible with binomial statistics.
static Double_t Normal(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Returns the confidence limits for the efficiency supposing that the efficiency follows a normal distr...
Double_t fWeight
Definition: TEfficiency.h:59
Bool_t SetPassedHistogram(const TH1 &rPassed, Option_t *opt)
Sets the histogram containing the passed events.
Bool_t SetTotalEvents(Int_t bin, Int_t events)
Sets the number of total events in the given global bin.
Double_t GetBetaBeta(Int_t bin=-1) const
Definition: TEfficiency.h:107
Double_t(* fBoundary)(Double_t, Double_t, Double_t, Bool_t)
Definition: TEfficiency.h:50
void FillGraph(TGraphAsymmErrors *graph, Option_t *opt) const
Fill the graph to be painted with information from TEfficiency Internal method called by TEfficiency:...
void SetName(const char *name)
Sets the name.
void FillHistogram(TH2 *h2) const
Fill the 2d histogram to be painted with information from TEfficiency 2D Internal method called by TE...
Int_t FindFixBin(Double_t x, Double_t y=0, Double_t z=0) const
Returns the global bin number containing the given values.
TDirectory * fDirectory
Definition: TEfficiency.h:52
static Double_t Combine(Double_t &up, Double_t &low, Int_t n, const Int_t *pass, const Int_t *total, Double_t alpha, Double_t beta, Double_t level=0.683, const Double_t *w=0, Option_t *opt="")
void SetUseWeightedEvents(Bool_t on=kTRUE)
static Double_t Wilson(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Wilson interval.
TEfficiency & operator=(const TEfficiency &rhs)
Assignment operator.
Double_t fConfLevel
pointer to a method calculating the boundaries of confidence intervals
Definition: TEfficiency.h:51
Double_t fBeta_beta
Definition: TEfficiency.h:47
void SavePrimitive(std::ostream &out, Option_t *opt="")
Have histograms fixed bins along each axis?
Double_t GetEfficiency(Int_t bin) const
Returns the efficiency in the given global bin.
Bool_t SetTotalHistogram(const TH1 &rTotal, Option_t *opt)
Sets the histogram containing all events.
void Fill(Bool_t bPassed, Double_t x, Double_t y=0, Double_t z=0)
This function is used for filling the two histograms.
void SetDirectory(TDirectory *dir)
Sets the directory holding this TEfficiency object.
TGraphAsymmErrors * fPaintGraph
Definition: TEfficiency.h:54
TGraphAsymmErrors * CreateGraph(Option_t *opt="") const
Create the graph used be painted (for dim=1 TEfficiency) The return object is managed by the caller.
EStatOption GetStatisticOption() const
Definition: TEfficiency.h:121
TList * fFunctions
pointer to directory holding this TEfficiency object
Definition: TEfficiency.h:53
void Paint(Option_t *opt)
Paints this TEfficiency object.
void SetBetaBinParameters(Int_t bin, Double_t alpha, Double_t beta)
Sets different shape parameter α and β for the prior distribution for each bin.
static Bool_t CheckConsistency(const TH1 &pass, const TH1 &total, Option_t *opt="")
Checks the consistence of the given histograms.
Double_t GetWeight() const
Definition: TEfficiency.h:123
TH1 * GetCopyTotalHisto() const
Returns a cloned version of fTotalHistogram.
virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py)
Execute action corresponding to one event.
static Double_t ClopperPearson(Double_t total, Double_t passed, Double_t level, Bool_t bUpper)
Calculates the boundaries for the frequentist Clopper-Pearson interval.
void SetConfidenceLevel(Double_t level)
Sets the confidence level (0 < level < 1) The default value is 1-sigma :~ 0.683.
Double_t GetEfficiencyErrorLow(Int_t bin) const
Returns the lower error on the efficiency in the given global bin.
void SetTitle(const char *title)
Sets the title.
TFitResultPtr Fit(TF1 *f1, Option_t *opt="")
Fits the efficiency using the TBinomialEfficiencyFitter class.
TH2 * fPaintHisto
temporary graph for painting
Definition: TEfficiency.h:55
1-Dim function class
Definition: TF1.h:210
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
Definition: TFitResultPtr.h:31
TGraph with asymmetric error bars.
virtual void Paint(Option_t *chopt="")
Draw this graph with its current attributes.
Definition: TGraph.cxx:2030
virtual void PaintStats(TF1 *fit)
Draw the stats.
Definition: TGraph.cxx:2057
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
Compute distance from point px,py to a graph.
Definition: TGraph.cxx:804
virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py)
Execute action corresponding to one event.
Definition: TGraph.cxx:981
1-D histogram with a double per channel (see TH1 documentation)}
Definition: TH1.h:614
1-D histogram with a float per channel (see TH1 documentation)}
Definition: TH1.h:571
The TH1 histogram class.
Definition: TH1.h:56
virtual void SetDirectory(TDirectory *dir)
By default when an histogram is created, it is added to the list of histogram objects in the current ...
Definition: TH1.cxx:8393
virtual void SetTitle(const char *title)
See GetStatOverflows for more information.
Definition: TH1.cxx:6345
virtual void SetNormFactor(Double_t factor=1)
Definition: TH1.h:400
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
Definition: TH1.cxx:8597
TAxis * GetZaxis()
Definition: TH1.h:318
virtual void GetStats(Double_t *stats) const
fill the array stats from the contents of this histogram The array stats must be correctly dimensione...
Definition: TH1.cxx:7345
virtual Int_t GetNbinsY() const
Definition: TH1.h:293
virtual Int_t GetNbinsZ() const
Definition: TH1.h:294
virtual Int_t GetDimension() const
Definition: TH1.h:278
static void AddDirectory(Bool_t add=kTRUE)
Sets the flag controlling the automatic add of histograms in memory.
Definition: TH1.cxx:1226
@ kIsAverage
Bin contents are average (used by Add)
Definition: TH1.h:166
virtual void Reset(Option_t *option="")
Reset this histogram: contents, errors, etc.
Definition: TH1.cxx:6736
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
Definition: TH1.h:316
virtual Int_t GetNcells() const
Definition: TH1.h:295
TObject * Clone(const char *newname=0) const
Make a complete copy of the underlying object.
Definition: TH1.cxx:2665
virtual Int_t GetBin(Int_t binx, Int_t biny=0, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
Definition: TH1.cxx:4809
virtual Int_t GetNbinsX() const
Definition: TH1.h:292
virtual Bool_t Add(TF1 *h1, Double_t c1=1, Option_t *option="")
Performs the operation: this = this + c1*f1 if errors are defined (see TH1::Sumw2),...
Definition: TH1.cxx:778
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
Definition: TH1.cxx:3275
TAxis * GetYaxis()
Definition: TH1.h:317
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition: TH1.cxx:8678
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
Definition: TH1.cxx:8608
virtual Double_t GetEntries() const
Return the current number of entries.
Definition: TH1.cxx:4302
@ kNstat
Definition: TH1.h:179
virtual void SetName(const char *name)
Change the name of this histogram.
Definition: TH1.cxx:8416
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
Definition: TH1.cxx:4907
virtual TArrayD * GetSumw2()
Definition: TH1.h:308
virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py)
Execute action corresponding to one event.
Definition: TH1.cxx:3171
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width for 1D histogram.
Definition: TH1.cxx:8619
virtual void Paint(Option_t *option="")
Control routine to paint any kind of histograms.
Definition: TH1.cxx:5837
virtual Int_t GetSumw2N() const
Definition: TH1.h:310
virtual void SetBins(Int_t nx, Double_t xmin, Double_t xmax)
Redefine x axis parameters.
Definition: TH1.cxx:8223
virtual void Sumw2(Bool_t flag=kTRUE)
Create structure to store sum of squares of weights.
Definition: TH1.cxx:8476
static Bool_t AddDirectoryStatus()
Static function: cannot be inlined on Windows/NT.
Definition: TH1.cxx:706
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py)
Compute distance from point px,py to a line.
Definition: TH1.cxx:2736
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
Definition: TH1.cxx:8446
2-D histogram with a double per channel (see TH1 documentation)}
Definition: TH2.h:292
2-D histogram with a float per channel (see TH1 documentation)}
Definition: TH2.h:251
Service class for 2-Dim histogram classes.
Definition: TH2.h:30
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content.
Definition: TH2.cxx:2480
3-D histogram with a double per channel (see TH1 documentation)}
Definition: TH3.h:304
The 3-D histogram classes derived from the 1-D histogram classes.
Definition: TH3.h:31
A doubly linked list.
Definition: TList.h:44
virtual void Add(TObject *obj)
Definition: TList.h:87
virtual TObject * Remove(TObject *obj)
Remove object from the list.
Definition: TList.cxx:821
virtual void Delete(Option_t *option="")
Remove all objects from the list AND delete all heap based objects.
Definition: TList.cxx:469
virtual TObject * First() const
Return the first object in the list. Returns 0 when list is empty.
Definition: TList.cxx:658
The TNamed class is the base class for all named ROOT classes.
Definition: TNamed.h:29
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
Definition: TNamed.cxx:164
virtual void SetName(const char *name)
Set the name of the TNamed.
Definition: TNamed.cxx:140
virtual const char * GetTitle() const
Returns title of object.
Definition: TNamed.h:48
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
Mother of all ROOT objects.
Definition: TObject.h:37
virtual const char * GetName() const
Returns name of object.
Definition: TObject.cxx:357
R__ALWAYS_INLINE Bool_t TestBit(UInt_t f) const
Definition: TObject.h:187
@ kNotDeleted
object has not been deleted
Definition: TObject.h:78
virtual const char * ClassName() const
Returns name of class to which the object belongs.
Definition: TObject.cxx:128
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
Definition: TObject.cxx:877
virtual void AppendPad(Option_t *option="")
Append graphics object to current pad.
Definition: TObject.cxx:105
virtual void SavePrimitive(std::ostream &out, Option_t *option="")
Save a primitive as a C++ statement(s) on output stream "out".
Definition: TObject.cxx:664
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
Definition: TObject.cxx:694
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
Definition: TObject.cxx:443
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
Definition: TObject.cxx:891
virtual void Fatal(const char *method, const char *msgfmt,...) const
Issue fatal error message.
Definition: TObject.cxx:919
void ResetBit(UInt_t f)
Definition: TObject.h:186
@ kInvalidObject
if object ctor succeeded but object should not be used
Definition: TObject.h:68
virtual void Info(const char *method, const char *msgfmt,...) const
Issue info message.
Definition: TObject.cxx:865
Basic string class.
Definition: TString.h:131
Ssiz_t Length() const
Definition: TString.h:405
void ToLower()
Change string to lower-case.
Definition: TString.cxx:1125
TString & Insert(Ssiz_t pos, const char *s)
Definition: TString.h:644
Ssiz_t First(char c) const
Find first occurrence of a character c.
Definition: TString.cxx:499
const char * Data() const
Definition: TString.h:364
TString & ReplaceAll(const TString &s1, const TString &s2)
Definition: TString.h:687
Bool_t IsNull() const
Definition: TString.h:402
TString & Append(const char *cs)
Definition: TString.h:559
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
Definition: TString.h:619
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
Definition: TString.h:634
double beta_pdf(double x, double a, double b)
Probability density function of the beta distribution.
double beta_cdf(double x, double a, double b)
Cumulative distribution function of the beta distribution Upper tail of the integral of the beta_pdf.
double beta_cdf_c(double x, double a, double b)
Complement of the cumulative distribution function of the beta distribution.
double normal_quantile(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the lower tail of the normal (Gaussian) distri...
double normal_quantile_c(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the upper tail of the normal (Gaussian) distri...
double beta_quantile_c(double x, double a, double b)
Inverse ( ) of the cumulative distribution function of the lower tail of the beta distribution (beta_...
double beta_quantile(double x, double a, double b)
Inverse ( ) of the cumulative distribution function of the upper tail of the beta distribution (beta_...
double beta(double x, double y)
Calculates the beta function.
const Double_t sigma
Double_t y[n]
Definition: legend1.C:17
Double_t x[n]
Definition: legend1.C:17
const Int_t n
Definition: legend1.C:16
TGraphErrors * gr
Definition: legend1.C:25
TH1F * h1
Definition: legend1.C:5
TF1 * f1
Definition: legend1.C:11
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Definition: TMath.h:418
Definition: graph.py:1
auto * a
Definition: textangle.C:12